
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Incremental Search for
Counterexample-Guided Cartesian Abstraction Refinement

Jendrik Seipp, Samuel von Allmen, Malte Helmert
University of Basel
Basel, Switzerland

{jendrik.seipp, malte.helmert}@unibas.ch, samuel.vonallmen@stud.unibas.ch

Abstract

Counterexample-guided Cartesian abstraction refinement has
been shown to yield informative heuristics for optimal classi-
cal planning. The algorithm iteratively finds an abstract solu-
tion and uses it to decide how to refine the abstraction. Since
the abstraction grows in each step, finding solutions is the
main bottleneck of the refinement loop. We cast the refine-
ments as an incremental search problem and show that this
drastically reduces the time for computing abstractions.

Introduction
The most common method for solving optimal classical
planning tasks is to use A∗ (Hart, Nilsson, and Raphael
1968) with an admissible heuristic (Pearl 1984). One way of
obtaining such a heuristic is counterexample-guided abstrac-
tion refinement (CEGAR) for Cartesian abstractions (Clarke
et al. 2003; Seipp and Helmert 2013; 2018). Algorithm 1
shows pseudo-code for the CEGAR algorithm. It starts with
an initial coarse abstraction of the original task. For this
work, we assume that the initial abstraction separates goal
states from non-goal states (i.e., a state is a concrete goal
state iff its abstract image is an abstract goal state) but is
otherwise trivial. In a SAS+ planning task (Bäckström and
Nebel 1995), a Cartesian abstraction of this form is easy to
construct and requires at most n+1 abstract states for a plan-
ning task with n state variables (Seipp and Helmert 2018).

Next, CEGAR iteratively searches for a minimum-cost ab-
stract solution, finds out where it fails for the concrete task
(e.g., due to a violated precondition) and refines the abstrac-
tion by splitting a single abstract state into two abstract states
in such a way that the same failure cannot happen in the next
iteration. If there is no abstract solution, we have shown un-
solvability and can stop early. Similarly, we stop refining if
the abstract solution also works for the concrete task: in this
situation, an optimal plan has been found. Otherwise, we
stop the refinement process after hitting a time or memory
limit and use the resulting heuristic for an A∗ search.

Figures 1a and 1c illustrate how the REFINE function
splits an abstract state (v in Figure 1a) into two new states
(v1 and v2 in Figure 1c): we replace v by v1 and v2 and
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Algorithm 1 CEGAR refinement loop that receives a classi-
cal planning task Π and returns an abstraction T of the state
space of Π (Algorithm 1 by Seipp and Helmert 2018).

1: function CEGAR(Π)
2: T ← INITIALABSTRACTION(Π)
3: while not TERMINATE() do
4: π← FINDSHORTESTPATH(T )
5: if π is “no path” then
6: return task is unsolvable
7: ϕ← FINDFLAW(Π, π)
8: if ϕ is “no flaw” then
9: return plan extracted from π

10: T ← REFINE(Π, T , ϕ)
11: return T

rewire all incoming and outgoing transitions of v into in-
coming and outgoing transitions of v1 and/or v2. (For self-
loops on v, this means that we obtain self-loops in v1 and/or
v2 and/or transitions between the two new states.)

To find abstract solutions in CEGAR, we can use any op-
timal algorithm, such as Dijkstra’s algorithm (1959). How-
ever, because refinements can only increase goal distances,
we can use the goal distances from previous iterations of the
refinement loop as a heuristic for an A∗ search. Even this
informed search, however, suffers from the fact that finding
abstract solutions takes longer as the abstraction grows. In a
typical scenario, we perform on the order of 105 refinement
steps before terminating. This makes the abstract searches
the main bottleneck of the refinement loop.

It is wasteful that each A∗ search starts from scratch, even
though the abstraction only changes locally. We would like
to reuse information from previous searches and only update
it locally during a refinement. Fortunately, we can cast the
problem of maintaining all shortest paths in the abstraction
as a dynamic shortest path problem, which has been stud-
ied extensively in the literature (e.g., Ramalingam and Reps
1996; Frigioni, Marchetti-Spaccamela, and Nanni 2000;
Koenig, Likhachev, and Furcy 2004). We show that each re-
finement step can be viewed in such a way that the critical
step is the removal of a set of transitions, which allows us
to apply a specialized dynamic shortest path algorithm by
Frigioni, Marchetti-Spaccamela, and Nanni (2000).

244



Experimentally, we demonstrate that incremental shortest
path computation speeds up the refinement loop drastically.
For many tasks we observe a speedup factor of over 1000
for computing the abstract solutions, making the runtime for
the shortest path computations negligible, even for large ab-
stractions.

