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Abstract

The challenge of finding an optimal solution to a multi-agent
path finding (MAPF) problem has attracted significant aca-
demic and industrial interest in recent years. While the prob-
lem is NP-Hard, modern optimal MAPF algorithms can scale
to solve problems with hundreds of agents. Nevertheless, no
single optimal MAPF algorithm dominates all benchmarks
problems, and there are no clear, provable, guidelines for
when each algorithm should be used. To address this, we
present the first successful Algorithm Selection (AS) model
for optimal MAPF. We propose two approaches for learning
an AS model. The first approach uses a standard supervised
learning algorithm with a set of handcrafted MAPF-specific
features. The second approach, casts a MAPF problem to an
image and applies a deep Convolutional Neural Network to
classify it. We evaluate both approaches over a large dataset
and show that using an AS model to select which algorithm
to use for each instance results in solving more problems and
in a shorter runtime compared to the state of the art.

1 Introduction

A classical multi-agent pathfinding (MAPF) problem with k
agent (Stern et al. 2019) is defined by a tuple 〈G, s, t〉, where
G = (V,E) is an undirected graph, s : [1, . . . , k] → V
maps an agent to its source vertex, and t : [1, . . . , k] → V
maps an agent to its target vertex. Each agent starts in its
source vertex. In every time, an agent either waits in its cur-
rent vertex or moves to one of the vertices adjacent to it.
A solution to a classical MAPF problem is a sequence of
wait/move actions for each agent such that the agents reach
their targets without colliding with each other. In this work,
we focus on the problem of finding an optimal solution to a
given MAPF problem. This problem is known to be NP Hard
for various common optimization criteria (Surynek 2010;
Yu and LaValle 2013). Nevertheless, Classical MAPF and its
many extensions have important applications in robotics, au-
tonomous vehicles, and automated warehouses, and hence,
many optimal MAPF algorithms have been proposed (Felner
et al. 2017; Ma and Koenig 2017). Nevertheless, no algo-
rithm has emerged to dominate all others. In fact, very little
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is known for how to choose which optimal MAPF algorithm
to use for a given classical MAPF problem.

To close this gap, we propose a data-driven approach to
learn an Algorithm Selection (AS) model for optimal MAPF.
An AS model accepts a portfolio of optimal MAPF algo-
rithms A and a MAPF problem Π, and outputs an algo-
rithm in A for solving Π. Our main objective is to create an
AS model that chooses an algorithm that solves Π in mini-
mal runtime. We explore two approaches for creating such a
model. In the first approach, we use XGBoost (2016), a state
of the art tree-based supervised learning algorithm, with a
set of handcrafted MAPF-specific features. In the second
approach, we follow the work of Sigurdson et al. (Sigurd-
son et al. 2019) and cast the given MAPF problem to an
image, and then train a deep Convolution Neural Networks
(CNN) to select the appropriate optimal MAPF algorithm.
We evaluate the AS models created by both approaches over
a dataset with 39,000 samples across 28 grid types. The re-
sults show that the best AS model selects the best algorithm
in over 65% of the cases, and using the selected MAPF algo-
rithm significantly outperforms all the state of the art optimal
MAPF algorithms in our portfolio. For example, using the
best AS model we were able to solve 93% of all problems
in our benchmark under 5 minutes, while the best MAPF
algorithm solved only 82%.

Our portfolio contains only search-based MAPF al-
gorithms, i.e., it does not include MAPF algorithms
that are based on compilation to Boolean Satisfiabil-
ity (SAT) (Surynek et al. 2016; Barták and Svancara
2019), Constraints Programming (Barták et al. 2017), and
SMT (Surynek 2019; Erdem et al. 2013). Such algorithms
are known to be highly effective in some domains, while less
so in others. However, our approach can be easily applied to
include other MAPF algorithms in the portfolio.

To the best of our knowledge, the only prior work
on AS for MAPF is by Sigurdson et al. (2019). They
focused on finding any solution to a given MAPF
problem while we aim to find optimal solutions, and
thus our portfolio consists only optimal MAPF algo-
rithm. Also, we explore a range of approaches to learn
an AS model. To allow future researchers to repro-
duce our results, we made our source code and dataset
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publicly available at github.com/OmriKaduri/MAPF-
Classification/tree/1.0/classification/src.

