
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

New Techniques for Pairwise
Symmetry Breaking in Multi-Agent Path Finding

Jiaoyang Li,1 Graeme Gange,2 Daniel Harabor,2 Peter J. Stuckey,2 Hang Ma,3 Sven Koenig1

1University of Southern California, 2Monash University, 3Simon Fraser University
{jiaoyanl, skoenig}@usc.edu, {graeme.gange, daniel.harabor, peter.stuckey}@monash.edu, hangma@sfu.ca

Abstract

We consider two new classes of pairwise path symmetries
which appear in the context of Multi-Agent Path Finding
(MAPF). The first of them, corridor symmetry, arises when
two agents attempt to pass through the same narrow passage
in opposite directions. The second, target symmetry, arises
when the shortest path of one agent passes through the target
location of a second agent after the second agent has already
arrived at it. These symmetries can produce an exponential
explosion in the space of possible collision resolutions, lead-
ing to unacceptable runtimes even for state-of-the-art MAPF
algorithms such as Conflict-Based Search (CBS). We pro-
pose to break these symmetries using new reasoning tech-
niques that: (1) detect each class of symmetry and (2) resolve
them by introducing specialized constraints. We experimen-
tally show that our techniques can, in some cases, more than
double the success rate of CBS and improve its runtime by
one order of magnitude.

1 Introduction

Multi-Agent Path Finding (MAPF) is a problem that re-
quires one to compute a set of collision-free paths on a
given graph for a team of moving agents while minimiz-
ing the makespan or the sum of path lengths. The problem
appears in variety of applications including warehouse lo-
gistics (Wurman, D’Andrea, and Mountz 2008), traffic man-
agement (Dresner and Stone 2008), aircraft towing (Mor-
ris et al. 2015) and computer games (Silver 2005). MAPF is
known to be NP-hard (Yu and LaValle 2013). It remains hard
even under a variety of simplifying assumptions. One such
setting, also NP-hard (Banfi, Basilico, and Amigoni 2017)
but popular in practice, models the operating environment
as a 4-neighbor grid. Agents can either move from one un-
blocked cell to an adjacent unblocked cell or wait in place.
We use benchmarks of this form for all of our experiments,
although our techniques also work for general graphs.

Many leading algorithms for solving MAPF opti-
mally (Gange, Harabor, and Stuckey 2019; Li et al.
2019a) employs a strategy known as Conflict-Based Search
(CBS) (Sharon et al. 2015). The central idea behind CBS is
to plan paths for each agent independently and resolve col-
lisions between two agents by branching. Each branch is a

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of rectangle symmetry. The left figure
shows two shortest paths for two agents a1 and a2 that move
them from cells A2 and B1 to cells D3 and C4, respectively,
and collide at cell B2 at timestep 1. The right figure shows
the constraint tree (CT) generated by CBS. Each left branch
constrains agent a2, while each right branch constrains agent
a1. Each non-leaf CT node is marked with the cell of the
chosen collision. Each leaf CT node marked “+1” contains
an optimal solution, whose sum of path lengths is one larger
than the sum of path lengths of the plan in the root CT node.

new candidate plan wherein one agent or the other is forced
to find a new path that avoids the chosen collision.

Recent work (Li et al. 2019c) shows that this strategy, i.e.,
branching and then replanning, suffers from unacceptable
runtimes when the collision at hand is symmetric. Figure 1
shows an example of a rectangle symmetry. There exist, for
each agent, multiple shortest paths, each of which can be
derived, one from the other, by changing the order of the
individual RIGHT and DOWN moves. Any shortest path for
one agent is in collision with any shortest path for the other
agent. The only feasible resolution is for one of the agents to
wait or take a detour. However, to generate such a path, CBS
has to branch multiple times and try a great number of com-
binations of these shortest paths. This rectangle symmetry
arises because of the use of 4-neighbor grids.

In this work, we explore two new classes of such pair-
wise path equivalency, namely corridor symmetry and tar-
get symmetry. Like their rectangle counterpart, each one de-
scribes a specific situation that arises in MAPF. But both
of these symmetries are applicable to MAPF on arbitrary
graphs rather than just 4-neighbor grids. Moreover, each
one is commonly found in current benchmarks domains and,
therefore, in practice. The behavior of CBS in such symmet-

193



ric situations is the same, resulting in unacceptable runtimes
due to an explosion of branches. To handle these new sym-
metries, we introduce new constraint-based reasoning tech-
niques designed to detect corridor and target symmetries and
to resolve them in a single branching step. Our experimental
results show that these new constraints can, in some cases,
more than double the success rate of CBS and improve its
runtime by one order of magnitude.

2 Problem Definition

MAPF has many variants (Stern et al. 2019) and, in this pa-
per, we focus on the variant defined in (Stern et al. 2019)
that (1) considers vertex and swapping conflicts, (2) uses
the “stay at target” assumption and (3) optimizes the sum
of costs. Formally, we define MAPF by an undirected graph
G = (V,E) and a set of m agents {a1, . . . , am}. Each agent
ai has a start vertex si ∈ V and a target (goal) vertex gi ∈ V .
Time is discretized into timesteps. At each timestep, every
agent can either move to an adjacent vertex or wait at its cur-
rent vertex. A path pi for agent ai is a sequence of vertices
which are adjacent or identical (indicating a wait action),
starting at the start vertex si and ending at the target vertex
gi. Agents remain at their target vertices after they complete
their paths. A conflict (or, synonymously, collision) is ei-
ther a vertex conflict 〈ai, aj , v, t〉, where agents ai and aj
are at the same vertex v ∈ V at the same timestep t, or
an edge conflict 〈ai, aj , u, v, t〉, where agents ai and aj tra-
verse the same edge (u, v) ∈ E in opposite directions at the
same timestep t (or, more precisely, from timestep t − 1 to
timestep t). A solution is a set of conflict-free paths, one for
each agent. Our task is to find a solution with the minimum
sum of costs (i.e., sum of the path lengths).

