
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Solving the Watchman Route Problem on a Grid with Heuristic Search

Shawn Seiref
Ben Gurion Univ.
Be’er Sheva, Israel

shawn@post.bgu.ac.il

Tamir Jaffey
Ben Gurion Univ.
Be’er Sheva, Israel

tamiry@post.bgu.ac.il

Margarita Lopatin
Ben-Gurion University

Be’er Sheva, Israel
marglup@rnd-hub.com

Ariel Felner
Ben Gurion Univ.
Be’er Sheva, Israel
felner@bgu.ac.il

Abstract

In this paper we optimally solve the Watchman Route Prob-
lem (WRP) on a grid. We are given a grid map with obstacles
and the task is to (offline) find a (shortest) path through the
grid such that all cells in the map can be visually seen by at
least one cell on the path. We formalize WRP as a heuristic
search problem and solve it with an A*-based algorithm. We
develop a series of admissible heuristics with increasing dif-
ficulty and accuracy. In particular, our heuristics abstract the
problem into line-of-sight clusters graph. Then, solutions for
the minimum spanning tree (MST) and the traveling salesman
problem (TSP) on this graph are used as admissible heuris-
tics for WRP. We theoretically and experimentally study these
heuristics and show that we can optimally and suboptimally
solve problems of increasing difficulties.

1 Introduction

Imagine you are in a museum and you want to see all the
exhibits on the floor. To do so, you want to take a tour
around the museum such that you can see every item in all
the rooms. Similarly, the security of the museum wants to
have a known path such that during its traversal it will be
able to see every item in the exhibit to check that it was not
damaged. This problem is called the Watchman Route Prob-
lem (WRP), where the task is to find a route that sees every
point in the environment. WRP proven to be NP-hard for
polygons (Chin and Ntafos 1986). Nevertheless, finding an
optimal route is the main focus of this paper.

In our variant of WRP, we are given a grid map with obsta-
cles and a start state. The task is to (offline) find a path from
the start state through the grid such that all empty cells in
the map were visually covered by line-of-sight (LOS) from
at least one of the cells on the path. In the optimal variant of
WRP we seek for the shortest path with these attributes.

The LOS function determines whether any given two cells
can visually see each other and it can be any arbitrary func-
tion. An example of a non-trivial LOS function is a transmis-
sion frequency function that indicates for each vertex which
are the vertices that can receive the transmission. Impor-
tantly, the exact map is known in advance and our task is
to search offline for the requested (shortest) path. For exam-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ple, Figure 1(a) shows the shortest possible tour such that
each empty cell is seen by a vertical/horizontal LOS.

In this paper we formally define WRP on a grid map in-
cluding a number of variants for the LOS capability and for-
mulate it as a heuristic-search problem. We then propose
several admissible heuristics for WRP of increasing diffi-
culty and accuracy, which can be applied on top of the A* al-
gorithm (Hart, Nilsson, and Raphael 1968). In particular, we
abstract the map into a disjoint line-of-sight graph (GDLS),
which is built from disjoint components, each has its own
line-of-sight region. We prove that both the minimum span-
ning tree (MST) and the solution tour of the Traveling Sales-
man Problem (TSP) on GDLS are admissible heuristics for
WRP. We then introduce a novel node expansion mecha-
nism that significantly reduces the the search tree by directly
jumping to the different LOS regions of GDLS .

Finally, we provide an experimental study where we ap-
plied all our variants on a large number of different grids
maps. We show that our strongest variant can optimally
solve grids with up to 1500 cells in several hundreds of sec-
onds and sub-optimally in a few seconds.

2 Related Work

In the field of robotics, the simultaneous localization and
mapping problem (SLAM) is a prominent challenge that in-
cludes many variants and many solving approaches. The ba-
sic variant includes an autonomous moving agent that tries
to explore the environment and build a map while simulta-
neously locate itself in the map (Dissanayake et al. 2001).
Survey on SLAM algorithms appear in (Aulinas et al. 2008;
Taketomi, Uchiyama, and Ikeda 2017). The main differences
between SLAM and WRP is that in SLAM the environment
is unknown and the task is to online explore the environment
and study the map by a moving agent. By contrast, WRP is
an offline search problem on a known map.

A reminiscent offline problem is the Art Gallery Prob-
lem (AGP) which was proven to be NP-hard (Garey and
Johnson 1979). In AGP we are given a map (e.g., an art
gallery) and the task is to find the minimal set of points S
on the map (to place guards) such that all points in the map
can be seen by at least one point s ∈ S. Indeed, the short-
est possible tour between these points is a solution to WRP,
but it may not be optimal. This is shown in Figure 1(e). The
gray point, labeled X , is optimal with regards to the number

249

(a) Optimal WRP Path (b) 4-way LOS (c) 8-way LOS (d) BresLOS (e) AGP vs. WRP

Figure 1: Example of WRP with each of the LOS functions.

of guards needed to cover the entire map (its LOS is the en-
tire map). Yet, the optimal WRP path (the Red path) is much
shorter than the path that travels to X .