2 Background

In this work, we consider classical MAPF problems in a
graph that represents a 4-neighborhood grid (Stern et al.
2019). Time is discretized and each action – wait or move –
takes one time step. A collision between single-agent plans
occurs if there are any vertex, edge, or swapping conflicts
between them, i.e., the agents cannot occupy the same ver-
tex, the same edge, or swap locations, at the same time, re-
spectively. When an agent reaches its target, it stays there
and blocks other agents from passing through that ver-
tex.1The cost of a solution to a MAPF problem is the number
of move/wait actions all agents perform until all agents reach
their target. This is known as the sum-of-costs objective. An
optimal MAPF algorithm is an algorithm that is guaranteed
to return a lowest-cost solution.

2.1 Algorithms in the Portfolio

In this work, we used the following diverse set of opti-
mal search-based MAPF algorithms: (1) A∗ (Hart, Nilsson,
and Raphael 1968) with the Operator Decomposition (OD)
and Independence Detection (ID) MAPF-specific enhance-
ments (Standley 2010), (2) Enhanced Partial Expansion A∗
(EPEA∗), which is an A∗ variant designed for state spaces
with a large branching factor that was shown to be effec-
tive for MAPF (Goldenberg et al. 2014), (3) Increasing Cost
Tree Search (ICTS) (Sharon et al. 2013), (4) Conflict-Based
Search (CBS) (Sharon et al. 2015), (5) MA-CBS, which
improves CBS by merging agents to a meta-agent when
needed, and (6) a state-of-the-art variant of CBS that in-
cludes a recently proposed heuristic (Li et al. 2019) and
conflict bypassing and prioritization (Boyarski et al. 2015).
The latter will be referred to in this paper as CBS-H. For an
overview of search-based optimal MAPF algorithms includ-
ing these algorithms see Felner et al. (2017).

2.2 Algorithm Selection (AS)

Algorithm Selection (AS) is the problem of selecting the
best algorithm from a given set of algorithms on a per-
instance basis (Rice 1976). AS has been successfully applied
to a range of optimization and satisfaction problems (Kot-
thoff 2016; Kerschke et al. 2019). A notable example is
SATZilla (Xu et al. 2012), which is a highly successful algo-
rithm for generating an AS model for solving SAT problems.

Contemporary methods for generating effective AS mod-
els are based on supervised machine learning. Such methods
can be split into two major approaches. The first approach is
based on effort estimation. That is, the data in the training
set is used to learn a regression model for each algorithm
A ∈ A that aims to predict the runtime it will take A to solve
a given problem. The corresponding AS model chooses the
algorithm predicted to require the least amount of runtime to
solve the given problem. A different approach to learn an AS

1An agent can reach its target and then move away from it to
allow another agent to pass. The agent will have to return to its
target later, since eventually all agents must end up in their target.

Figure 1: MAPF problem represented as an image.

model is to directly train a multi-class classifier to predict
who is the best algorithm for a given problem. To differen-
tiate between these two approaches, we refer to the former
as the regression approach and the latter as the classification
approach.

Both approaches are known to have limitations. The re-
gression approach is inherently more difficult, since the
space of mistakes is larger (all possible runtimes), and pre-
dicting runtimes is considered a noisy target for regression
models. The classification approach outputs a single algo-
rithm for a given MAPF problem, so it cannot be sensi-
tive to cases where two algorithms perform similarly. There
are more sophisticated approaches that aim to mitigate these
limitations. For example, Xu et al. (2012) proposed to miti-
gate the limitation of the classification approach by learning
a cost-sensitive binary classification model for every pair of
solvers (Xu et al. 2012). To select an algorithm for a given
problem Π, the solvers are ranked according to the num-
ber of times each of them has been chosen by the classi-
fiers for Π, and the highest-ranking solver is returned. We
experimented with this approach in our domain and did not
observe any improvement. Since this approach is also signif-
icantly more costly in terms of training time, we focus in the
rest of this paper on the more fundamental regression and
classification approaches.

