
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Revisiting Bounded-Suboptimal Safe Interval Path Planning

Konstantin Yakovlev,1,2 Anton Andreychuk,1,3 Roni Stern4,5

1Federal Research Center for Computer Science and Control of Russian Academy of Sciences
2National Research University Higher School of Economics

3Peoples’ Friendship University of Russia (RUDN University)
4Ben-Gurion University of the Negev, 5Palo Alto Research Center (PARC)

yakovlev@isa.ru, andreychuk@mail.com, sternron@post.bgu.ac.il

Abstract

Safe-interval path planning (SIPP) is a powerful algorithm
for finding a path in the presence of dynamic obstacles. SIPP
returns provably optimal solutions. However, in many practi-
cal applications of SIPP such as path planning for robots, one
would like to trade-off optimality for shorter planning time.
In this paper we explore different ways to build a bounded-
suboptimal SIPP and discuss their pros and cons. We com-
pare the different bounded-suboptimal versions of SIPP ex-
perimentally. While there is no universal winner, the results
provide insights into when each method should be used.

Introduction
Finding a shortest path in a graph is a classical problem
in computer science with numerous applications, including
robot motion planning, digital entertainment, and logistics.
A∗ (Hart, Nilsson, and Raphael 1968) and Dijsktra’s algo-
rithm (Dijkstra 1959) are well-known methods for solving
this kind of task. Finding a path becomes more challeng-
ing in the presence of dynamic obstacles that move through
the environment, blocking vertices or prohibiting moving
between some of them at specific time ranges. A solution
in such a scenario is a plan that consists a sequence of ac-
tions, where an action is either to move from one vertex to
an adjacent one, or to wait in it for some time. Application
of textbook A∗ or Dijkstra’s algorithm in this setting is not
straightforward. First, the set of actions in a vertex depends
on the current time, due to the dynamic obstacles. Second,
there are potentially infinite wait actions, depending on how
much time one would like to wait.

To address this problem, the Safe Interval Path Planning
(SIPP) algorithm was introduced (Phillips and Likhachev
2011). SIPP computes for vertices in the graph a set of safe
intervals in which it is possible to occupy them without col-
liding with the dynamic obstacles. Then, it runs an A∗ search
in a different graph in which each vertex represents a pair of
vertex in the original graph and a safe time interval. SIPP is
complete and returns optimal solutions. It has been success-
fully applied in a range of domains, including robot motion
planning and multi-agent path finding (Araki et al. 2017;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Andreychuk et al. 2019; Cohen et al. 2019). In such appli-
cations, a common requirement is to tradeoff solution op-
timality in order to obtain a solution faster. To control this
tradeoff, we explore bounded-suboptimal versions of SIPP.
A bounded-suboptimal algorithm accepts a parameter w ≥ 1
and returns a solution whose cost is at most w times the
cost of an optimal solution. Since SIPP is based on A∗,
it is natural to apply the same frameworks used for creat-
ing a bounded-suboptimal A∗. However, the SIPP search
space has certain properties that prevent a straightforward
application of frameworks such as WA∗ (Pohl 1970). To
address this, Narayanan et al. (2012) proposed a bounded-
suboptimal SIPP implementation.

In this work we revisit the assumptions of this algorithm
and propose two alternative bounded-suboptimal SIPP algo-
rithms. One based on the WA∗ framework but allowing node
re-expansions (see description later), and another based on
the focal search framework (Pearl and Kim 1982). We an-
alyze these algorithms and compare them experimentally.
The results show that each algorithm has its strengths and
weaknesses, and the choice of which algorithm should be
use depends mainly on the value of w.

Problem Statement
Consider a mobile agent that navigates in an environment
represented by a weighted graph. The vertices of the graph
correspond to the locations the agent may occupy, and the
edges correspond to allowed transitions. When at a vertex,
the agent can either wait for an arbitrary amount of time, or
move to an adjacent vertex along a graph edge. For the sake
of simplicity we neglect the inertial effects and assume that
agent moves with constant speed such that the duration of a
move action equals the weight of the corresponding edge.