3 Background: Conflict-Based Search

Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level state-of-the-art search algorithm for solving MAPF op-
timally. At the low level, CBS invokes state-time A* (Silver
2005) to find a shortest path for each agent that satisfies con-
straints added by the high level. It breaks ties by preferring
the path that has the fewest conflicts with the paths of other
agents. At the high level, CBS performs a best-first search
on a binary constraint tree (CT). Each CT node contains a
plan, i.e., a set of paths, one for each agent, and a set of
constraints that are used to coordinate agents and avoid con-
flicts. The cost of a CT node is the sum of costs of its plan.
The root CT node contains an empty set of constraints and a
set of shortest paths, one for each agent. CBS proceeds from
one CT node to the next one, checking for conflicts and call-
ing its low-level search to replan paths one at a time. CBS
succeeds when the plan of the current CT node is conflict-
free, which corresponds to an optimal solution.

Constraints A constraint is a spatio-temporal restriction
introduced by CBS to resolve situations where the paths of
two agents conflict. Specifically, a vertex constraint 〈ai, v, t〉
means that agent ai is prohibited from being at vertex v ∈
V at timestep t. Similarly, an edge constraint 〈ai, u, v, t〉
means that agent ai is prohibited from traversing edge

(u, v) ∈ E at timestep t (or more precisely, from timestep
t− 1 to timestep t).

Branching When expanding a CT node, CBS checks for
conflicts in the plan of the CT node. If there are none, the
CT node is a goal CT node, and CBS terminates. Otherwise,
CBS chooses one of the conflicts (by default, arbitrarily) and
resolves it by branching, i.e., by splitting the CT node into
two child CT nodes. In each child CT node, one agent from
the conflict is prohibited from using the conflicting vertex
or edge at the conflicting timestep by way of an additional
constraint. The path of this agent does not satisfy the new
constraint and is replanned by the low-level search. All other
paths remain unchanged. CBS guarantees completeness by
exploring both ways of resolving each conflict. CBS guaran-
tees optimality by performing best-first searches on both its
high and low levels.

Cardinal, semi-cardinal and non-cardinal conflicts Bo-
yarski et al. (2015) classify conflicts into three types. A con-
flict is cardinal iff, when CBS uses the conflict to split CT
node N , the costs of both resulting child CT nodes are larger
than the cost of CT node N . A conflict is semi-cardinal iff
the cost of one child CT node is larger than the cost of CT
node N , and the cost of the other child CT node is equal to
the cost of CT node N . Finally, a conflict is non-cardinal
iff the costs of both child CT nodes are equal to the cost
of CT node N . They show that CBS can significantly im-
prove its efficiency by resolving cardinal conflicts first, then
semi-cardinal conflicts and last non-cardinal conflicts, be-
cause generating child CT nodes with larger costs first can
improve the lower bound of the CT (i.e., the minimum cost
of the leaf CT nodes) faster and thus produce smaller CTs.

Rectangle symmetry Li et al. (2019c) analyze rectangle
symmetry for grid-based MAPF and introduce barrier con-
straints to resolve it efficiently. For the example in Figure 1,
the rectangle symmetry is resolved by splitting the root CT
node into two child CT nodes, one with a barrier constraint
that prohibits agent a2 from being at cell B3 at timestep 2 or
cell C3 at timestep 3, and one with a barrier constraint that
prohibits agent a1 from being at cell C2 at timestep 2 or cell
C3 at timestep 3. In each child CT node, one of the agents
cannot take a path of length 4. Hence, the barrier constraints
immediately increase the lower bound of the CT by 1, thus
avoiding an exponential explosion of the runtime, and each
child CT node contains a pair of conflict-free paths. See (Li
et al. 2019c) for more details.

4 Corridor Symmetry

A corridor C = C0 ∪ {b, e} of graph G = (V,E) is a chain
of connected vertices C0 ⊆ V , each of degree 2, together
with two endpoints {b, e} ∈ V connected to C0. The length
of the corridor is the distance between its two endpoints,
i.e., the number of vertices in C0 plus 1. Figure 2 shows a
corridor of length 3 made up of C0 = {B3,C3}, b = A3 and
e = D3.

A corridor symmetry occurs when two agents attempt to
traverse a corridor in opposite directions at the same time.

194



Figure 2: An example of corridor symmetry. The left figure
shows the shortest paths of two agents a1 and a2 that have an
edge conflict inside the corridor at edge (B3, C3) at timestep
3. The right figure shows the CT. Each left branch constrains
agent a2, while each right branch constrains agent a1. Each
non-leaf CT node is marked with the vertex/edge of the cho-
sen conflict. Each leaf CT node marked “+4” contains an
optimal solution, whose sum of costs is the cost of the root
CT node plus 4. Each leaf CT node marked “...” contains a
plan with conflicts and eventually produces suboptimal so-
lutions in its descendant CT nodes.