3 Learning AS Models for Optimal MAPF

The first learning approach we explore uses a state-of-the-art
tree-based learning algorithm, namely XGBoost (Chen and
Guestrin 2016), with a set of handcrafted features specifi-
cally designed for MAPF. A key factor in the effectiveness
of XGBoost, and in general supervised learning algorithms,
is the set of features extracted from every instance. We cre-
ated the following sets of MAPF-specific features.

3.1 Handcrafted MAPF Features

The first set of features describes the grid. It includes (1) the
number of rows and columns in the grid (denoted GridRows
and GridColumns), (2) the number of blocked cells in the
grid (denoted NumOfObstacles), and (3) the ratio of blocked
cells (denoted ObstacleDensity), i.e., NumOfObstacles

GridRows·GridCols . The
next set of features is derived from the number of agents
(k) and its relation to the grid size. This set includes
(1) the number of agents (denoted NumOfAgents), (2) the
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Model Accuracy Coverage Total RT

A∗ +OD+ID 0.00 0.73 12,459
EPEA∗ 0.12 0.79 9,871
ICTS 0.10 0.78 10,570
CBS 0.00 0.59 17,447
MA-CBS 0.26 0.53 19,952
CBS-H 0.50 0.83 8,016

Random 0.16 0.71 13,215
CNN Rg. 0.51 0.88 6,210
XGBoost Rg. 0.51 0.82 8,410
CNN Cl. 0.55 0.91 5,122
XGBoost Cl. 0.66 0.93 4,307

Oracle 1.00 100.00 1,649

Figure 2: Results for all models across all the test set.
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Figure 3: Coverage results, split by grid types.

branching factor of a naive A∗ search (denoted Branch-
ingFactor), i.e., 5k, and (3) the number of agents divided
by the number of cells that are not blocked by an ob-
stacles in the grid (denoted AgentSparsity). The last set
of features is derived from the shortest distances between
the agents’ sources and targets. This set includes the av-
erage, max., and min. distance between agents’ sources

and targets, i.e.,
k∑

i=1

δ
(
s(i), t(i)

)
/k, max

i={1...k}
δ
(
s(i), t(i)

)
,

and min
i={1...k}

δ
(
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)
, respectively, where δ(v, v′) is the

length of the shortest path from v to v′. We call these features
Avg/Max/MinDistanceToGoal, respectively. The AvgStart-
Distances feature is the average distance between the agents’
source vertices, i.e.,

k−1∑
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k∑

j=i+1

2δ
(
s(i), s(j)

)
/
(
k · (k − 1)

)
(1)

The AvgGoalDistances feature is defined similarly with re-
spect to the average distance between the agents’ target ver-
tices. The CellsAtSPRatio feature is the ratio S/T where S
is the number of grid cells that are on a shortest path from
the source to the target of at least one agents, and T is the
total number of grid cells that are not blocked by an obstacle.

We used the above sets of features and created two AS
models with XGBoost (Chen and Guestrin 2016), one fol-
lowing the classification approach for AS and the other fol-
lowing the regression approach. We call the resulting AS
models XGBoost Classification (XGBoost Cl.) and XGBoost

Regression (XGBoost Rg.), respectively.

3.2 Deep Learning MAPF Images

The second learning approach we explore maps a given
MAPF problem to an image and then uses a Convolutional
Neural Network (CNN) to classify it. Specifically, we fol-
low Sigurdon et al.’s (Sigurdson et al. 2019) recent work on
AS for non-optimal MAPF, and use an image to represent a
MAPF problem, as follows. Blocked and unblocked cells are
represented by white and black pixels, respectively. Source
and target vertices are represented by green and red pixels,
respectively. We resize the resulting image such that it fits
into the network input layer, which in our case was set to
224x224x3.2 An example of such an image is Figure 1.

There are many CNN architectures for image classifica-
tion. We used the VGG-16 architecture (Simonyan and Zis-
serman 2014), which is a modern CNN architecture that is
commonly used in the image recognition literature. In addi-
tion, to improve runtime and model accuracy, we made the
following adjustments to this architecture. First, we added
a global average pooling (GAP) layer (Lin, Chen, and Yan
2014) after the last convolution layer. After the GAP layer,
we added a fully connected layer with 64 neurons to grad-
ually reduce dimensionality towards the output layer, which
contained 6 neurons, one per algorithm in our portfolio.