A plan π(s, g) is a sequence of consecutive actions that
move the agent from a start vertex s to goal vertex g. The
cost of a plan is the sum of durations of its constituent ac-
tions. There exist dynamic obstacles that move in the envi-
ronment and block certain vertices and edges for pre-defined
time intervals, preventing the agent from occupying or mov-
ing through them. A plan π(s, g) is called valid if it avoids
colliding with all dynamic obstacles. The path planning with
dynamic obstacles problem is the problem of finding a valid

300



plan for a given start and goal locations.
An optimal solution to this problem is a lowest-cost valid

plan from start to goal. The suboptimality of a solution is the
ratio between its cost and the cost of an optimal solution.
In this work we are interested in finding solutions whose
suboptimality is bounded by a given scalar w ≥ 1. E.g. by
setting w to 1.1 we aim to find a solution whose cost is no
more than 10% over the cost of an optimal solution.

Background
A∗ is a heuristic search algorithm for finding a path in a
state space represented as a graph. It maintains two lists of
states, OPEN and CLOSED. OPEN contains all states that
were generated but not expanded and CLOSED contains
all previously expanded states. Initially, CLOSED is empty
and OPEN contains only the initial state. Every state n is
associated with two values: g(n), which is the cost of the
lowest-cost path found so far from the initial state to n, and
h(n), which is a heuristic estimate of the cost of the lowest-
cost path from n to a goal. In every iteration the state with
the minimal f(n) = g(n) + h(n) is popped out of OPEN
and expanded. It means generating the successors, which are
state’s neighbors in the state space, and inserting them into
OPEN. A∗ halts when it expands a goal state. Note that if a
state n generates a state n′ that was already generated, then
we must check if its g value can be updated by consider-
ing reaching it via n. If this happens and n′ is no longer in
OPEN, then it must be re-inserted into OPEN. Consequently,
a node may be re-expanded multiple times. In fact, in some
extreme cases the number of expanded states can be expo-
nential in the size of the state space (Martelli 1977).

A∗ has several attractive properties that are relevant for
this paper. First, if h(n) is admissible, that is, it always out-
puts a lower bound on the value it estimates, then A∗ guar-
antees finding an optimal solution (if one exists). Second, if
heuristic is consistent, then A∗ will never re-expand a state.
A heuristic is consistent if for every pair of states n and n′
such that n generates n′ it holds that h(n)−h(n′) ≤ c(n, n′)
where c(n, n′) is the cost of the edge from n to n′.

SIPP is a modification of A∗ for the path planning with
dynamic obstacles problem. The core idea of SIPP is to
group consecutive time moments into time intervals and to
associate every vertex with one or more safe intervals. A
safe interval for a vertex is “a contiguous period of time ...
during which there is no collision and it is in collision one
timestep prior and one timestep after the period” (Phillips
and Likhachev 2011). SIPP performs an A∗ search over a
state space in which a state is a tuple (v, [ti, tj ]), where v is
a vertex in the underlying graph and [ti, tj ] is a safe interval
for v. Note that states with different non-overlapping time
intervals but the same vertex might exist in the search space.
g(n) in SIPP is the earliest time an agent can reach

v in the designated safe interval [ti, tj ]. SIPP uses g(n)
to compute the set of successors for n. I.e., when a state
n = (v, [ti, tj ]) generates a state n′ = (v′, [t′i, t

′
j ]), SIPP

first tries to commit a move v → v′ at time equal to g(n),
that is without any waiting at n. If such a transition re-
sults in a collision with a dynamic obstacle, then SIPP aug-

ments the move with a wait action of minimal duration. That
is, the agent is planned to wait at v no longer than it is
needed to avoid the collision. Therefore, g(n′) is set to be
g(n) + dur(minwait) + c(v, v′), where c(v, v′) is the cost
of the edge (v, v′) and dur(minwait) is computed taking
dynamic obstacles into account.1

h(n) in SIPP estimates the lowest-cost plan to move the
agent from n to a goal state. SIPP requires h(n) to be both
admissible and consistent. Beyond these changes, SIPP uses
regular A∗: it extract from OPEN the state with the lowest
g(n) + h(n) and it halts when a goal has been expanded.