Table 1: Number of expanded CT nodes to resolve a corridor
conflict for different corridor lengths k.

k 3 5 7 9 11 13
Nodes 16 64 256 1,024 4,096 16,384

We refer to the corresponding conflict as a corridor con-
flict. Figure 2 shows an example. CBS detects the edge
conflict 〈a1, a2,B3,C3, 3〉 and branches, thereby generating
two child CT nodes. There are many shortest paths for each
agent that avoid edge (B3, C3) at timestep 3 (e.g., path [A4,
A3, B3, B3, C3, D3, D4] for agent a1 and path [D2, D2, D3,
C3, B3, A3, A2] for agent a2) – but they all involve one wait
action and differ only in where the wait action is taken. How-
ever, each of these single-wait paths remains in conflict with
the path of the other agent. CBS has to branch at least four
times to find conflict-free paths in such a situation and has to
branch even more times to prove their optimality. Figure 2
(right) shows the corresponding CT. Only two of the six-
teen leaf CT nodes contain optimal solutions. This example
highlights an especially pernicious characteristic of corridor
symmetry: CBS may be forced to continue branching and
exploring irrelevant and suboptimal resolutions of the same
corridor conflict in order to eventually compute an optimal
solution.

Table 1 shows how large a problem corridor symmetry
can be for CBS more generally. As the corridor length k
increases, the number of expanded CT nodes grows expo-
nentially as 2k+1. We therefore propose a new reasoning
technique which can identify and resolve corridor conflicts
efficiently.

4.1 Identifying Corridor Conflicts

The detection of corridor conflicts is straightforward. We
check every vertex and edge conflict. A vertex/edge conflict

is a corridor conflict iff the conflict occurs inside a corri-
dor and the two agents involved in the conflict are coming
from opposite directions. We find the corridor on-the-fly by
checking whether the conflicting vertex (or an endpoint of
the conflicting edge) is of degree 2. To find the endpoints of
the corridor, we check the degree of each of the two adjacent
vertices and repeat the procedure until we find either a ver-
tex whose degree is not 2 or the start or target vertex of one
of the two agents.

4.2 Resolving Corridor Conflicts

Consider a corridor C of length k with endpoints b and e.
Assume that a shortest path of agent a1 traverses the corri-
dor from b to e and a shortest path of agent a2 traverses the
corridor from e to b. They conflict with each other inside the
corridor. Let t1 be the earliest timestep when agent a1 can
reach e and t2 be the earliest timestep when agent a2 can
reach b.

We first assume that there are no bypasses (i.e., paths that
move the agent from its start vertex to its target vertex with-
out traversing corridor C) for either agent. Therefore, one of
the agents must wait until the other one has fully traversed
the corridor. If we prioritize agent a1 and let agent a2 wait,
then the earliest timestep when agent a2 can start to traverse
the corridor from e is t1+1. Therefore, the earliest timestep
when agent a2 can reach b is t1 + 1 + k. Similarly, if we
prioritize agent a2 and let agent a1 wait, then the earliest
timestep when agent a1 can reach e is t2+1+k. Therefore,
any paths of agent a1 that reach e before or at timestep t2+k
must conflict with any paths of agent a2 that reach b before
or at timestep t1 + k.

Now we consider bypasses. Assume that agent a1 has
bypasses to reach e without traversing corridor C and the
earliest timestep when it can reach e using a bypass is t′1.
Similarly, assume that agent a2 also has bypasses to reach b
without traversing corridor C and the earliest timestep when
it can reach b using a bypass is t′2. If we prioritize agent a1,
then agent a2 can either wait or use a bypass. So the earliest
timestep when agent a2 can reach b is min(t′2, t1 + 1 + k).
Similarly, if we prioritize agent a2, then the earliest timestep
when agent a1 can reach e is min(t′1, t2 + 1 + k). There-
fore, any paths of agent a1 that reach e before or at timestep
min(t′1 − 1, t2 + k) must conflict with any paths of agent
a2 that reach b before or at timestep min(t′2 − 1, t1 + k). In
other words, for every pair of conflict-free paths for the two
agents, at least one of the two following constraints hold:
• 〈a1, e, [0,min(t′1 − 1, t2 + k)]〉 or
• 〈a2, b, [0,min(t′2 − 1, t1 + k)]〉,
where 〈ai, v, [tmin, tmax]〉 is a range constraint that pro-
hibits agent ai from being at vertex v at any timestep from
timestep tmin to timestep tmax (Atzmon et al. 2018). There-
fore, to resolve this corridor conflict, we split the CT node
and generate two child CT nodes, each with one of the two
range constraints as an additional constraint. We use state-
time A* to compute t1, t

′
1, t2 and t′2.

For example, for the corridor conflict in Figure 2, we cal-
culate t1 = t2 = 4, t′1 = t′2 = +∞ and k = 3. Hence, to
resolve this conflict, we split the root CT node and add the

195



range constraints 〈a1, D3, [0, 7]〉 and 〈a2, A3, [0, 7]〉. In the
right (left) child CT node, we replan the path of agent a1 (a2)
and find a new path [A4, A4, A4, A4, A4, A3, B3, C3, D3,
D4] ([D2, D2, D2, D2, D2, D3, C3, B3, A3, A2]), that waits
at its start vertex for 4 timesteps before moving to its target
vertex. It waits at its start vertex rather than any vertex inside
the corridor because CBS breaks ties by preferring the path
that has the fewest conflicts with the paths of other agents.
Hence, the paths in both child CT nodes are conflict-free,
and the corridor symmetry is resolved in a single branching
step.

However, this branching method cannot be applied to all
corridor conflicts. We use this branching method only when
the path of agent a1 in the current CT node violates the range
constraint 〈a1, e, [0,min(t′1 − 1, t2 + k)]〉 and the path of
agent a2 in the current CT node violates the range constraint
〈a2, b, [0,min(t′2−1, t1+k)]〉. This guarantees that the paths
in both child CT nodes are different from the paths in the
current CT node. Otherwise, we use the standard branching
method (discussed in Section 3) to resolve the conflict.

Theorem 1. Resolving corridor conflicts with range con-
straints preserves the completeness and optimality of CBS.