Background
We want to maintain a shortest path from every state to a
fixed goal state in a weighted transition system that is refined
iteratively. Formally, a transition system T is a directed, la-
beled graph with a finite set of states S(T ), a finite set of
labels L(T ), a set T (T ) of labeled transitions s �−→ s′ with
s, s′ ∈ S(T ) and � ∈ L(T ), an initial state s0(T ) ∈ S(T ),
and a set S�(T ) ⊆ S(T ) of goal states.

We combine a transition system T and a positive cost
function cost : L(T ) �→ R>0 to obtain a weighted transition
system. (Our implementation supports zero-cost actions by
assigning a sufficiently small positive cost ε to them.)

A path in a (weighted) transition system T from s ∈
S(T ) to s′ ∈ S(T ) is a sequence π of transitions from T (T )
such that π = 〈s0 �1−→ s1, s1

�2−→ s2, . . . , sn−1 �n−→ sn〉,
where s0 = s and sn = s′. The empty path 〈〉 is a path from
s to s for all states s. The cost of a path is the sum of its
label weights. A path from s to s′ is optimal if there is no
path from s to s′ with lower cost.

A goal path for s ∈ S(T ) is a path from s to any goal
state s′ ∈ S�(T ). Goal paths for the initial state are also
called solutions. We call optimal goal paths shortest paths.
A state is solvable if it has a goal path.

For each solvable state s we choose a shortest path π

and define parent(s) = 〈�, s′〉 if π starts with s
�−→ s′. If

s is unsolvable or π is empty (because s is a goal state),
we set parent(s) = none. We call the structure defined
by the parent pointers the shortest path tree. For travers-
ing this tree downwards, we define children(s) = {〈�, s′〉 |
parent(s′) = 〈�, s〉}. Finally, we define h(s) as the cost of π
and h(s) =∞ for unsolvable states s.

An abstraction (Helmert, Haslum, and Hoffmann 2007)
is an equivalence relation over the set of concrete factored
states. It is Cartesian if all equivalence classes are Cartesian
sets. Each such set represents one abstract state.

Incremental Search
Instead of starting each abstract search from scratch in the
refinement loop, we cast refining the abstraction and find-
ing abstract solutions as a dynamic shortest path problem,
also known as incremental search. Solving dynamic short-
est path problems involves repeatedly finding shortest paths
in a dynamically changing transition system. Between two
searches, transition weights can increase or decrease, or
transitions can be added or removed. The simplest method
for solving a dynamic shortest path problem is to always run
A∗ or Dijkstra’s algorithm from scratch. When the transition
system changes completely between two searches, this is ac-
tually often the preferable method. When changes are small,
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Figure 1: Splitting v into v1 and v2 in two steps. The first
step copies v and its adjacent transitions while the second
step removes spurious transitions.

however, specialized dynamic shortest path algorithms can
be more efficient.

Dynamic shortest path algorithms usually assume a fixed
set of states. In each round of the CEGAR refinement loop,
however, a state is replaced by two new states. Therefore,
it is not obvious how to treat finding abstract solutions in
CEGAR as a dynamic shortest path problem.

To address this point, we conceptually divide a refinement
into two steps. The first step introduces an additional state
but otherwise maintains all shortest paths and goal distances.
The second step removes some transitions. Only this step
requires recomputing shortest paths, and because the only
modifications are edge removals, we can use specialized dy-
namic shortest path algorithms tailored towards this case.

We illustrate the two-step refinement process in Figure 1:
in the the first step from Figure 1a to Figure 1b we replace
v by v1 and v2, but copy all incoming and outgoing transi-
tions from v to both v1 and v2. For each self-loop at v this
implies adding four transitions: from v1 and v2 to v1 and v2.
It is easy to see that this change does not affect any shortest
paths: for any state u with parent(u) = 〈�, v〉 we can now
set either parent(u) = 〈�, v1〉 or parent(u) = 〈�, v2〉without
changing h(u). Furthermore, v1 and v2 can inherit the short-
est path of v, that is, we can set parent(v1) = parent(v2) =
parent(v) and therefore h(v1) = h(v2) = h(v). The second
step from Figure 1b to Figure 1c removes all transitions that
have no counterpart in the concrete transition system.

The dynamic shortest path algorithm INCREASE by
Frigioni, Marchetti-Spaccamela, and Nanni (2000) han-
dles transition removals (and weight increases) efficiently.
Whenever some transitions are removed from transition sys-
tem T , it updates the shortest path information in time
O(p d log n), where p is the number of states s for which
the update changes parent(s), d is the maximum degree of
T , and n = |S(T )|. (The authors prove tighter bounds for
graphs with special structures.) We can bound p ≤ M d,
where M is the number of states s for which h(s) increases
in this refinement step, because the parent of a state can only
change if the goal distance of the previous parent increases.
Moreover, if T is deterministic, d is bounded by the number
of planning task actions, |L(T )|. So in this case we obtain
an overall bound of O(M |L(T )|2 log n), which is polyno-
mial in the number of abstract states whose heuristic value
improves and the (compact) description size of the planning
task. In contrast, A∗ runtime grows with the total number of
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Algorithm 2 Incrementally update all shortest paths and
goal distances in abstract transition system T with transi-
tions T after v has been split into v1 and v2.