Using the MAPF image and the CNN architecture de-
scribed above, we created two AS models: one following
the classification approach and the other following the re-
gression approach. We call the resulting AS models CNN
Classification (CNN Cl.) and CNN Regression (CNN Rg.).
We note that for CNN Rg., we trained a single CNN so that
it accepts a MAPF problem and every output neuron is asso-
ciated with one of the MAPF algorithms in our portfolio and
should output the runtime for the corresponding algorithm
on the given MAPF problem. To do so, we use the multi-
output regression learning (Borchani et al. 2015), which is
known to work well with neural networks.

3.3 Dataset

To train and evaluate the AS models we proposed, we used
the publicly available grid-based MAPF benchmark, de-
tailed in (Stern et al. 2019). This benchmark contains 28
grids including 10 grids from popular video games, 3 city
maps (Berlin, Boston, Paris), 4 maze-like grids, 3 grids that
arranged as rooms with narrow doors between them, 4 open
grids, and 4 open grids with randomly placed obstacles.

This benchmark also includes 25 scenario files for each
grid. A scenario file contains source and target locations for
up to 1,000 agents (where possible). We use this scenario
file as suggested by Stern et al. (2019), that is, we use each
algorithm to solve MAPF problems on the chosen grid with
one agent, two agents, and so on until the runtime required to
solve the problem reaches a timeout of 5 minutes. Problems
that no algorithm in our portfolio could solve under this time
limit were discarded. We recorded the runtime of every al-
gorithm in every run, and whether the algorithm has reached
a timeout or not. The resulting dataset consists over 39,000

2The last dimension indicates the color of the pixel
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instances. Since scenarios are solved incrementally (creat-
ing new data by adding more agents to the same problem)
we ensured that data from the same scenario is never used
for both training and testing. Specifically, we used data from
30% of the scenarios for testing and data from the remaining
scenarios for training.

Our dataset poses a challenge to the regression approach
for AS: how to consider the runtime of an algorithm that
failed to solve a problem? This type of data is called cen-
sored data, and methods to deal with it have been studied,
e.g., for survival analysis. Standard methods include remov-
ing the censored data, treating it as uncensored (i.e., setting
the timeout time as the runtime), as well as a sophisticated
iterative method (Schmee and Hahn 1979)). Treating such
data as uncensored yielded the highest coverage (see defini-
tion of coverage below) in our experiments.

4 Experimental Results

We used the following metrics to evaluate the proposed AS
models: accuracy, coverage, and total runtime. Accuracy is
the ratio of problems that the AS model correctly selected
the fastest algorithm in the portfolio for this problem. Cov-
erage is the ratio of problems solved within the 5 minute
timeout using the algorithm selected by the evaluated model.
Total runtime (Total RT) is the overall runtime, in minutes, it
took to solve all problems in our test set, choosing for every
problem the algorithm selected for it by the evaluated model.

4.1 Accuracy, Coverage, and Total RT Results

Table 2 shows the accuracy, coverage, and total RT for all
evaluated algorithms across all scenarios in our test set. For
reference, the upper portion of the table shows the results
of choosing the same algorithm for all problems. Thus, ac-
curacy in this context is the ratio of problems in which that
algorithm solved first. Oracle and Random are also given
for comparison purposes: Oracle always chooses the correct
MAPF algorithm and Random chooses one randomly. The
accuracy of Oracle is 1 and that of Random is one over the
number of algorithms in our portfolio.

