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Abstract

The determination of the computational complexity of multi-
agent pathfinding on directed graphs has been an open prob-
lem for many years. For undirected graphs, solvability can
be decided in polynomial time, as has been shown already in
the eighties. Further, recently it has been shown that a special
case on directed graphs can be decided in polynomial time. In
this paper, we show that the problem is NP-hard in the general
case. In addition, some upper bounds are proven.

Introduction

The multi-agent pathfinding (MAPF) problem is the prob-
lem of deciding the existence of a movement plan for a set
of agents moving on a graph, most often a graph generated
from a grid (Ma and Koenig 2017). An example is provided
in Figure 1. Here, the circular agent C wants to move to

v1 v2 v3

v4

Figure 1: Multi-agent pathfinding example

v2 and the square agent S wants to move to v3. Both want to
reach their destination and then stay there. So, S could move
to v2 and then to v3. After that C could move to its destina-
tion v2. So, in this case, a movement plan exists. Note that
for this graph, regardless of how we place the agents and the
destinations, there is always a movement plan, provided the
destinations are on different grid fields. When removing v4,
however, there are situations for which no movement plan is
possible.

Kornhauser et al. (1984) have shown in the eighties al-
ready that deciding solvability is a polynomial-time prob-
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lem. Later on, variations of the problem have been stud-
ied, such as using parallel movements and considering opti-
mal movement plans (Surynek 2010; Yu and LaValle 2013;
Ma et al. 2016; Felner et al. 2017). However, in almost all
cases, the results apply to undirected graphs only. A notable
exception is the paper by Botea et al. (2018), which shows
polynomial-time decidability for MAPF on directed graphs,
provided the graph is strongly biconnected and there are at
least two unoccupied vertices. The general case has been,
however, open so far.

In a similar vein, Wu and Grumbach (2010) generalized
the robot movement problem on an undirected graph as in-
troduced by Papadimitriou et al. (1994) to directed graphs.
The robot movement problem is the problem of finding a
plan to move a robot from a vertex s to a vertex t, whereby
mobile obstacles on vertices can be moved around but are
not allowed to collide. Wu and Grumbach showed that solv-
ability can be decided in polynomial time if the graph is ei-
ther acyclic or strongly connected. In their conclusion they
suggested to study the more difficult problem when all mo-
bile obstacles are themselves also agents, which again is the
MAPF problem on directed graphs.

We address this open problem by showing that the MAPF
problem on directed graphs, which we will call diMAPF, is
NP-hard. Interestingly, proving completeness for this prob-
lem seems to be quite non-trivial and we will only provide a
loose upper bound for the general case, a tight upper bound
for the special case of acyclic directed graphs, and a condi-
tional result.

Notation and Terminology

A graph G is a tuple (V,E) with E ⊆ {{u, v} | u, v ∈ V }.
The elements of V are called vertices and the elements of E
are called edges. A directed graph or digraph D is a tuple
(V,A) with A ⊆ V 2. The elements of V are called ver-
tices, the element of A arcs. Given a digraph D, the un-
derlying graph of D = (V,A), in symbols G(D), is the
graph resulting from ignoring the direction of the arcs, i.e.,
G(D) = (V, {{u, v} | (u, v) ∈ A}). We assume all graphs
and digraphs to be simple, i.e., not containing any self-loops
of the form {u}, resp. (u, u).

Given a digraph D = (V,A) (or a graph G = (V,E)),
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the digraph D′ = (V ′, A′) (resp. graph G′ = (V ′, E′)) is
called sub-digraph of D (resp. sub-graph of G)) if V ⊇ V ′
and A ⊇ A′ (resp. E ⊇ E′). Let D = (V,A) again be a
directed graph (or G = (V,E) a graph) and let X ⊆ V .
Then by D −X (resp. G −X) we refer to the sub-digraph
(V −X,A−(X×V )−(V ×X)) (resp. (V −X,E−{{u, v} |
u ∈ X ∨ v ∈ X})).