The proof is given in the appendix. We add range con-
straints at the exit endpoint of the corridor for each agent
instead of the entry endpoint because there might be an opti-
mal solution where one of the conflicting agents has to move
into the corridor, move out from the same side of the corridor
instead of colliding with the other agent, move into it again
after the other agent has traversed the corridor and finally
traverse it.

4.3 Classifying Corridor Conflicts

We classify corridor conflicts based on the type of the ver-
tex/edge conflict inside the corridor. A corridor conflict is
cardinal iff the corresponding vertex/edge conflict is car-
dinal; it is semi-cardinal iff the corresponding vertex/edge
conflict is semi-cardinal; and it is non-cardinal iff the corre-
sponding vertex/edge conflict is non-cardinal. This is an ap-
proximate way of classifying corridor conflicts. We use Fig-
ure 2 to show an example where, after branching on a non-
cardinal corridor conflict in a CT node N , the costs of both
resulting child CT nodes have costs larger than the cost of N .
Assume that N has two constraints, each of which prohibits
one of the agents from being at its target vertex at timestep
5, so both agents have to wait for one timestep and thus has
paths of length 6. If agent a1 waits at vertex D3 at timestep 5
and agent a2 waits at vertex A3 at timestep 5, then they have
a non-cardinal edge conflict 〈a1, a2,B3,C3, 3〉. As a result,
the corridor conflict is classified as a non-cardinal conflict.
However, when we use the range constraints 〈a1, D3, [0, 7]〉
and 〈a2, A3, [0, 7]〉 to resolve the corridor conflict, the costs
of both child CT nodes are larger than the cost of N .

We follow the conflict prioritization in (Boyarski et al.
2015; Li et al. 2019c) and resolve cardinal conflicts first,
then semi-cardinal conflicts and finally non-cardinal con-
flicts. For conflicts of the same type, we resolve corridor
conflicts first, then rectangle conflicts and finally vertex and
edge conflicts. Corridor conflicts have higher priority than

Figure 3: An example of target symmetry. In the left fig-
ure, agent a2 arrives at cell D2 at timestep 1. Two timesteps
later, agent a1 traverses the same cell, leading to a vertex
conflict 〈a1, a2,D2, 3〉. The right figure shows the CT. Each
left branch constrains agent a2, while each right branch con-
strains agent a1. Each non-leaf CT node is marked with the
vertex of the chosen conflict. The leaf CT node marked “+3”
contains an optimal solution, whose sum of costs is the cost
of the root CT node plus 3. Each leaf CT node marked “+5”
or “+7” contains a suboptimal solution, whose sum of costs
is the cost of the root CT node plus 5 or 7, respectively.

Table 2: Number of expanded CT nodes to resolve a target
conflict of the type shown in Figure 3 for different distances
k between vertices s1 and g2.

k 10 20 30 40 50
Nodes for 2-agent instances 10 20 30 40 50
Nodes for 4-agent instances 50 150 300 500 750

rectangle conflicts because, when we resolve a corridor con-
flict, the costs of the child CT nodes can be more than one
larger than the cost of the parent CT node, while, when we
resolve rectangle conflicts, the costs of the child CT nodes
are typically at most one larger (Li et al. 2019d). Vertex and
edge conflicts have the lowest priority because we prefer to
resolve all symmetry conflicts first.

5 Target Symmetry

A target symmetry occurs when one agent traverses the tar-
get vertex of a second agent after the second agent has al-
ready arrived at it and stays there forever. We refer to the
corresponding conflict as a target conflict. Figure 3 shows an
example. Agent a2 arrives at its target vertex D2 at timestep
1, but an unavoidable vertex conflict occurs with agent a1 at
the target vertex D2 at timestep 3. When CBS branches to
resolve this vertex conflict, it generates two child CT nodes.
In the left child CT node, CBS adds a vertex constraint for
agent a2 that prohibits it from being at vertex D2 at timestep
3. The low-level search finds a new path [C2, C3, C3, C2,
D2] for agent a2, which does not conflict with agent a1. The
cost of this CT node is three larger than the cost of the root
CT node. In the right child CT node, CBS adds a vertex con-
straint for agent a1 that prohibits it from being at vertex D2
at timestep 3. Thus, agent a1 can arrive at vertex D2 only at
timestep 4, and the cost of this CT node is one larger than the
cost of the root CT node. There are several alternative paths
for agent a1 where it waits at different vertices for the requi-
site timestep, e.g., path [A2, A2, B2, C2, D2, E2]. However,
each of these paths produces a further conflict with agent a2

196



at vertex D2 at timestep 4. Although the left child CT node
contains conflict-free paths, CBS has to split the right child
CT nodes repeatedly to constrain agent a1 (because it per-
forms a best-first search) before eventually proving that the
solution of the left child CT node is optimal.

Target symmetry has the same pernicious characteristics
as corridor symmetry since, if undetected, it can explode
the size of the CT and lead to unacceptable runtimes. Ta-
ble 2 shows how many CT nodes CBS expands to resolve
a target conflict of the type shown in Figure 3 for different
distances k between vertices s1 and g2. While the increase
in CT nodes is linear in k, which may not seem too prob-
lematic, only one of the leaf CT nodes actually resolves the
conflict. Later, when other conflicts occur elsewhere on the
map, each of the leaf CT nodes will be further fruitlessly
expanded. With two copies of the problem (resulting in 4-
agent instances), Table 2 shows a quadratic increase in the
number of CT nodes. For m-agent instances, the increases
in the number of CT nodes become exponential in m.

5.1 Identifying Target Conflicts

The detection of target conflicts is straightforward. We check
every vertex conflict. A vertex conflict is a target conflict iff
the conflict happens after one agent has arrived at its target
vertex and stays there forever.