WRP has been extensively researched on polygonal do-
mains in the field of computational geometry. The object
was to find a cyclic path that sees all internal points of a
closed polygon. In general the problem was proved to be
NP-hard but a polynomial-time approximation algorithm ex-
ists with increased cost over the optimal solution by a factor
of O(log2n), where n is the number of vertices of the poly-
gon (Mitchell 2013). For simple polygons (with no inter-
nal holes) there are polynomial-time algorithms (Chin and
Ntafos 1986) that identify a set of lines inside the polygon
that the optimum watchman route must include. The best
known algorithm for simple polygons has a running time of
O(n3logn) (Dror et al. 2003). A specific variant of WRP is
to define a start point that the guard must travel from. This is
called fixed WRP or anchored WRP (Xu 2014), as opposed
to floating WRP where no such point is required.

None of these works is directly relevant to our problem
because of the following differences. They assume a polyg-
onal, continuous environment, with a specific LOS such that
two points can see each other if no edge of the polygon cuts
the straight line between them. In addition, they assumed
that the desired route is a cycle, i.e., that it ends at the start
point. By contrast, we assume a discrete grid and may ac-
commodate any line-of-sight function. Furthermore, we do
not require to end the path by returning to the start state but
it can end at any cell once all cells have been seen.

3 Problem Definition

We now define the variant of WRP we focus on in this paper.
The input is a grid-map M . The set of empty (traversable)
cells is labeled hereafter by C and n = |C|. Blocked (un-
traversable) cells are denoted as obstacles. We are also given
a cell start ∈ C as input. In this paper, for simplicity, we
assume that only the four cardinal moves are legal. Cells p
and q are adjacent iff there is a legal move from p to q (and
vice versa). Generalizing our work to allow diagonal moves
or other moves (such as the 2k neighborhood moves (Rivera,
Hernández, and Baier 2017)) should not be too hard.

A path π = 〈s0 = start, . . . , sk〉 is a sequence of adja-
cent cells starting from start. The task is to find a watchman
path in the grid. In a watchman path π, for every cell c ∈ C
there is line-of-sight from at least one cell si ∈ π. An opti-

mal watchman path is a watchman path with minimal cost.
In the main part of the paper we assume that the watchman

does not have to return to the start cell. The importance of
the problem is that all cells were seen. The reason is that,
practically, we do not want to restrict the whereabouts of the
watchman after the task is completed. It might stay idle, it
might leave through the nearest exit or might destroy itself.
Nevertheless, our algorithms below can be adjusted to solve
the cyclic case as well as the case where a specific goal or set
of goals are given and we discuss such settings in Section 9.

3.1 Line of Sight

The line-of-sight (LOS) relation may be defined in many
ways and may or may not be symmetric. In this paper, for
simplicity, we assume a symmetric LOS function and focus
on the following three LOS definitions:

(1) 4-way LOS (LOS4): LOS4 exists between two cells p
and q iff there is a path P from p to q such that all moves in
P are the same cardinal move. (e.g., they are all East). The
gray cells in Figure 1(b) represent LOS4 for the Green cell.

(2) 8-way LOS (LOS8): LOS8 exists between two cells
p and q iff there is a path P from p to q such that all moves
in P are the same cardinal or diagonal move. (e.g., they are
all North East). Figure 1(c) shows LOS8 for the Green cell.

(3) Bresenham LOS (BresLos): BresLos is a LOS func-
tion commonly used in computer graphics, video games and
bitmap pictures. It is perhaps the most suitable LOS func-
tion that discretizes real-world continuous domains and sim-
ulates a continuous field of view. It allows to see more cells
beyond the cardinal and diagonal lines. The exact definition
of BresLos is complex and is given in (Bresenham 1965).
Figure 1(d) shows BresLOS for the Green cell.

Sometimes, there is an upper-bound LOS radius R such
that cells at distance larger than R are not seen. For sim-
plicity we assume (R = ∞). But, all our algorithms are
applicable to any radius R. In addition, for every cell c we
use LOS(c) to denote the set of all the cells that have LOS
to c. We say that an agent located at cell p can see cell q iff
p and q have LOS which is equivalent to the condition that
q ∈ LOS(p) and vice versa.

4 WRP is NP-Hard

We next prove that our version of WRP is NP-hard. We first
define a non-cyclic variant of TSP (NC-TSP) and prove that
it is NP-hard. Then, we reduce NC-TSP to WRP.

250

Figure 2: The graph G′. The new vertices are colored Blue.

Definition 1. In NC-TSP we are given a graph G and a
start state. The task is to find a path from start that passes
through all vertices in G at least once.

Lemma 1. NC-TSP is NP-hard.