A path in a digraph D = (V,A) (or a graph G = (V,E))
is a non-empty sequence of vertices and arcs (resp. edges)
of the form v0, e1, v1, . . . , ek, vk such that vi ∈ V , for all
0 ≤ i ≤ k, vi �= vj for all 0 ≤ i < j ≤ k, ej ∈ A
(resp. ej ∈ E) for all 1 ≤ j ≤ k, and (vj−1, vj) = ej for all
1 ≤ j ≤ k. A cycle in a digraph D = (V,A) (or a graph G =
(V,E)) is a non-empty sequence of vertices v0, v1, . . . , vk
such that v0 = vk, (vi, vi+1) ∈ A (resp. {vi, vi+1} ∈ E)
for all 0 ≤ i < k and vi �= vj for all 0 ≤ i < j < k.
If a digraph does not contain any cycle, it is called directed
acyclic graph (DAG).

A graph G = (V,E) is said to be connected if there is
a path between each pair of vertices. It is biconnected if
G − {v} is connected for each v ∈ V . Similarly, a digraph
D = (V,A) is weakly connected, if the underlying graph
G(D) is connected. It is strongly connected if for every pair
of vertices u, v, there is a path in D from u to v and one
from v to u. The smallest strongly connected digraph is the
one with one vertex and no arcs. A digraph is called strongly
biconnected if it is strongly connected and the underlying
graph G(D) is biconnected.

The strongly connected components of a digraph D =
(V,A) are the maximal sub-digraphs Di = (Vi, Ai) that
are strongly connected. The condensation of a digraph D is
the digraph consisting of its strongly connected components
Di: C(D) = ({Di}, {(Di, Dj) | (u, v) ∈ A, u ∈ Vi, v ∈
Vj , Di �= Dj}). Note that C(D) is a DAG.

A multi-agent pathfinding (MAPF) instance is given by a
graph G = (V,E), a set of agents R with |R| ≤ |V |, an
initial state that is an injective function s : R → V , and a
goal state that is another injective function t : R → V . The
vertex t(r) is called destination of agent r. Given a state
s, one possible successor state s′ is the function such that
one agent r moves from one vertex to an adjacent vertex:
If s(r) = u, {u, v} ∈ E and there is no r′ ∈ R such that
s(r′) = v, then the successor state s′ is identical to s ex-
cept at the point r, where s′(r) = v. The MAPF problem is
then to decide whether there exists a sequence of moves that
transforms s into t.

Often the MAPF problem is defined in terms of paral-
lel movements (Ryan 2008; Surynek 2010), where one step
consists of parallel move and wait actions of all agents.
However, as long as we are interested only in solution ex-
istence, there is no difference between the MAPF prob-
lems with parallel and sequential movements. If we allow
for simultaneous cyclic rotations (Standley and Korf 2011;
Yu and LaValle 2013), where one assumes that all agents in
a fully occupied cycle can move simultaneously, things are
a bit different. For the hardness proof latter on such move-
ments are irrelevant, though.

Multi-agent pathfinding on directed graphs (diMAPF) is
similar to MAPF, except that we have a directed graph and

the moves have to follow the direction of an arc, i.e., if there
is an arc (u, v) ∈ A but (v, u) �∈ A, then an agent can move
from u to v but not vice versa.

We assume that the reader is familiar with basic no-
tions from computational complexity theory (Papadimitriou
1994).

A Lower Bound for diMAPF
As mentioned above, Kornhauser et al. (1984) have shown
that deciding MAPF (on undirected graphs) is a polynomial-
time problem and that movement plans have only cubic
length in the number of vertices. Botea et al. (2018) have
shown that deciding solvability of diMAPF is again a
polynomial-time problem and plans have cubic length, pro-
vided the digraph is a strongly biconnected digraph and there
are at least two empty vertices. One intuitive reason for these
positive results are that on undirected graphs and strongly
biconnected digraphs one can usually restore earlier sub-
configurations. This means that agents can move out of the
way and then back to where they were earlier. In a digraph
without strong connectivity, moves are not necessarily re-
versible and an agent might paint itself into a corner. Given
that in every state there are different possible moves for one
agent, it might be hard to decide which is the one that in the
end will not block another agent in the future. As a matter of
fact, this is the case in the reduction from 3SAT that we use
in the proof of the following theorem.
Theorem 1. The diMAPF problem is NP-hard, even when
simultaneous cyclic rotations are allowed.