5.2 Resolving Target Conflicts

The key to resolving target conflicts is to reason about the
path length of an agent directly. Suppose agent a2 arrives at
its target vertex g2 at timestep t′ and stays there forever. The
path of agent a1 traverses vertex g2 at timestep t (t ≥ t′).
We resolve this conflict by branching on the path length l2
of agent a2 using the following two length constraints, one
for each child CT node:
• l2 > t, i.e., agent a2 can complete its path only after

timestep t, or
• l2 ≤ t, i.e., agent a2 must arrive at vertex g2 and stay

there forever before or at timestep t, which also requires
that any other agent cannot traverse vertex g2 at or after
timestep t.

The first constraint l2 > t affects only the path of agent a2,
while the second constraint l2 ≤ t could affect the paths of
all agents.

The advantage of this branching method is immediate. In
the first case, agent a2 cannot finish until timestep t + 1, so
its path length increases from its current value t′ to at least
t + 1. In the second case, agent a1 is prohibited from being
at vertex g2 at or after timestep t. If agent a1 has no alternate
path to its target vertex, the CT node with this constraint has
no possible solution and is thus pruned. If agent a1 has al-
ternate paths that do not use vertex g2 at or after timestep
t and the shortest one among them is longer than its current
path, then its path length increases. We do not need to replan
for agent a2 since its current path is no longer than t. Never-
theless, we have to replan the paths for all other agents that
traverse vertex g2 at or after timestep t.

In order to handle the length constraints, we need the low-
level search to take into account bounds on the path length.

This is fairly straightforward for given bounds e ≤ li ≤ u on
the path length li of agent ai: If the low-level search reaches
target vertex gi before timestep e, then it cannot terminate
but must continue searching; if it reaches the target vertex
between timesteps e and u (and the agent was not at the tar-
get vertex at the previous timestep), then it terminates and
returns the corresponding path; if it reaches the target ver-
tex after timestep u, then it terminates, the corresponding
CT node has no possible solution, and the CT node is thus
pruned. We require the agent to not be at the target vertex
at the previous timestep because, otherwise, the agent could
simply take its current path to the target vertex and wait there
until timestep e is reached, which does not help to resolve
the conflict.

For example, to resolve the target conflict in Figure 3, we
split the root CT node and add the length constraints l2 > 3
and l2 ≤ 3. In the left child CT node, we replan the path of
agent a2 and find a new path [C2, C3, C3, C2, D2], which
does not conflict with agent a1. In the right child CT node,
agent a1 cannot occupy vertex D2 at or after timestep 3. We
thus fail to find a path for it and prune the right child CT
node. Therefore, the target symmetry is resolved in a single
branching step.

Showing completeness and optimality of CBS when us-
ing length constraints for target conflicts is straightforward.
Therefore, we omit the proof of the following theorem.

Theorem 2. Resolving target conflicts with length con-
straints preserves the completeness and optimality of CBS.

5.3 Classifying Target Conflicts

Similar to corridor conflicts, target conflicts are classified
based on the vertex conflict at the target vertex: A target
conflict is cardinal iff the corresponding vertex conflict is
cardinal; and it is semi-cardinal iff the corresponding ver-
tex conflict is semi-cardinal. It can never be non-cardinal
because the cost of the child CT node with the additional
length constraint l2 > t is always larger than the cost of the
parent CT node. This is an approximate way of classifying
target conflicts since it is possible that, when we branch on
a semi-cardinal target conflict in a CT node N , the costs of
both child CT nodes are larger than the cost of N .

Similar to corridor conflicts, we resolve cardinal conflicts
first, then semi-cardinal conflicts and finally non-cardinal
conflicts. For conflicts of the same type, we give target con-
flicts the highest priority because, when resolving a target
conflict, the cost of at least one child node is larger than the
cost of the current CT node by at least one and often by
much more.

6 Experiments

We implement CBSH (Felner et al. 2018) in C++, an ad-
vanced variant of CBS that uses admissible heuristics for its
high-level search. We add rectangle reasoning (i.e., CBSH-
RM in (Li et al. 2019c)), corridor reasoning and target rea-
soning on top of CBSH. We refer to these three reasoning
techniques as R, C and T, respectively. The experiments are
conducted on a 2.80 GHz Intel Core i7-7700 laptop with 8
GB RAM and a runtime limit of 1 minute.

197



Figure 4: Success rates within the runtime limit of 60 seconds. Many parts of the blue and green lines in the figures for the
empty, city and game maps are hidden by the orange and red lines, respectively.

Table 3: Average runtimes in seconds. The runtime limit of 60 seconds is included in the average for unsolved instances.
Small warehouse Large warehouse Room Maze

m R R+C R+T R+C+T m R R+C R+T R+C+T m R R+C R+T R+C+T m R R+C R+T R+C+T
12 4.62 1.30 3.42 1.95 20 1.39 1.33 1.15 0.12 16 7.69 3.93 0.20 0.13 2 2.72 0.01 2.70 0.01
14 21.91 4.74 17.56 4.23 28 5.42 3.74 0.11 0.09 20 21.51 14.70 1.19 0.34 4 20.14 7.52 15.70 1.10
16 41.92 12.04 34.25 11.40 36 24.20 18.08 4.20 2.81 24 39.98 31.36 5.59 3.33 6 46.00 28.83 33.79 11.19
18 48.65 32.94 45.01 26.07 44 46.02 39.48 18.10 11.26 28 51.53 45.73 22.45 10.91 8 55.70 35.29 52.28 15.19
20 55.42 40.14 55.45 41.41 52 58.38 55.99 37.80 30.18 32 59.95 54.02 39.81 27.29 10 60.00 46.63 60.00 30.13