Proof. We reduce TSP (assuming that a node can be vis-
ited multiple times) to NC-TSP. Assume an input graph
G = (V,E). We build a graph G′ = (V ′, E′). All vertices
and edges in G also appear in G′ but we add two more ver-
tices, start and end. We pick an arbitrary vertex v ∈ V and
connect start to v with a zero cost edge. We also connect v
to end with an edge with cost U , where U is a constant that
is larger than the sum of all edges in E. Figure 2 shows the
new graph G′. Now, observe that an optimal path for NC-
TSP passes through the entire set of vertices V and halts at
end, while passing through edge (v, end) (with cost U) only
once. Otherwise, it will have to pass through edge (v, end)
twice incurring a cost of at least 2U . Next, it is easy to see
that a solution to NC-TSP from start on G′ is optimal iff it
includes a shortest cycle in G.

We next reduce NC-TSP to our version of WRP (where
there is a specific start state and the path ends once all cells
in C have been seen).

Lemma 2. WRP is NP-hard.

Proof. We reduce NC-TSP to WRP. The reduction is easy.
NC-TSP is a special case of WRP where LOS is defined such
that there is LOS between c1 ∈ C and c2 ∈ C iff c1 ≡ c2.
That is, a cell can only see itself (LOS radius of 0). Thus,
one must pass through the entire set of cells C.

5 WRP as a Search Problem

We next define the search tree of WRP followed by intro-
ducing admissible heuristics.

Node: A node is a pair 〈location, seen〉 where location
is a cell (current location of the agent) and seen is a list of
cells (all the cells that have been seen so far by the agent).
The complement of seen is the unseen list; their union is the
entire set of cells (seen ∪ unseen = C).1

Root Node: Root is a node such that Root.location =
start and Root.Seen = LOS(start).

1We note that the path associated with a given node S is not
part of the description of the node, and is only a result of the cur-
rent branch of S in the search tree. This enables to prune duplicate
nodes which have the same location and the same seen list as they
represent exactly the same situation for the search task.

Expansion: Expanding node S = 〈location, seen〉 is to
perform all legal movements on S.location. Each child S′
of S is associated with a given legal movement. S′.location
is the neighboring cell of S.location derived from the move-
ment. S′.seen is first inherited from the parent S.seen.
Then, we add to S′.seen all the cells that are now seen
from S′.location and were not seen before. In other words,
S′.seen = S.seen ∪ LOS(S′.location). The cost of the
edge from S to S′ is the cost of the movement action.

Goal Node: Goal.location may be any cell in C such that
Goal.seen = C.

Every node S in this search tree is associated with a path
π = 〈s0 = start, ..., sk = S.location〉 which is determined
by the branch of the search tree associated with S. S.seen
includes all the cells that have LOS to at least one of the
locations in the path associated S. The cost of node S in
the tree is the sum of the costs of applying the operators
from Root to S, i.e., the cost of the path associated with that
branch in the tree. We use Open to denote the Open list of
the A* search that is activated on this search tree.

5.1 Preprocessing

All our algorithms relay on the following two lookup ta-
bles that are generated in a preprocessing phase and can be
looked up during the A* phase. (1) LOS(c): For each cell c
this table contains a list of all cells in LOS(c). (2) All Pairs
Shortest Path (APSP): For each pair of cells we store the
minimal distance between them. While these lookup tables
can be fully built in a preprocessing phase, in our implemen-
tation they were built lazily, on demand. Nevertheless, these
tables are polynomial in nature while the main problem is
NP-hard. Therefore, the time and memory needed to build
these tables is negligible compared to the resources needed
to solve the main problem.

A* relies on an admissible heuristic to return optimal so-
lutions. We introduce such heuristics next.

6 Singleton Heuristic

Our first heuristic is based on the idea that in order to solve
WRP the watchman agent must see each of the cells from
S.unseen. Thus, for each cell p ∈ S.unseen (denoted as the
pivot p) we define its singleton heuristic to be the minimal
distance from S.location to a cell q ∈ LOS(p). Formally,
given a pivot cell p ∈ S.unseen:

hp(S) = min
q∈LOS(p)

d(S.location, q)

where d(x, y) is the cost of the shortest path (retrieved from
the APSP lookup table) between cells x and y. For every
p ∈ S.unseen, hp(S) is admissible because the agent will
surely travel to some cell that has LOS to p and hp(S) takes
the minimum among all those cells.

Aggregating Singleton Heuristics Every possible pivot
has its own singleton heuristic. Therefore, we can take the
maximum of each of these heuristics in order to maintain ad-
missibility (Holte et al. 2006; Tolpin et al. 2013). There exist
a spectrum of possibilities to decide how many and which
pivots to use. Naturally, adding more pivots has a diminish-
ing return in terms of accuracy of the overall heuristic vs.

251

CPU overhead. While we tried many combinations, in our
experiments below we took the extreme case of using all
cells in the unseen list as pivots. We calculated the singleton
heuristic for all of them and took the maximum. We denote
this heuristic by hSingleton. It is formally defined by:

hSingleton(S)= max
p∈unseen

hp(S)

hSingleton is larger than or equal to any other combina-
tion of pivots. hSingleton is first fully calculated for the root
node. Then, every cell that is added to seen is removed from
the set of pivots. This significantly reduces the computation
of the heuristic as the search progresses.