SIPP shares several of the desirable properties of A∗. It
guarantees finding a solution if one exists (otherwise, it re-
ports failure) and this solution is optimal. Both completeness
and optimality rely on the following property: when SIPP
expands a state n = (v, [ti, tj ]), then g(n) is the earliest
possible arrival time to v in [ti, tj ] (Theorem 2 in (Phillips
and Likhachev 2011)). This property guarantees that set of
successors for every generated state is maximal (Theorem 1
in (Phillips and Likhachev 2011)). Consequently, expanding
a state with the goal vertex means the lowest cost plan to it
has been found and all relevant states have been generated.

Bounded-Suboptimal SIPP
One of the well-known ways to make A∗ bounded-
suboptimal is to use an inflated heuristic function during the
search. WA∗ (Pohl 1970) is a prominent example of this ap-
proach. WA∗ is similar to A∗ except that it chooses for the
expansion a node n that minimizes g(n) + w · h(m), where
w ≥ 1 is the desired suboptimality bound. When a goal state
is expanded, WA∗ is guaranteed to have found a solution
whose suboptimality is at most w.

Unlike A∗, when WA∗ expands a state n it may be that
g(n) is not the lowest cost path to n. Thus, a state may
expanded more than once. Nevertheless, if h(n) is con-
sistent, WA∗ is guaranteed to find a solution with the de-
sired suboptimality bound even without re-expanding a sin-
gle state (Likhachev, Gordon, and Thrun 2004).

Weighted SIPP (WSIPP)
Let Weighted SIPP (WSIPP) be SIPP that uses an inflated
heuristic like WA∗. WSIPP is not guaranteed to find a
bounded-suboptimal solution, or in fact, any solution, if it
does not re-expand states. For example, see Figure 1.2 A dy-
namic obstacle moves from A to B, arriving at B at time
10 and staying there forever. Thus, [0, 10] is the only safe
interval for B. The safe interval for all states except A and
B is [−∞,∞]. Let w = 2. After the first expansion states
nD = (D, [−∞,∞]) and nE = (E, [−∞,∞]) are gener-
ated. nE is chosen for expansion as f(nE) = 4 + 7 · 2 <
f(nD) = 3+8 ·2. Next, node nC = (C, [−∞,∞]) is gener-
ated and its g-value is set: g(nC) = 8. Then nC is expanded
but it has no successors, as one can not reach B within the
safe interval [0, 10] from C when g(nC) = 8 (as 8+3 > 10).
To find a solution, we must expand nD and then re-expand
nC to update g(nC) to 6.

1The method to compute dur(minwait) is domain dependent.
2The rectangles above the vertices are explained later.

301



Figure 1: A running example for WSIPP.

Weighted SIPP with Duplicate States The creators of
SIPP identified this problem and proposed the following.
When the initial state is expanded, we create two copies of
every state it generates. An optimal copy, which is priori-
tized in OPEN according to w · (g + h) and a suboptimal
copy, which is prioritized in OPEN according to g + w · h.
Throughout the search, whenever an optimal copy is ex-
panded, we again generate two copies of every state it gen-
erates. We refer to this algorithm as WSIPP with Duplicate
States (WSIPPd). WSIPPd preserves the desirable property
of WA∗– it guarantees returning a bounded-suboptimal so-
lution while avoiding re-expansions. That is, every copy of
a state is expanded at most once.