1: function COMPUTEDIRTYSTATES(v1)
2: D← ∅
3: C ← empty priority queue
4: C.push(〈h(v1), v1〉)
5: while C is not empty do
6: 〈h(s), s〉 ← C.popmin()
7: if ∃s �−→ s′ ∈ T with s′ /∈ D
8: and h(s) = cost(�) + h(s′) then
9: parent(s)← 〈�, s′〉

10: else
11: D← D ∪ {s}
12: for all 〈�, s′〉 ∈ children(s) do
13: C.push(〈h(s′), s′〉)
14: return D

15: procedure INCREMENTAL(T , v, v1, v2)
16: h(v1)← h(v)
17: h(v2)← h(v)
18: parent(v1)← none
19: parent(v2)← parent(v)
20: for all 〈�, u〉 ∈ children(v) do
21: if ∃u �′−→ v2 ∈ T with cost(�′) = cost(�) then
22: parent(u)← 〈�′, v2〉
23: else
24: parent(u)← 〈�, v1〉
25: D← COMPUTEDIRTYSTATES(v1)
26: Q← empty priority queue
27: for all s ∈ D do
28: h(s)←∞
29: for all s �−→ s′ ∈ T do
30: if cost(�) + h(s′) < h(s) then
31: h(s)← cost(�) + h(s′)
32: parent(s)← 〈�, s′〉
33: if h(s) <∞ then
34: Q.push(〈h(s), s〉)
35: while Q is not empty do
36: 〈h(s), s〉 ← Q.popmin()
37: for all s′ �−→ s ∈ T with s′ ∈ D do
38: if h(s) + cost(�) < h(s′) then
39: h(s′)← h(s) + cost(�)
40: parent(s′)← 〈�, s〉
41: Q.update(〈h(s′), s′〉)

abstract states, whether or not their heuristic value needs to
be updated.

Algorithm 2 shows pseudo-code of the INCREASE
procedure, adapted to our setting and notation. The
INCREMENTAL procedure is called after splitting state v into
two new states v1 and v2. It uses the insight that either v1
or v2 inherits the shortest path from v. To see this, assume
that 〈�, w〉 is the parent of v. Because we have an induced
abstraction, at least one of the two new states must have a

transition via � to w. We also know that at most one such
transition exists, because the way we define parent edges
coincides with the way we extract abstract solutions and we
decide which state to split based on a flaw of the abstract so-
lution. Thus, we know that either v1

�−→ w or v2
�−→ w exists

and we assume the latter case in the pseudo-code.
The INCREMENTAL procedure starts by assigning the

goal distance h(v) to the two new states v1 and v2 (lines 16–
17). Since v2 inherits the shortest path from v, no further
changes are needed for v2. In contrast, h(v) is only a lower
bound for h(v1) and therefore h(v1) might increase later.

For each child u of v, we set the parent of u to v2 when-
ever this is possible and to v1 otherwise (lines 20–24). Here
we use the fact that we can also select a transition to v2 with
a different label than the one stored as the parent of u if it
has the same cost.

We set the parent of v2 to parent(v) in line 19. The par-
ent of v1 is now undefined (line 18), and this is the reason
why we may need to recompute something: the shortest path
tree has become disconnected. Note that only states that are
descendants of v1 (including v1 itself) may possibly need
recomputation. We call states that need recomputation dirty
and all other states settled.

We compute the set of dirty states with the COMPUTE-
DIRTYSTATES function, which is based on the following ob-
servation: if the heuristic value of a state s does not change,
then neither does the heuristic value of any of its descen-
dants. The function potentially marks all descendants in the
shortest path tree below v1. Instead of marking all descen-
dants as dirty, however, we only mark those states as dirty
that cannot be reconnected (in the shortest path tree) to set-
tled states at no extra cost. The algorithm uses the fact that
all actions have a positive cost and therefore parents always
have a strictly lower goal distance than their children.

After computing the set of dirty states, we perform a
Dijkstra-like exploration to recompute all goal distances and
shortest paths as follows (lines 26–41). The “initial state” of
the search is a virtual state that represents all settled states. It
is expanded first, with a cost of 0. Its outgoing transitions are
all transitions (in the backward graph) that go from a settled
state s to a dirty state s′ with label �, and the cost of the tran-
sition is h(s) + cost(�). (Note that h(s) for settled states is
known.) After this initialization, we proceed with a normal
Dijkstra search, but only consider transitions that lead from
dirty to dirty states. (Note that every state we process has a
parent because we only process solvable abstract states, and
we never need to split the abstract goal state, which is the
only solvable abstract state without a parent.)