7 Graph Heuristics

Our next two heuristics are based on a graph called the Dis-
joint LOS graph (GDLS = (V,E)). GDLS is abstracted
from the grid map M for every node S in Open. The follow-
ing notations are used in this context. We say that two cells
x, y ∈ C are LOS-disjoint if LOS(x)∩LOS(y) = ∅, i.e.,
there is no cell that they both see. In general, we say that a
set of cells LD is LOS-disjoint if every two cells in LD
are LOS-disjoint (i.e.,

⋂

c∈LD

LOS(c) = ∅).

7.1 Vertices of GDLS

Figure 3(a) presents a grid M where the agent is located in
the start cell D and LOS4 is used. The root node S is gen-
erated with S.location = D and S.seen includes the cells
in the grid which are horizontally right or left of D or ver-
tically above D (all the gray cells as well as A). GDLS(S),
shown in Figure 3(b), is built as follows. The set of vertices
of GDLS(S) is created from a subset of cells from M as
defined below. These vertices are classified into three types,
each with a different color (Green, Red and Yellow):

• Agent Cell. The AgentCell (D – colored Green) is asso-
ciated with S.location.

• Pivots. The Pivots vertices (C and F – colored Red) are a
LOS-disjoint set of cells from S.unseen. Importantly,
there are many possible way to choose the set of Pivots,
and thus GDLS(S) can be built in many ways. We de-
scribe our own method below in Section 7.5.

• Watchers. The Watchers (A,B,E,H and I – colored
Yellow) are all the cells that have LOS to one pivot
from Pivots. Because the pivots are LOS-disjoint, each
watcher has LOS to exactly one pivot.

Note that some cells in M do not have vertices in
GDLS(S) and are omitted (the gray cells which are in
S.seen and the white cells which are in S.unseen). A pivot
p and its watchers are denoted as component p of GDLS(S).
Similarly, AgentCell (without its LOS) is its own compo-
nent. There are three components circled in Figure 3(b): one
for each of the pivots C,F and one for AgentCell.

7.2 Edges of GDLS

First, all edges (u, v) ∈ M where both u and v exist in
GDLS are projected onto GDLS , e.g., the edge (A,B). Next
we iterate over all cells that were omitted from GDLS and

contract away (Geisberger et al. 2008) these vertices. A ver-
tex v is contracted away by iterating over all pairs u,w that
are both neighbours of v and adding an edge (u,w) that re-
places vertex v. For example, the gray cell above D is con-
tracted away and D is connected to A in GDLS(S). Edges
in GDLS(S) can be classified into two types. Their cost rep-
resent how much the agent needs to travel to see the pivots:

• Watching edges. These are edges inside a component that
connect watcher vertices to their pivot in GDLS(S). Such
edges have a cost of 0 (e.g., c(A,B) = 0).

• Traveling edges. These are inter-component edges. The
cost of these edges is the APSP distance between the two
vertices (e.g., c(A,D) = 2, c(D,E) = 3, c(D, I) = 4).

7.3 Attributes of GDLS

Consider a valid solution path π = 〈s0 = start, ..., sk =
Goal.location〉. Since Goal.seen = C then it includes all
cells that are pivots in GDLS(S). Therefore, we get that:

Observation 1: π will include at least one watcher cell for
every pivot (the pivot is considered a watcher of itself).
GDLS enables the following lemmas:

Lemma 3. The minimum distance that the agent has to
travel in M from S.location to see pivot cell p is the cost
of the shortest path from S.location to p in GDLS(S).

Proof. This is a direct result of the fact that each watching
edge has a cost of 0 and a traveling edge has a cost of the
APSP distance.

Lemma 4. A pivot-covering path is a path in GDLS(S)
that starts at S.location and passes through all the piv-
ots. The cost of the minimum pivot-covering path is a lower
bound for the remaining cost in node S to complete a full
solution to WRP.

Proof. This is a direct result of Observation 1, lemma 3 and
the fact that the pivots are LOS-disjoint. It is only a lower
bound because GDLS(S) may not cover all the cells in C as
some cells are left out. Also, it assumes that traveling within
a component has a cost of zero but this cost might be larger
in practice.

The heuristics described below are all computing different
lower bounds to such pivot-covering paths.

7.4 Simplifying GDLS

Since we are interested in a minimum pivot-covering path,
we can simplify GDLS by contracting away many of the
vertices of GDLS while maintaining the fact that a minimum
pivot-covering path is a lower bound on the remaining cost
from node S. This is done via the following procedure.

Contracting away internal watchers. Consider cells A
and B. They are both watchers of pivot C. However, any
path that arrives to the component of C (from outside that
component) must first arrive at A. Therefore, B can be con-
tracted away from GDLS because it does not add any infor-
mation. In general, we divide the watchers into two classes.
Frontier watchers are watchers that have neighbours in M

252

(a) The grid M (b) GDLS (c) GDLS1 (d) GDLS2 and GDLS3 (e) The New Search Tree.