Weighted SIPP with Re-expansions (WSIPPr) Interest-
ingly, the creators of SIPP did not explore the possibility
of allowing unlimited re-expansions instead of duplicating
each state. That is, if a state in CLOSED is generated with
a lower g value, then it is re-inserted to OPEN. Thus, ev-
ery state will eventually be re-expanded with the minimal g
value that guarantees finding a solution. We call this algo-
rithm WSIPP with Re-expansions (WSIPPr).

WSIPPr is complete and is guaranteed to find a bounded-
suboptimal solution, but the number of re-expansions per-
formed by WSIPPr can be exponential (Martelli 1977). Nev-
ertheless, in many domains the number of re-expansions is
manageable (Sepetnitsky, Felner, and Stern 2016).

In fact, WSIPPr may expand fewer states than WSIPPd.
Consider Fig. 1. Rectangles over the vertices show the states
expanded by WSIPPd with w = 1.1, where the optimal and
sub-optimal copies of each state are marked by a solid and
dashed line. The values inside the rectangles are f values.
After the initial expansion, WSIPPd expands sub-optimal
nE with f = 11.7 and generates sub-optimal nC with
f = 13.5. Then sup-optimal nD (f = 11.8) is expanded.
This adjusts the f value of sub-optimal nC to 11.5. Next,
WSIPPd expands the latter and generates sub-optimal nB

with f = 13.4. Then optimal nD and optimal nE are con-
sequently expanded as their f values (both equal to 12.1)
are lower than 13.4. As a result of these expansions optimal
nC is generated and its f value is set to 12.1. It is expanded
and optimal nB with f = 14.3 is generated. Then WSIPPd

switches back to sup-optimal nB (as 13.4 < 14.3) and ex-
pands it generating sub-optimal copy of Goal with f = 13.
Finally, the latter is expanded and the search terminates. To-
tal number of expansions is 9. In the same setting WSIPPr

performs only 6 expansions: Start, nE , nD, nC , nB , Goal,

with no re-expansions at all.

Focal SIPP
Focal Search (Pearl and Kim 1982) is a framework for
bounded-suboptimal search that maintains a sublist of
OPEN, called FOCAL. FOCAL is the set of every state n for
which g(n)+h(n) ≤ w ·fmin, where fmin is the smallest f
value over all states in OPEN. In every iteration, a state n is
chosen from FOCAL that minimizes a secondary heuristic
hF (n). The latter does not have to be consistent or even ad-
missible. A well-known secondary heuristics is the number
of hops-to-the-goal (Wilt and Ruml 2014), which ignores
edge costs. Focal Search terminates when a goal state is in
the FOCAL or when OPEN is empty.

We use the name Focal SIPP (FocalSIPP) to refer to the
SIPP version that uses Focal Search instead of A∗ and allows
unlimited re-expansions. FocalSIPP is complete and guaran-
tees finding a bounded-suboptimal solution. However, due to
re-expansions its runtime may be exponential in the number
of states in the search space, just like WSIPPr.

Discussion
WSIPPd, WSIPPr, and FocalSIPP are guaranteed to return a
bounded-suboptimal solution. However, the cost of the solu-
tion they return may differ, since it can be any value between
the optimal cost and w times that cost. Perhaps, more inter-
esting, though, is the expected runtime for each algorithm
for a given value of w.

Consider setting w to be very close to one. In this case,
WSIPPd is expected to perform poorly, since two copies of
every generated state are introduced and both are likely to
have nearly the same priority in OPEN, since w · (g+h) and
g + w · h are very close if w is close to one, especially in
the beginning of the search. In contrast, WSIPPr is expected
to perform well, as it is almost equivalent to A∗, which is
known to expand the minimal number of states (Dechter and
Pearl 1985). On the other hand, consider the behavior of Fo-
calSIPP for very large values of w. In such a case almost all
states in OPEN will be in FOCAL and FocalSIPP basically
performs a greedy best-first search towards a goal, which is
specifically designed to reach a goal state quickly. Thus, we
expect in these cases that FocalSIPP will work well. In the
experimental results below we confirmed these expectations.