Proof. We prove NP-hardness by a reduction from the 3SAT
problem, the problem of deciding satisfiability for a formula
in conjunctive normal form with 3 literals in each clause. Let
us assume a 3SAT instance, consisting of n variables xi and
k clauses cj with 3 literals each.

Now we construct a diMAPF instance as follows.1 The set
of agents is:

R = {x1, . . . , xn, x
′
1, . . . , x

′
n, c1, . . . , ck, f1, . . . , fnk}.

The xi’s are called variable agents, the x′
i’s are named

shadow agents, the cj’s are called clause agents, and the f�’s
are called filler agents. The set of vertices of the digraph is
constructed as follows:

V = {v1, . . . , vnk+n+k}∪
n⋃

i=1

{vTi , vFi , vxi
, vx′

i
}∪

k⋃

j=1

{vcj}.

We proceed by constructing three gadgets, which we call se-
quencer, clause evaluator, and collector, respectively. We
illustrate the construction using the example in Figure 2. In
this visualization, vertices occupied by an agent are shown
as squares containing the name of the occupying agent.
Black circles symbolize empty vertices. Each vertex is la-
belled by its identifier, perhaps followed by a colon and the
name of an agent in order to symbolize the destination for
this agent. For example, v1 is the destination for agent f1.

1This reduction uses inspirations from a reduction that has been
used to show PSPACE-hardness for a generalized version of MAPF
(Nebel et al. 2019).

213



x1

v1:f1

x2

v2:f2

x3

v3:f3

f1
v4

f2

v5:f4

f3

v6:f5

c1

v7:f6

f4
v8

f5
v9

f6
v10

c2
v11

vF1

vT1

x′
1

vx1 :x1

vF2

vT2

x′
2
vx2

:x2

vF3

vT3

x′
3
vx3 :x3

vx′
1
:x′

1

vx′
2
:x′

2

vx′
3
:x′

3

vc1 :c1

vc2 :c2

sequencer

clause evaluatorcollector

Figure 2: Example for (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

The task of the sequencer is to enforce first the sequence
of truth-value choices of the variable agents xi. Each of
the variable agents xi has to go to one of the vertices vTi
or vFi —and these are the only vertices xi can go to. After
that the filler and clause agents can move to the left and the
clause agents can start to go through the clause evaluator.
The clause evaluator is created in a way so that a clause
agent cj can move through it from right to left, provided one
of the literals of the corresponding clause is true according
to the truth-value choices made by the variable agents. Fi-
nally, the collector contains the destination vertices for all
clause agents cj and for the shadow agents x′

i. First the
clause agents cj need to get to their destinations, then the
shadow agents x′

i can arrive at their goals, making room for
the variable agents xi to move to their final destinations.

The sequencer consists of a sub-graph with nk + n + k
vertices, which are named v1 to vnk+n+k. These vertices are
connected linearly, i.e., there is an arc from vi+1 to vi. The
vertices v1 to vn are occupied by variable agents named x1

to xn. In addition we have clause agents cj , 1 ≤ j ≤ m on
the vertices vn+j(n+1), respectively. The rest of the vertices
are filled with filler agents fp for all the not yet occupied
vertices. The destination for each filler agent fp is the vertex
with an index n lower than the one fp is starting from. These
filler agents are necessary to enforce that the clause agents
enter the clause evaluator only after the variable agents have
made their choices.