Figure 3: Example of a grid with LOS4, derived GDLS graphs and the advanced search tree.

outside of the component. Internal watchers are (non-pivot)
watchers that have all their neighbours within the compo-
nent (either other watchers of the same pivot or the pivot
itself). We thus simplify GDLS by contracting away the in-
ternal watchers; only frontier watchers remain in GDLS .
The resulting graph is denoted GDLS1 and is shown in Fig-
ure 3(c)), where cells B and H are internal watchers and are
contracted away.

7.5 Choosing Pivot Vertices

We now turn to discuss how pivots are chosen. We say that a
set L of LOS-disjoint pivots is maximal if no other cell is
LOS-disjoint to any of the cells of L (i.e., we cannot fur-
ther increase L). Naturally, in order to produce high heuristic
values we would like the size of the Pivots set to be as large
as possible and thus obtain a maximal LOS-disjoint set.
We used the following greedy method to obtain a maximal
LOS-disjoint set. We first set Pivots = ∅. We then iterate
over all cells c ∈ S.Unseen. If c is LOS-disjoint to all
existing pivots in Pivots, c is added as a new pivot. In our
implementation we iterated over all cells in increasing order
of |LOS(c)| so as to prefer pivots with small components
(which allows a larger set of pivots). But, any other order
of iterating over the cells will also produce a maximal LOS-
disjoint set. We tried other ways of choosing and found this
method to have the best performance.

We note that GDLS is built from scratch for every node S
in the search tree. The reason is that the unseen list is getting
smaller on the fly. So, maximal sets of LOS-disjoint pivots
can also dynamically change and even increase. For exam-
ple, consider a cell d that was not LOS-disjoint to all pivots
at a given node S. d might be LOS-disjoint to all pivots in
its child C. This happens if there exists a cell e and a pivot p
such that e ∈ LOS(p), e ∈ LOS(d) and e ∈ S.unseen. In
the child C, e is added to C.seen and is removed from the
component of p. This makes d LOS-disjoint to all pivots
and d can be added to the set of pivots. The following steps
summarize how GDLS(S) is built.

1. Add S.location as AgentCell to GDLS(S).

2. Choose a maximal set of LOS-disjoint pivots, identify
their watchers and add all of them to GDLS(S).

3. Complete the edges by contracting away cells that are not
in GDLS(S) and assign them their costs.

4. Build GDLS1 by contracting away internal watchers.

7.6 MST Heuristic

The Minimum Spanning Tree (MST) of a graph is the span-
ning tree with the minimal sum of edge costs. The MST
heuristic hMST (S) computes a MST of GDLS1(S). In Fig-
ure 3(c) the edges of the MST are marked by the Blue lines.
Lemma 5. hMST is admissible.

Proof. Observe that all vertices within a component are con-
nected with zero cost edges. Therefore, any MST also con-
tains non-zero edges that connect the different components.
The sum of costs of edges of the MST is the minimum cost
of a sub-graph that connects AgentCell to all the Pivots.
Since the components are disjoint set of vertices of GDLS

this is a lower bound of a minimum pivot covering path.

Since there exist quadratic-time algorithms for MST (Cor-
men et al. 2009) then hMST is fast to compute.

7.7 TSP Heuristic

We now aim to find a minimum pivot covering path in
GDLS . Given GDLS , we in fact want a path that starts at
AgentCell and passes through all the components. To do this
we further abstract GDLS1 to GDLS2. GDLS2 is a homo-
morphic abstraction of GDLS1 where all vertices within a
component in GDLS1 are merged into a single vertex in
GDLS2. These new vertices are associated either with the
corresponding pivot or with AgentCell. GDLS2 for our ex-
ample is illustrated in Figure 3(d.top). It has three vertices:
D, C and F . GDLS2 is a complete graph (clique). The cost
of an edge between vertices in GDLS2 is the minimal cost
among all edges that connect these components in GDLS1.

We note that the MST of GDLS2 includes exactly the non-
zero edges of the MST of GDLS1. Thus, in order to compute
hMST one can first generate GDLS2 and then execute MST
on GDLS2. However, generating GDLS2 requires to iterate
over all edges of GDLS1, but while doing so we can already
compute MST so this duplication is not necessary.

We are interested in the minimum-cost path that starts at
AgentCell and visits all other vertices in GDLS2. In fact, we
are interested in the minimum-cost Hamiltonian path in a
clique graph that starts at a specific vertex. This is different
from the Traveling Salesman Problem (TSP) which calcu-
lates a minimal cycle in a clique which by definition does

253

not have a specific start state. We therefore slightly modify
GDLS2 to yet a new graph GDLS3 so that we can exploit
TSP solvers. GDLS3 adds a single reference vertex (denoted
R) to GDLS2. R is connected by edges to all other vertices
in the graph. The cost of 0 is given to the edge connecting R
to AgentCell while all other edges have a cost of U . U is a
constant larger than the sum of all edges in GDLS2. GDLS3
for our example is shown in Figure 3(d.bottom).