Experimental Results
We evaluated the considered algorithms on a range of differ-
ent grid maps including empty 64 × 64 map, 64 × 64 map
containing 10 rectangular obstacles that resemble a ware-
house (Warehouse), 64×64 map composed of square rooms
connected by the passages (Rooms), 257× 256 game map.3
Grid connectivity varied from 8- to 32-connected. Each map
was populated with 250 dynamic obstacles that move be-
tween random cells. 100 different pairs of start and goal lo-
cations for an agent were chosen on each map randomly.
Two action models were considered – one that assumes only

3The Rooms map and the game map (den520) were taken from
the movingai repository (Sturtevant 2012). Our code can be found
at https://github.com/PathPlanning/SuboptimalSIPP.

302



0%

50%

100%

150%

200%

1.01 1.05 1.1 1.25 1.5 1.75 2 3 4 5

Warehouse (w rotations) :: Runtime

WdSIPP

WrSIPP

FocalSIPP

100%

105%

110%

115%

120%

125%

1.01 1.05 1.1 1.25 1.5 1.75 2 3 4 5

Warehouse (w rotations) :: Cost

WdSIPP

WrSIPP

FocalSIPP

0

500

1000

1500

2000

2500

3000

1,01 1,05 1,1 1,25 1,5 1,75 2 3 4 5

Warehouse (w rotations) :: Re-expansions

WdSIPP

WrSIPP

FocalSIPP

0%

25%

50%

75%

100%

125%

150%

175%

1.01 1.05 1.1 1.25 1.5 1.75 2 3 4 5

ROOMS (w/o rotations) :: Runtime

WdSIPP

WrSIPP

FocalSIPP

100%

105%

110%

115%

120%

125%

1.01 1.05 1.1 1.25 1.5 1.75 2 3 4 5

ROOMS (w/o rotations) :: Cost

WdSIPP

WrSIPP

FocalSIPP

0

500

1000

1500

2000

1.01 1.05 1.1 1.25 1.5 1.75 2 3 4 5

ROOMS (w/o rotations):: Re-expansions

WdSIPP

WrSIPP

FocalSIPP

Figure 2: From left to right: map of the environment, runtime, solution cost, number of re-expansions. Top row: Warehouse w
rotations. Bottom row: Rooms w/o rotations.

translations (denoted “w/o rotations”) and one that also con-
siders rotations (denoted “w rotations”), i.e., if moving from
one cell to the other requires aligning the heading, the agent
has to rotate and it takes time. Moving speed was 1 cell per 1
time unit, rotation speed was π/2 per time unit. We used the
Euclidean distance, scaled properly with the agent’s speed,
as a heuristic. The secondary heuristic for FocalSIPP, hF (n),
was set to be the shortest path from n to the goal ignoring
all dynamic obstacles and edge costs, which we computed
offline. The sub-optimality bound w varied from 1.01 to 5.

In each run we measured the algorithm’s runtime and
solution cost, relative to SIPP, and the number of re-
expansions. While WSIPPd prohibits re-expansions, it even-
tually generates two copies of the same state. If both of them
got expanded, we count this as a re-expansion.

Fig. 2 shows the results of our experiments on two rep-
resentative setups: Warehouse w/o rotations (32-connected)
and Rooms w rotations (32-connected). We choose to
present results for only these two setups due to space lim-
itations. These specific maps represent two possible “types”
of worlds. Warehouse is a relatively open environment popu-
lated with the isolated obstacles (similar to city maps, empty
maps etc.), Rooms is a corridor-like environment with a
large number of narrow passages (similar to mazes, indoor
maps, etc.). The heuristic we used is relatively accurate for
Warehouse but it is not accurate for Rooms, allowing us to
show the impact of heuristic accuracy. Moreover, in the w
rotations model, the heuristic is even less accurate.