The clause evaluator contains for each variable xi one
pair of vertices: vFi and vTi . These vertices represent the
truth assignment choices false and true, respectively, for xi.
In addition, there exists an additional vertex vxi

, which can
be reached from both vFi and vTi and which is the destina-
tion for agent xi and initially occupied by the shadow agent
x′
i. This setup enforces the variable agent xi to move to vFi

or vTi once it has reached v1 waiting for the shadow agent x′
i

to move towards its destination.
Once all the xi agents have reached their vertices vTi or

vFi , the remaining agents in the sequencer can move n ver-
tices to the left, i.e., from vp to vp−n bringing all the filler
agents fp to their respective destinations. Further, all clause
agents cj have to go from vn+j(n+1) to vj(n+1), whereby
these latter vertices are connected to the clause evaluator
in the following way. The vertex vj(n+1), which will hold
clause agent cj after all agents moved n steps to the left, is
connected to vFi iff the clause cj contains xi positively and
it is connected to vTi iff cj contains xi negated. This means
that the clause agent cj can pass to vx′

1
if and only if one of

the variable agents xi participating in the clause cj made the
“right” choice.

Finally, the collector gadget provides the destinations for
all the clause agents cj and the shadow agents x′

i. The ver-
tices vTi , vFi , and vxi all lead to the vertex vx′

1
, which is the

destination of the shadow agent x′
1. Starting at this node, we

have a linearly connected path up to vertex vx′
n

from which
vc1 can be reached, which in turn is a linear path to vck .
This implies that first all clause agents cj have to reach their
destination vertices, after which the shadow agents x′

i can
move to their destinations. Only after all this has happened,
the variable agents can move to their destinations vxi .

By the construction, a successful movement plan will con-
tain the following phases:

1. In the first phase the variable agents xi will move to the
vertices vTi or vFi . Which vertex xi moves to can be inter-
preted as making a choice on the truth value of the vari-
able. Note that no other vertices are possible, because then
the final destination would not be reachable any more for
xi.

2. In the second phase, all filler and clause agents move n
vertices to the left in the sequencer widget. Note that no
other vertices are possible for filler agents because then
their goal would not be reachable any more.

3. After phase 2 has finished, all clause agents cj occupy
vertices vj(n+1), from which they can pass through the
clause evaluator widget. By construction, they can pass
through it if and only if for one of the variables occurring
in clause cj , the variable agent has made a choice in phase
1 corresponding to making the clause true. Note that no
other group of agents can move, or otherwise they will
no longer be able to reach their destination or block the
clause agents. The phase ends when all clause agents have
reached their destinations.

4. After the end of phase 3, the shadow agents x′
i move to

their respective destinations, enabling the variable agents
xi to go to their destinations.

5. Finally all variable agents can move to their destinations,
finalizing the movement plan.

Note that in a successful plan some of the phases could over-
lap. However, one could easily disentangle them. The criti-
cal phases are apparently phase 1 and phase 3. Phase 3 is
only successful if in phase 1 the variable agents made the
choices in a way, so that all clauses are satisfied. In other
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words, the existence of a successful movement plan implies
that there is a satisfying truth value assignment to the CNF
formula. Conversely, if there exists a satisfying truth value
assignment, then this could be used to generate a successful
movement plan by using it to make the choices in phase 1.
Since the construction is clearly polynomial in the size of
the 3SAT instance, it is a polynomial many-one reduction,
proving that diMAPF is NP-hard.

Finally note that the constructed graph is a DAG, i.e., si-
multaneous cyclic rotations are impossible. This implies that
the problem is NP-hard even if such movements were al-
lowed.

Upper Bounds for diMAPF
While the result of the previous section demonstrates that
diMAPF is more difficult than MAPF (provided NP �= P ),
it leaves open how much more difficulty is introduced by
moving from undirected to directed graphs. Although one
might suspect that diMAPF is just NP-complete, this is by
no way obvious. The main obstacle in proving this is the fact
that the state space of the diMAPF problem is exponential.
Nevertheless, it cannot be more complex than the proposi-
tional STRIPS planning problem, which has a similar state
space (Bylander 1994). Indeed, the proof below uses exactly
the arguments as Bylander’s (1994, Theorem 3.1) PSPACE
membership proof.