Observe that a traveling salesman tour for GDLS3 must
include the zero edge between R and AgentCell (it is {R −
D − F − C − R} in our example). Furthermore, if we re-
move R and its two incident edges from the tour then we are
left with the minimal-cost Hamiltonian path whose one end
is AgentCell (this path is {D − F − C}). The cost of this
path is an admissible heuristic for our problem denoted by
hTSP (solve TSP on GDLS3 and remove R). Unlike MST,
TSP is NP-hard (Held and Karp 1970). By contrast hTSP is
more informed than hMST . In our example (Figure 3(e.top)
the MST is highlighted in Blue (2+3=5) while the minimal
Hamiltonian path associated with hTSP is highlighted in
Green (2+5=7). Thus, there exists a natural trade-off of ac-
curacy vs. time to compute the heuristic.

8 Reducing the Size of the Search Tree

Trivially, when node S is expanded, then new nodes are gen-
erated for all the cells that are neighbours of S.location.
However, based on GDLS1 (Figure 3(c)) we can signifi-
cantly reduce the size of the search tree. Given a node S and
its corresponding GDLS1(S) consider any watchman path π
that will continue further from S.location. Such a path must
include at least one watcher for each component. We are in-
terested in the first such watcher. All such possible watchers
are direct neighbors of AgentCell in GDLS1(S) as shown in
Figure3(b-c). The optimal watchman path will include one
of them as the first such watcher. To have a complete search
(and not lose any possible path) we must add all of them
as neighbours of S in the search tree. Formally, when ex-
panding a node S, we generate one child C for each edge in
GDLS1(S) that connects AgentCell to a watcher W as fol-
lows. C.location = W . Let π(AgentCell,W) be the short-
est path in M from AgentCell to W (taken from the APSP
lookup table). The cost of edge (S,C) in the search tree is
set to cost of π(AgentCell,W) (=the cost of the correspond-
ing edge in GDLS1(S)). C.seen is updated to also include
LOS(p) for each cell p ∈ π(AgentCell,W).

Note that this method took care of all components in
GDLS1(S), i.e., Red, Yellow and Green cells in the map of
Figure 3(a). We are left with the Gray and White cells. Gray
cells are trivially covered because they are all in S.Seen.
But, we need to take care of the possibility that the optimal
path passes via a White cell. To do so, we also build (tem-
porary) components for the White cells. We iterate over all
White cells. Given a White cell we temporarily add it as a
pivot (Red) and add all the other White cells with LOS to
it as watchers. We then (temporarily) add this component
to GDLS1(S) in the same manner as real pivots. We con-
tinue this process until all White cells are taken care of. We
then add the first watchers of the White cells as children of

Figure 4: Multiple Goals Example

S. Importantly, these temporary components are not consid-
ered by the graph heuristics (MST and TSP) because their
pivots are not LOS-disjoint.

This method is called the Jump to Frontier enhancement
(JF). JF is inspired by Jump Point Search (JPS) (Harabor
et al. 2019) — a framework that implements A* on grids.2
Expanding the root node in our example will result with the
tree in Figure 3(e).

9 Specific Goal States

Up until now we assumed that a goal state Goal corresponds
to a path from the start state to Goal.location such that all
cells in C have been seen. This is an implicit goal. But, in
many scenarios the input might include an explicit goal state
(exit door) or even an explicit set of possible goal states (sev-
eral exit doors). The task here is to find a path from start to
one of the goals such that all cells in C have been seen. A
special case of this is where the start state is also the goal
state and the task is to find a cycle that sees all cells in C.

We next show how to modify the grid map M to a new
map M ′ such that a solution to the implicit goal case for M ′
is also a solution to the explicit goal case for M . M ′ is built
as follows. (Figure 4 shows how our example graph from
Figure 1 is modified where the top corners are the explicit
goals.) For each explicit goal (one or more) we add an edge
of cost U (where U is a very large constant) to a new cell
X . X is then connected to another cell Y such that X is the
only cell that has LOS to Y .

Lemma 6. An optimal path for the implicit case for M ′ must
end at X via one of the U -cost edges.

Proof. Any WRP path must pass through X because X is
the only cell that has LOS to Y . Now, since U is very large,
every path that does not end in X must travel via such edge
twice and incur the cost of U twice.

Deleting the last edge of cost U from the solution to the
implicit case of M ′ resolves with the shortest path that ends
at one of the explicit goals in M . Thus, all our algorithms
are applicable to such cases after a small modification to the
input graph.

2In JPS, only jump point cells (e.g., those who are in a corner of
an obstacle and therefore break the so called Canonical Ordering)
are placed in the open list. Other cells (e.g., those along a cardinal
line) are just passed through.

254

Figure 5: Runtime per node generated using Jump to Front

10 Experimental Results

We have performed extensive experiments on many maps
and report our findings here on representative example
maps. Indeed, each of our improvements achieved a sig-
nificant reduction in performance. The baseline breadth-
first search algorithm (labelled BFS) which did not have
any heuristic could only solve relatively small problem in-
stances within reasonable computing resources while the
best method (TSP+JF) could solve much larger problem in-
stances. We next provide detailed experimental results.