Experiments
We implemented all algorithms in the Fast Downward plan-
ning system (Helmert 2006) and used the Downward Lab
toolkit (Seipp et al. 2017) for running experiments on Intel
Xeon Silver 4114 processors. Our benchmark set consists of
all 1827 tasks without conditional effects from the optimal
sequential tracks of the International Planning Competitions
1998–2018. We limit time by 30 minutes and memory by
3.5 GiB. All benchmarks, code and experiment data have
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Figure 2: Time in seconds for finding abstract solutions in
the refinement loop when computing a Cartesian abstraction
with at most 105 states using either A∗ or INCREMENTAL.

been published online (Seipp 2019; Seipp, von Allmen, and
Helmert 2020a; 2020b).

In the first experiment, we build a Cartesian abstraction
with at most 105 states using either A∗ or INCREMENTAL
for computing shortest paths. Figure 2 compares the time
for finding abstract solutions by the two approaches, where
each data point is the sum of runtimes of all (up to 105) ab-
stract searches for a given planning task. While the A∗ vari-
ant needs 1000 seconds and more to compute the abstract
solutions, INCREMENTAL uses at most 2 seconds for all ab-
stract searches. Also the relative runtimes differ drastically:
with A∗ we spend 69% of the refinement loop runtime on
abstract searches on average. This number decreases to 6%
if we compute shortest paths incrementally.

The second experiment imposes no fixed limit on the
number of abstract states. Instead, we stop refining the ab-
straction when we reach a time limit of 1000 seconds or ap-
proach the memory limit. At this point, we release the mem-
ory for the transitions (which account for the bulk of the
CEGAR memory usage) and begin the A∗ search in the con-
crete state space with the resulting heuristic. Figure 3 shows
the number of solved tasks over time by the two variants. For
all evaluated time points, the INCREMENTAL variant solves
more tasks than its A∗ counterpart. Overall, INCREMENTAL
results in a coverage of 799 tasks compared to 782 with
A∗. INCREMENTAL solves as many tasks within 1 second
as A∗ solves within 10 seconds, as many tasks within 10
seconds as A∗ solves within 121 seconds, and as many tasks
within 100 seconds as A∗ solves within 1004 seconds. The
A∗ version uses the full 1000 seconds to refine the abstrac-
tion for 814 tasks, approaches the memory limit for 576
tasks and finds a concrete solution for 419 tasks. In con-
trast, INCREMENTAL almost never reaches the 1000 second
limit (2 tasks) and always either approaches the memory
limit (1305 tasks) or finds a concrete solution (498 tasks)
during the refinement loop.
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Figure 3: Number of solved tasks over time when using ei-
ther INCREMENTAL or A∗ for finding abstract solutions. In
both cases we stop refining and start the search after 103

seconds or when we approach the memory limit.

Related Work
Cartesian abstractions also lend themselves well to on-
line refinement during the search (Eifler and Fickert 2018).
Whenever the search detects that the abstraction heuristic
violates the Bellman equation (1957), we can refine the ab-
stract states in the Cartesian abstraction that cause the error.
In contrast to CEGAR, this approach involves no search for
abstract solutions and therefore incremental search methods
are not needed for online refinement.

The literature contains many algorithms for solving dy-
namic shortest path problems. The ones most closely re-
lated to Algorithm 2 are DynamicSWSF-FP (Ramalingam
and Reps 1996) and Incremental A∗, also known as
LPA∗ (Koenig, Likhachev, and Furcy 2004). Like Algo-
rithm 2, DynamicSWSF-FP maintains all shortest paths in
a changing transition system, but it also supports decreas-
ing transition costs. Incremental A∗ is a combination of
DynamicSWSF-FP and A∗: it reuses information from prior
searches and prunes the search space with a heuristic.

Incremental search algorithms have been used for com-
puting heuristics in automated planning by Liu, Koenig, and
Furcy (2002), who extend DynamicSWSF-FP to speed up
the computation of the hadd heuristic (Bonet and Geffner
2001). They exploit that consecutive heuristic evaluations
often consider states that only differ in few state variables,
so that hadd values of many state variables may remain un-
changed when moving from one state to the next.

Conclusions
We showed that each refinement in the CEGAR loop for
Cartesian abstractions can be viewed as a two-step process
such that the first step maintains all shortest paths and the
second step removes a set of transitions. This view allows us
to use an incremental search algorithm to efficiently main-
tain all shortest paths. The new algorithm drastically reduces
the time for finding abstract solutions and yields stronger
heuristics in less time.
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