Proposition 2. The diMAPF problem is in PSPACE.

Proof. A movement sequence from the initial state to a goal
state, if one exists, can be generated non-deterministically
using for each movement only polynomial space (the rep-
resentation of the two states). One can verify that this non-
deterministically generated sequence is indeed a successful
movement sequence by checking during the generation pro-
cess that each movement is legal and that the final state is
the goal state using only polynomial space. In other words,
the problem is in NPSPACE, which is identical to PSPACE
(Savitch 1980).

However, it is by no means obvious that one has to go
through a significant part of the state space in order to ar-
rive at the goal configuration, if this is possible at all. In
particular, in cases similar to the one used in the proof of
Theorem 1, it seems obvious that the number of moves is
bounded polynomially.

Proposition 3. The diMAPF problem on DAGs is NP-
complete.

Proof. In a DAG, each agent can make at most |V | moves,
since the agent can never visit a vertex twice. This means
that overall no more than |V |2 moves are possible. This im-
plies that all solutions have a length bounded by a polyno-
mial in the input size, implying that the problem is in NP.
Together with Theorem 1, this implies the claim.

When looking at what stops us from proving a general
NP-completeness result, we notice that strongly connected
components are the culprits. They allow agents to reach the

same location twice with the other agents in a perhaps differ-
ent configuration. This may imply that a particular configu-
ration can only be reached when agents walk through expo-
nentially many distinct configurations. We know from Botea
et al. (2018) that for all strongly biconnected digraphs with
at least two empty vertices, all configurations can be reached
using only cubic many moves. If we allow for only one
empty vertex, solution existence cannot be any longer guar-
anteed (Botea, Bonusi, and Surynek 2018) and it is not any
longer clear whether a polynomial long sequence suffices,
if the instance is solvable at all. If we further weaken the
requirement to only strongly connected graphs, it is neither
clear whether solvability can be decided in polynomial time
nor whether movement sequences can be bounded polyno-
mially, although the latter sounds very plausible. For this
reason, we will assume it for now and call it the short solu-
tion hypothesis for strongly connected digraphs: “For each
solvable diMAPF instance on strongly connected digraphs,
there exists a movement plan of polynomial length.”

Theorem 4. If the short solution hypothesis for strongly
connected digraphs is true, then diMAPF is NP-complete.

Proof. NP-hardness follows from Theorem 1.
Assume a diMAPF instance on a digraph D = (V,A)

that is solvable, which implies that there exists a movement
plan π for the agents on D. This plan may be arbitrarily
long. Consider now each strongly component in isolation
and focus on the events when an agent enters the compo-
nent, leaves the component, or moves to its final destina-
tion in the component without moving afterwards. In each
component there can only be 2|R| ≤ 2|V | such events be-
cause the condensation of D is a DAG. Between two such
events, arbitrarily many movements of agents in this com-
ponent may occur in the original plan π. However, since we
assumed the short solution hypothesis to be true, there must
also be a plan of polynomial length p(|V |). Since there are at
most |V | strongly connected components, there must a plan
with no more than 2|V |2×p(|V |) moves, i.e., a plan of poly-
nomial length. This implies that the problem is in NP.

Conclusion and Outlook

We gave a first answer to a long-standing open problem,
namely, what the computational complexity of MAPF on
digraphs is. In contrast to solvability on undirected graphs,
which is a polynomial time problem, solvability on digraphs
turns out to be NP-hard in the general case. While we also
provide an NP upper bound for DAGs and a PSPACE upper
bound in general, we were only able to show a conditional
upper bound of NP for the general problem, provided the
short solution hypothesis for strongly connected digraphs is
true.

While the result in itself may not have a high relevance for
practical purposes, it still is significant in ruling out the pos-
sibility of a polynomial-time algorithm similar to the one de-
veloped by Kornhauser et al. (1984). Furthermore, the short
solution hypothesis could be taken as a suggestion that the
result by Botea et al. (2018) could be strengthened to general
strongly connected digraphs.
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