In general, we observed similar trends across all the con-
sidered domains and action models. These trends, supported
by the Fig. 2, are the following: (1) WSIPPr is better for
small values of w that are close to 1, (2) FocalSIPP is bet-
ter or the same on higher w, and (3) WSIPPd is better or the
same for mid-range w. For mid-range sub-optimality bounds
the results also show a notable “spike” in the number of
re-expansions and runtime for FocalSIPP. We hypothesize
that this occurs because the bound is large enough to cause
finding suboptimal paths to generated nodes but not large

100%

105%

110%

115%

120%

125%

0% 50% 100% 150% 200%

So
lu

tio
n 

Su
bo

pt
im

al
ity

Runtime relative to SIPP

WdSIPP
WrSIPP
FocalSIPP

Figure 3: Solution suboptimality vs. relative runtime, for
Room maps w/o rotations.

enough so that bounded-suboptimal solutions can be found
without re-expanding these nodes.

Figure 3 shows the tradeoff between solution cost and run-
time obtained by WSIPPd, WSIPPr, and FocalSIPP. Each
data point represents the results of an algorithm with a spe-
cific w value, where the x value is the average runtime
and the y value is the solution suboptimality. The results
again show the same trends as above. FocalSIPP allows the
fastest solution when solution cost is the worst. WSIPPr is
preferable if one wants very close to optimal solution, while
WSIPPd is more suitable for mid-range suboptimality.

Summary

We explored three bounded-suboptimal versions of SIPP
and analyzed their pros and cons. Experimental evalua-
tion on different settings show that the previously proposed
bounded-suboptimal SIPP – WSIPPd – is frequently outper-
formed by the other algorithms, e.g. by WSIPPr, which runs
WA∗ but allows re-expanding. An appealing direction of fu-
ture research is to explore more sophisticated techniques for
bounded-suboptimal SIPP, as well as explore its applications
in an anytime planning and multi-agent path finding.

303



Acknowledgments
This work was partially funded by RFBR (project 18-37-
20032). Anton Andreychuk is supported by the “RUDN Uni-
versity Program 5-100”. Roni Stern is supported by ISF
grant #210/17.

References
Andreychuk, A.; Yakovlev, K.; Atzmon, D.; and Stern, R.
2019. Multi-agent pathfinding with continuous time. In In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 39–45.
Araki, B.; Strang, J.; Pohorecky, S.; Qiu, C.; Naegeli, T.;
and Rus, D. 2017. Multi-robot path planning for a swarm of
robots that can both fly and drive. In IEEE International
Conference on Robotics and Automation (ICRA), 5575–
5582.
Cohen, L.; Uras, T.; Kumar, T. S.; and Koenig, S. 2019. Op-
timal and bounded-suboptimal multi-agent motion planning.
In Symposium on Combinatorial Search.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of a. Journal of the ACM
(JACM) 32(3):505–536.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1):269–271.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Advances in neural information processing systems (NIPS),
767–774.
Martelli, A. 1977. On the complexity of admissible search
algorithms. Artificial Intelligence 8(1):1–13.
Narayanan, V.; Phillips, M.; and Likhachev, M. 2012. Any-
time safe interval path planning for dynamic environments.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 4708–4715.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE transactions on pattern analysis and ma-
chine intelligence (4):392–399.
Phillips, M., and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In Proceedings of
The 2011 IEEE International Conference on Robotics and
Automation (ICRA 2011), 5628–5635.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence 1(3-4):193–204.
Sepetnitsky, V.; Felner, A.; and Stern, R. 2016. Repair poli-
cies for not reopening nodes in different search settings. In
Symposium on Combinatorial Search (SOCS), 81–88.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2):144–148.
Wilt, C. M., and Ruml, W. 2014. Speedy versus greedy
search. In Symposium on Combinatorial Search (SoCS).

304