10.1 Constant Time Per Node Breakdown

Figure 5 shows a breakdown to three categories of the run-
time per generated node on a large map for all algorithms; JF
was added on top. The basic operations category includes all
the BFS overhead (e.g. operations on Open) as well as up-
dating the seen and unseen list. BFS consumed more time
for the basic operations because Open was larger. Also, JF
caused it to jump to farther locations and updating the seen
and unseen lists took more time. Note that for MST and TSP
the build GDLS category (which included simplifying it to
GDLS1) costs more time than all other operations. In fact,
solving MST and even TSP did not consume too much time
because the resulting GDLS was very small. We observed
that the number of pivots varied from 9 in the root to 1 in the
leaves and the average number of pivots in GDLS per node
was 5.8. Solving MST and even TSP on a few nodes can be
done very fast and the Calculate h category consumed on
average less than 20% of the total time.

10.2 11x11 Maze Grid

We next experiment on an 11x11 maze map shown in Fig-
ure 6 (left) with a specific start state (the Green cell in the
middle of the top row). We picked this relatively small do-
main so as to be able to provide a full comparison between
all methods and all LOS functions as presented in Table 1.
The columns give the number of nodes expanded and the
CPU time (in msec) to fully solve the problem for the ba-
sic expansion (left) and for the jump to frontier expansion
(JF) (right) for each of our LOS functions. Rows correspond
to the different algorithms. Consider LOS4 (top region). For
basic expansion, the more informed heuristics significantly
reduce the number of expansions over BFS by a factor of up
to 1,900 (for TSP) and the CPU time by a factor of up to 44
(for TSP). The more liberal LOS functions further reduce the

Figure 6: Left: 11x11 maze. Center: Full 13x13 maze.
Right: 13x13 maze after removing 50% of the obstacles.

Basic Expansion Jump to Front
LOS h Nodes Time Nodes Time

LOS4
OPT=73

BFS 666,370 27,670 28,485 7,499
Singleton 296,264 19,166 13,980 3,772

MST 1,256 1,363 213 276
TSP 350 617 79 57

LOS8
OPT=64

BFS 467,079 19,842 6,226 1,158
Singleton 152,362 6,878 3,016 761

MST 1,122 509 119 203
TSP 507 412 75 59

BresLos
OPT=57

BFS 149,450 6,345 2,316 503
Singleton 61,959 2,639 1,175 246

MST 921 143 93 44
TSP 293 75 35 18

Table 1: All algorithms with all LOS functions. 11x11 maze.
We report the number of nodes and the CPU time in Msec.

search effort. But, the relative advantage of using the heuris-
tics increases. For LOS8 and BresLos the reduction of TSP
over BFS was by a factor of ∼1000 for nodes and ∼100 for
CPU time. Finally, the right columns show the results when
JF was used. For BFS, JF outperformed basic expansion by
almost a factor of two orders of magnitude. This factor is
naturally smaller when the heuristics were added. However,
even when JF was applied the heuristics further achieved a
significant reduction over BFS. For BresLos, TSP+JF solved
the entire problem in only 18ms. In the rest of the experi-
ments we only focus on BresLos when JF was activated.

10.3 Increasing Density of Obstacles

Figure 6 (center) shows a 13x13 maze with 71 obstacles.
From this we built 71 instances (1 . . . 71) where instance #n
only had n obstacles randomized from the 71 obstacle set.
Figure 6 (right) shows the half way point where 35 obstacles
were present. Figure 7 presents results on a log scale for all
71 instances averaged over 25 trials that randomly chose the
subset of obstacles of the given size. When going from left
to right in the figure more obstacles were added until the full
maze was built. The bottom frame presents the number of
nodes expanded for BFS and for our three heuristics, while
the top frame is for CPU time. All curves are for the BresLos
LOS when JF was activated. Here too one can observe the
significant superiority of the strong heuristics. TSP outper-
formed BFS by up to a factor of 100 in nodes and time. One
can observe an easy-hard-easy behaviour; after 65 obstacles

255

Figure 7: Varying the number of obstacles

the problems become easier.
Observe that Singleton seems to be the best heuristic in

relatively open maps (up to 40 obstacles). The reason is
that MST and TSP might lose information due to the fact
that edges inside a component cost 0. By contrast, the most
costly Singleton pivot has exact distance to its watchers and
in open maps this might be very close to the real cost.

10.4 Larger Map

We also experimented with the den101d map from the
movingai repository (Sturtevant 2012) shown in Figure 8.
This map is of size 36x69 and has 1,360 empty cells. Our
implementation was not optimized to save memory and each
node consumed a few Kbytes. The start state is marked in
Green (top left) and the Red path is the optimal path found.
The gray cells are those who have BresLos LOS to the blue
cells. We executed our 4 algorithms on this map (with JF
and BresLos). BFS, Singleton and MST exhausted the avail-
able memory of 2GB and a failure was reported. The table
in Figure 8 presents the maximal f -value that an algorithm
reached, the number of generated nodes and the amount of
time passed until the failure point. TSP solved the problem
optimally (OPT=137) but the other variants reported failure
after a few minutes while only reaching f -values of 66, 103,
and 137 for BFS, Singleton and MST, respectively.