Empty Random City Game
m R R+C R+T R+C+T m R R+C R+T R+C+T m R R+C R+T R+C+T m R R+C R+T R+C+T
50 0.06 0.06 0.01 0.03 20 0.08 0.07 0.02 0.01 60 3.64 3.71 3.05 3.05 20 2.85 2.85 2.87 2.85
70 2.76 2.76 0.09 0.11 30 4.99 3.88 3.20 0.12 80 11.18 11.13 10.58 10.49 40 10.41 10.38 9.16 8.94
90 13.68 13.67 7.95 10.65 40 18.45 16.30 13.87 0.72 100 12.51 12.30 12.36 12.27 60 21.57 21.82 20.55 20.97

110 41.32 41.31 27.18 25.83 50 42.41 40.50 36.39 18.29 120 22.08 20.49 20.49 19.50 80 34.34 34.35 32.67 32.39
130 55.81 55.81 51.04 52.11 60 60.00 60.00 58.95 36.88 140 38.92 37.67 32.52 31.70 100 49.80 49.95 49.33 49.51

We evaluate our algorithms on eight maps of different
sizes and structures, including: (1) A small warehouse map
from (Li et al. 2019b): It is a 30× 10 grid with 9 rectangular
obstacles of size 6 × 2 in the center area. Half the agents
move from left to right, and half the agents move from right
to left. Their start and target vertices are randomly located in
the left/right open areas of size 5×10. (2) A large warehouse
map: It is a 79 × 31 grid with 100 rectangular obstacles of
size 6× 2 in the center area. The start and target vertices are
randomly located on the entire map. (3) A room map “room-
32-32-4” from the MAPF benchmarks (Stern et al. 2019): It
is a 32 × 32 grid with 64 rooms of size 3 × 3 connected by
single-cell doors. (4) A maze map “maze-128-128-1” from
the MAPF benchmarks: It is a 128× 128 grid with corridors
that are one cell wide. (5) An empty map “empty-32-32”
from the MAPF benchmarks: It is a 32 × 32 grid without
obstacles. (6) A random map “random-32-32-20” from the
MAPF benchmarks: It is a 32× 32 grid with 20% randomly
blocked cells. (7) A city map “Paris 1 256” from the MAPF
benchmarks: It is a 256× 256 grid encoding a map of Paris.
(8) A game map “den520d” from the MAPF benchmarks:
It is a 257 × 256 grid from the video game Dragon Age:

Origins. We show the maps in Figure 4. For both warehouse
maps, we generate 50 instances with random start and target
vertices for each map and each number of agents m. For all
other maps from the MAPF benchmark, we use the “even”
scenarios in the benchmarks, yielding 25 instances for each
map and each number of agents m.

6.1 Success Rate and Runtime

Figure 4 plots the success rates, i.e., the percentages of
solved instances within the runtime limit, on all maps. Over-
all, corridor reasoning improves the success rates when the
maps contain many corridors, which is the case for the small
and large warehouse maps, the room map and the maze map.
When the maps contain no or only a few corridors, which
is the case for the empty map, the random map, the city
map and the game map, corridor reasoning does not improve
the success rates but does not deteriorate them either. Target
reasoning, on the other hand, improves the success rates on
most maps substantially. Again, when target reasoning does
not improve the success rates, it does not deteriorate them
either. Corridor and target reasoning together improve the
success rates the most. For example, the success rate of R is

198



Table 4: Conflict distributions for R+C+T. “Nodes” repre-
sents the number of expanded CT nodes within the time
limit. “Rectangle”, “Corridor” and “Target” represent the
percentage of CT nodes expanded by rectangle, corridor and
target reasoning, respectively.

Map m Nodes Rectangle Corridor Target
Small warehouse 16 6,564 9.99% 16.05% 2.58%
Large warehouse 40 5,417 2.24% 9.48% 13.74%

Room 24 1,687 1.93% 23.29% 8.68%
Maze 6 11 0.00% 32.06% 8.71%
Empty 100 23,573 12.58% 0.00% 12.95%

Random 50 17,803 4.14% 2.89% 9.27%
City 100 87 5.98% 0.18% 10.30%

Game 70 414 0.87% 0.00% 1.89%

Table 5: Average runtimes per expanded CT node in mil-
liseconds.

Map m R R+C R+T R+C+T
Small warehouse 16 0.72 1.59 0.83 1.74
Large warehouse 40 1.00 1.26 1.53 1.39

Room 24 0.74 1.01 0.89 1.31
Maze 6 30.99 541.81 30.28 983.12
Empty 100 0.40 0.40 0.55 0.55

Random 50 0.69 0.77 0.84 0.94
City 100 91.48 90.40 141.70 144.54

Game 70 45.27 45.45 45.06 45.22

0 on the maze map with 10 agents but R+C+T improves it to
0.68.

Table 3 reports the average runtimes. Again, corridor and
target reasoning seldom increase the runtimes and often re-
duce them substantially. For example, R+C+T improves the
runtime of R by a factor of 40 on the random map with 30
agents.

We notice an interesting behavior on the maze and random
maps: Corridor and target reasoning separately do not result
in substantial improvements, but their combination does, for
the following reason: Maze and random maps have many
corridor and target conflicts. Solving either class of conflicts
with the standard branching method of CBS could result in
unacceptable runtimes. Thus, CBS with only one of the rea-
soning techniques does not solve many instances within the
runtime limit, while CBS with both techniques does.