Table 2 shows that most AS models yield better results
than every individual algorithm in our portfolio across all pa-
rameters. For example, the coverage and total RT of CBS-H
is 0.83 and 8,016, respectively, while both CNN Cl. and XG-
Boost Cl. had a coverage higher than 0.9 and a total RT lower
than 5,122. Comparing the different AS models, we see that
classification approach yields better results compared to the
regression approach. For example, the coverage of XGBoost
Rg. is 0.82 while it is 0.93 for XGBoost Cl. Comparing XG-
Boost and CNN Cl. models shows that while XGBoost is
significantly more accurate, it only has a modest advantage
in terms of coverage and total RT. We conjecture that the ad-
vantage of XGBoost over the CNN is due to the fact that the
image we used to represent a MAPF problem for the CNN
loses valuable information such as the distinction between
the source and target of different agents.

Figure 3 shows coverage (y-axis) of the best models from
each family of algorithms for different grid types. The re-
sults highlight the importance of AS in optimal MAPF,
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Figure 4: Feature importance calculated using SHAP values.

showing that different algorithms excel in different types of
grids. For example, consider the performance of EPEA∗ and
CBS-H. CBS-H performs very well in City, Maze, Game,
and Room grids, while EPEA∗ performs poorly there. How-
ever, in Empty and Random grids CBS-H performs poorly
and EPEA∗ excels. The performance of XGBoost Cl. and
CNN Cl. is very similar in all grid types, with coverage that
is either the highest or very close to it, thus demonstrating
the robustness of our AS models.

4.2 Feature Importance

Next, we explore the impact of our handcrafted features
on the performance of XGBoost Cl., which had the overall
highest coverage and accuracy. To this end, we used TreeEx-
plainer, which is a publicly-available tool for analyzing tree-
based models. TreeExplainer relies on computing SHap-
ley Additive exPlanation (SHAP) values (Lundberg and Lee
2017). The SHAP value of a pair of feature and sample (in
our case, MAPF problem) is the average of the marginal con-
tributions across all permutations of the given feature to the
label given to the sample by the model. The intuitive mean-
ing of a high absolute SHAP value is that the feature had a
significant impact on why the sample was given its label.

Figure 4 shows for every feature the mean of the absolute
SHAP values over all samples and labels. As can be seen,
the three most important features – NumOfAgents, Obsta-
cleDensity, and PointsAtSPRatio – include a feature from
each of the three feature families described in Section 3.1.
The key feature, as expected, is the number of agents. Of
less importance are features that describe the grid itself,
e.g., GridRows, NumOfObstacles, and GridColumns. Since
BranchingFactor directly correlates with NumOfAgents, its
importance is negligible.

5 Discussion and Conclusion

To the best of our knowledge, this is the first research on
Algorithm Selection for optimal MAPF. Two high-level ap-
proaches for Algorithm Selection – regression and classifi-
cation – as well as two types of learning algorithms – XG-
Boost with handcrafted features and CNN with image-based
features – were explored. We implemented and evaluated
these Algorithm Selection approaches on a portfolio of 6
state-of-the-art search-based optimal MAPF algorithms and
a comprehensive, publicly available MAPF benchmark that
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includes 28 grids, resulting in a dataset of 39,000 instances.
Our analysis shows that indeed Algorithm Selection can be
successfully applied to optimal MAPF, yielding an optimal
MAPF solver that outperforms all the optimal MAPF algo-
rithms in its portfolio. The most immediate direction of fu-
ture work is to include additional non-search-based solvers
such as MDD-SAT (Surynek et al. 2016) and BCP (Lam
et al. 2019) in our algorithm portfolio, as well as adding
the map-specific metrics suggested by Sturtevant (Sturtevant
2012). Future work can also combine feature extraction us-
ing deep learning with the manually extracted features. Fur-
thermore, in order to address more general MAPF problems
(i.e., not only classical MAPF), graph embedding techniques
may be superior to regular CNNs.

6 Acknowledgments

This research was supported by ISF grant #210/17 to Roni
Stern.

References

Barták, R., and Svancara, J. 2019. On sat-based approaches for
multi-agent path finding with the sum-of-costs objective. In the
International Symposium on Combinatorial Search (SOCS), 10–
17.
Barták, R.; Zhou, N.; Stern, R.; Boyarski, E.; and Surynek, P. 2017.
Modeling and solving the multi-agent pathfinding problem in picat.
In IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI), 959–966.
Borchani, H.; Varando, G.; Bielza, C.; and Larrañaga, P. 2015.
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