10.5 Suboptimal Variants

We have also built a suboptimal variant of our algorithm
which further reduced the branching factor of the JF step
as follows. As JF described above jumped to the watchers
cells (Yellow cells) but also created new temporary com-
ponents for the White cells and then jumped to them too

Heuristic Maxf Expanded Generated Time(sec)
Optimal solvers

BFS 66 >11,314 >50,000 >2,340
Singleton 103 >9,977 >45,000 >1,094

MST 137 >7,864 >28,500 >3,000
TSP 137 5,096 15,476 471

Suboptimal solvers
BFS 101 >9,334 >46,214 >432

Singleton 137 4,642 19,338 94
MST 137 723 4,043 34
TSP 137 521 2,962 40

Figure 8: The den101d map and its experimental results

thus increasing the branching factor. Here, we omitted the
White cells and only jumped to Yellow cells. This reduced
the branching factor but loses optimality in very rare cases.

The results of the suboptimal variants on den101d are pre-
sented in the bottom of the table in Figure 8. BFS exhausted
the resources after reaching layer 101. However, a solution
was found by all other variants very fast, around 30 seconds
for MST and TSP and 1.5 minutes for Singleton. This is a
reduction in time of an order of magnitude compared to the
optimal variant. This map is sprase with obstacles and we
were lucky to get an optimal solution (137), but there was
no guarantee on that in general. A deeper treatment of sub-
optimal variants is left to future work.

11 Conclusions and Future Work

In this paper we solved the Watchman Route Problem with
heuristic search and provided strong heuristics for this prob-
lem. We feel that we have touched the surface of an iceberg
regarding this fascinating problem. Future work will con-
tinue in the following directions. First, new LOS functions
should be studies such as limiting the radius as well as incur-
ring real costs for physically observing at the environment.
Second, suboptimal, bounded suboptimal and anytime algo-
rithms for this problem should be built, e.g., by modifying
the algorithms presented in this paper. Finally, a study will
be done for generalizing this problem to the case where mul-
tiple watchman agents exist and for different communication
paradigms between them.

256

12 Acknowledgments

The research was supported by Rafael Advanced Defense
Systems, by Israel Science Foundation (ISF) grant #844/17
to Ariel Felner and by the Cyber grant by from the Prime
Minister office. We deeply thank Shahaf Shperberg for his
comments and his help.

References

Aulinas, J.; Petillot, Y. R.; Salvi, J.; and Lladó, X. 2008. The
slam problem: a survey. CCIA 184(1):363–371.
Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Chin, W.-P., and Ntafos, S. 1986. Optimum watchman
routes. In Proceedings of the second annual symposium on
Computational geometry, 24–33. ACM.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to algorithms. MIT press.
Dissanayake, M. G.; Newman, P.; Clark, S.; Durrant-Whyte,
H. F.; and Csorba, M. 2001. A solution to the simultaneous
localization and map building (slam) problem. IEEE Trans-
actions on robotics and automation 17(3):229–241.
Dror, M.; Efrat, A.; Lubiw, A.; and Mitchell, J. S. 2003.
Touring a sequence of polygons. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing,
473–482. ACM.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In Experimental Algorithms,
7th International Workshop, WEA, 319–333.
Harabor, D. D.; Uras, T.; Stuckey, P. J.; and Koenig, S. 2019.
Regarding jump point search and subgoal graphs. In Pro-
ceedings of the Twenty-Eighth International Joint Confer-
ence on Artificial Intelligence, IJCAI-19, 1241–1248.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2):100–107.
Held, M., and Karp, R. M. 1970. The traveling-salesman
problem and minimum spanning trees. Operations Research
18(6):1138–1162.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search. Artificial Intelligence
170(16):1123–1136.
Mitchell, J. S. 2013. Approximating watchman routes. In
Proceedings of the twenty-fourth annual ACM-SIAM sympo-
sium on Discrete algorithms, 844–855. SIAM.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
pathfinding on the 2k neighborhoods. In Singh, S. P., and
Markovitch, S., eds., AAAI, 891–897.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Trans. Comput. Intellig. and AI in Games
4(2):144–148.
Taketomi, T.; Uchiyama, H.; and Ikeda, S. 2017. Visual slam
algorithms: a survey from 2010 to 2016. IPSJ Transactions
on Computer Vision and Applications 9(1):16.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward rational deployment of multiple heuris-
tics in A. In Rossi, F., ed., IJCAI 2013, Proceedings of
the 23rd International Joint Conference on Artificial Intel-
ligence, Beijing, China, August 3-9, 2013, 674–680. IJ-
CAI/AAAI.
Xu, N. 2014. On the watchman route problem and its related
problems. Dissertation Proposal.

257