6.2 Conflict Distribution

Table 4 reports how often CBS uses each reasoning tech-
nique on average to expand CT nodes, which also indi-
cates how often different conflicts occur on different maps.
Clearly, corridor conflicts are frequent and more common
than rectangle conflicts on maps with corridors. Target con-
flicts are frequent on all maps and even occur on the small
warehouse map, despite target vertices not being located in
corridors. The high frequency of both kinds of conflicts re-
sults in the gains that we see in Figure 4 and Table 3.

6.3 Runtime per CT Node Expansion

Table 5 reports the average runtime per expanded CT node.
As expected, CBS needs more time to expand a CT node on
a large map than a small map. Corridor and target reasoning

Table 6: Average lower bound improvements.
Map m R R+C R+T R+C+T

Small warehouse 16 12.74 14.36 13.02 14.42
Large warehouse 40 17.18 19.76 23.74 24.04

Room 24 19.40 22.92 27.16 27.20
Maze 6 18.44 33.96 93.08 100.88
Empty 100 9.52 9.52 9.88 9.88

Random 50 20.68 21.16 21.00 27.92
City 100 6.32 6.36 8.72 8.72

Game 70 5.96 5.96 6.60 6.60

cause only a reasonably small runtime overhead on all maps
except for the maze and city maps.

On the maze map, the overhead of corridor reasoning
stems from computing t′1 and t′2. The empty cells in the
maze map form a tree, and thus there are no bypasses for
agents to avoid any corridors, i.e., t′1 and t′2 are always infi-
nite. However, since we use state-time A* to compute them,
state-time A* can only determine that there are no bypasses
when it has expanded all reachable states, which is time-
consuming. Still, corridor and target reasoning are most ben-
eficial on the maze map because the time-consuming alter-
nate path search avoids a much more time-intensive CBS
search, which essentially replicates the reasoning by creat-
ing many CT nodes. Moreover, if we know the map a priori,
then we can preprocess the map, mark those corridors that
do not have bypasses and save the runtime of computing t′1
and t′2 online.

On the city map, the overhead of target reasoning stems
from the low-level space-time A* search for replanning an
extremely long path. The length constraint l2 > t can sub-
stantially increase the path length, but finding a long path is
time-consuming for space-time A*. We might be able to ad-
dress this issue by replacing space-time A* with Safe Inter-
val Path Planning (Phillips and Likhachev 2011), but leave
this for future work.

6.4 Lower Bound Improvement

Table 6 reports the average lower bound improvement, i.e.,
the minimum f -value of the CT nodes in the open list when
CBS terminates minus the cost of the root CT node. If an al-
gorithm finds an optimal solution within the time limit, the
lower bound improvement is equal to the optimal cost mi-
nus the cost of the root CT node. Thus, if all algorithms find
an optimal solution within the time limit, the lower bound
improvement is the same for all of them. For those hard in-
stances which none of the algorithms solve within the time
limit, R+C+T always achieves a higher lower bound than
the other algorithms. On the maze map with 6 agents, for in-
stance, the lower bound improvement of R+C+T is 5 times
higher than that of R alone.

7 Related Work

Ryan (2006; 2007) proposed several graph decomposition
approaches for solving MAPF. Like our work, he detected
special graph structures, including stacks, cliques and halls.
Unlike our work, he built an abstract graph by replacing such
sub-graphs with meta-vertices during preprocessing in order

199



to reduce the search space. His work preserves complete-
ness but not optimality. Our work, by comparison, focuses
on exploiting the sub-graphs to break symmetries without
preprocessing and without sacrificing optimality.

Cohen et al. (2016) proposed highways to reduce the
number of corridor conflicts. They assigned directions to
some corridor vertices (resulting in one or more highways)
and made moving against highways more expensive than
other movements. They showed that highways can speed up
ECBS, a bounded-suboptimal version of CBS. However, the
utility of highways for optimal CBS is limited because they
can then only be used to break ties among multiple shortest
paths and are not guaranteed to resolve all corridor conflicts.

Lam et al. (2019) proposed a novel algorithm BCP based
on Integer Linear Programming for solving MAPF opti-
mally. They also found rectangle and corridor symmetries in
their fractional solutions and designed dedicated constraints
to break them. However, since the frameworks of CBS and
BCP are different, the approaches for reasoning about sym-
metries and designing constraints are different as well. For
example, the form of corridor symmetry addressed in BCP is
quite different from ours, arising when two agents swap lo-
cations, and independent of corridors in our sense. The con-
straints used in BCP remove fractional solutions that do not
arise in CBS.

Recently, Li et al. (2019a) made a significant improve-
ment to MAPF by using CBS to solve a two-agent sub-
MAPF instance for each pair of agents in the original MAPF
instance to generate informed heuristic guidance for the
high-level search of CBS. It remains future work to imple-
ment corridor and target reasoning in this framework, but we
expect to be able to speed up the calculation of the informed
heuristics significantly since both reasoning techniques ap-
ply directly to solving the two-agent sub-MAPF instances.

8 Conclusion

In this paper, we introduced corridor and target reasoning to
reason directly about symmetry conflicts that occur between
two agents when using CBS to solve MAPF. As Table 4
shows, these kinds of conflicts occur quite frequently on
many classes of maps, particularly warehouse maps, which
reflect one of the key applications of MAPF. We showed
experimentally that reasoning about these conflicts leads to
substantial improvements in both success rate and runtime.

Appendix

In this appendix, we prove the correctness of Theorem 1.
We first explain mutually disjunctive constraint sets, a pair
of constraint sets that we can use to split a CT node with
completeness and optimality guarantees for CBS. We then
show that the pair of range constraints extracted from a cor-
ridor conflict is mutually disjunctive.

Li et al. (2019d) define two vertex constraints for agents
ai and aj , respectively, to be mutually disjunctive iff any pair
of conflict-free paths of ai and aj satisfies at least one of the
two constraints, i.e., there does not exist a pair of conflict-
free paths that violates both constraints. Moreover, they de-
fine two sets of vertex constraints to be mutually disjunctive

iff each constraint in one set is mutually disjunctive with
each constraint in the other set. They prove that using two
sets of mutually disjunctive constraints to split a CT node
preserves the completeness and optimality of CBS. The key
idea of their proof is to show that any solution that satisfies
the constraints of a CT node also satisfies the constraints of
at least one of its child CT nodes, as stated in Lemma 3. See
their paper for detailed proof.

Lemma 3. For a given CT node N with constraint set C, if
two vertex constraint sets C1 and C2 are mutually disjunc-
tive, any set of conflict-free paths that satisfies C also satis-
fies at least one of the constraint sets C ∪ C1 and C ∪ C2.

Proof. Lemma 3 is true because, otherwise, there would ex-
ist a pair of conflict-free paths such that both of them are
consistent with C but one path violates a constraint c1 ∈ C1

and one path violates a constraint c2 ∈ C2. Then, c1 and
c2 are not mutually disjunctive, contradicting the assump-
tion.

Therefore, in order to show that CBS with corridor rea-
soning is complete and optimal, we only need to show that
the constraint sets that correspond to the two range con-
straints are mutually disjunctive.

Lemma 4. For the pair of range constraints extracted from
a corridor conflict, their corresponding vertex constraint
sets C1 = {〈a1, e, t〉 | t ∈ [0,min(t′1 − 1, t2 + k)]} and
C2 = {〈a2, b, t〉 | t ∈ [0,min(t′2 − 1, t1 + k)]} are mutually
disjunctive.

Proof. According to the definition of mutually disjunctive,
we only need to show that every vertex constraint c1 =
〈a1, e, i〉 ∈ C1 is mutually disjunctive with every vertex
constraint c2 = 〈a2, b, j〉 ∈ C2. Let path p1 be an arbi-
trary path of agent a1 that traverses vertex e at timestep i
and path p2 be an arbitrary path of agent a2 that traverses
vertex b at timestep j. That is, p1 is a path that violates con-
straint c1, and p2 is a path that violates constraint c2. Since
i ≤ min(t′1−1, t2+k) ≤ t′1−1 < t′1 (where t′1 is the earli-
est timestep when agent a1 can reach vertex e without using
the corridor between vertices b and e), path p1 must traverse
the corridor. Similarly, path p2 must traverse the corridor as
well. Since i ≤ min(t′1−1, t2+k) ≤ t2+k (where k is the
distance between vertices e and b), the latest timestep when
path p1 traverses vertex b is no larger than timestep t2. t2 is
the earliest timestep when path p2 can traverse vertex b, so
path p1 traverses vertex b before path p2. Similarly, path p2
traverses vertex e before path p1. Therefore, paths p1 and p2
must have a conflict in the corridor between vertices b and e.
Since paths p1 and p2 were chosen arbitrarily, every pair of
paths that violate both c1 and c2 are in conflict. So, c1 and
c2 are mutually disjunctive, and, therefore, C1 and C2 are
mutually disjunctive as well.

By Lemmata 3 and 4 and the proof in (Li et al. 2019d),
we conclude that resolving corridor conflicts with range con-
straints preserves the completeness and optimality of CBS.

200



Acknowledgments

The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, and 1837779 as
well as a gift from Amazon. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.

References

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust multi-agent path finding.
In Proceedings of the Annual Symposium on Combinatorial
Search (SoCS), 2–9.
Banfi, J.; Basilico, N.; and Amigoni, F. 2017. Intractabil-
ity of time-optimal multirobot path planning on 2D grid
graphs with holes. IEEE Robotics and Automation Letters
2(4):1941–1947.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 740–746.
Cohen, L.; Uras, T.; Kumar, T. K. S.; Xu, H.; Ayanian,
N.; and Koenig, S. 2016. Improved solvers for bounded-
suboptimal multi-agent path finding. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJ-
CAI), 3067–3074.
Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research 31:591–656.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K. S.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent pathfinding. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS), 83–87.
Gange, G.; Harabor, D.; and Stuckey, P. J. 2019. Lazy CBS:
Implict Conflict-based Search Using Lazy Clause Genera-
tion. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), 155–162.
Lam, E.; Bodic, P. L.; Harabor, D. D.; and Stuckey, P. J.
2019. Branch-and-cut-and-price for multi-agent pathfind-
ing. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 1289–1296.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved heuristics for multi-agent path finding
with conflict-based search. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
442–449.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019b. Disjoint splitting for conflict-based search
for multi-agent path finding. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019c. Symmetry-breaking constraints for grid-based multi-
agent path finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 6087–6095.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S.; and
Koenig, S. 2019d. Multi-agent path finding for large agents.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 7627–7634.
Morris, R.; Chang, M. L.; Archer, R.; Cross, E.; Thompson,
S.; Franke, J.; Garrett, R.; Malik, W.; McGuire, K.; and He-
mann, G. 2015. Self-driving aircraft towing vehicles: A
preliminary report. In Workshop on AI for Transportation,
35–42.
Phillips, M., and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 5628–5635.
Ryan, M. R. K. 2006. Multi-robot path planning with sub-
graphs. In Proceedings of the Australasian Conference on
Robotics and Automation, 1–8.
Ryan, M. R. K. 2007. Graph decomposition for efficient
multi-robot path planning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2003–2008.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE), 117–122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Proceedings of the
International Symposium on Combinatorial Search (SoCS),
151–159.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1):9–20.
Yu, J., and LaValle, S. M. 2013. Structure and intractabil-
ity of optimal multi-robot path planning on graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1444–1449.

201


