
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

A Novel Lookahead Strategy for
Delete Relaxation Heuristics in Greedy Best-First Search

Maximilian Fickert
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

fickert@cs.uni-saarland.de

Abstract

Best-first width search (BFWS) is a recent approach to sat-
isficing planning that combines traditional heuristics with
novelty measures to achieve a balance between exploration
and effective search guidance (exploitation). One such nov-
elty measure is based on counting the number of subgoals
achieved on the path from a state in which a relaxed plan was
computed. We introduce a new lookahead strategy for greedy
best-first search based on this idea, where after each expan-
sion, a bounded lookahead search is guided by relaxed sub-
goal counting. Furthermore, we combine this technique with
partial delete relaxation heuristics to improve the subgoals.
Using the hCFF heuristic with online-refinement of conjunc-
tions, we obtain a planner that significantly outperforms the
state of the art in satisficing planning on the IPC benchmarks.

Introduction
A successful approach to AI Planning is heuristic search. In
satisficing planning, recent advancements to more informed
heuristics and effective search techniques have significantly
improved the state of the art.

Delete relaxation heuristics (Bonet and Geffner 2001;
Hoffmann 2001) have been successfully used in state-of-the-
art planners since their inception. While these heuristics are
very efficient to compute, they may ignore important fea-
tures of the task (e.g. resource consumption). Partial delete
relaxation methods aim to mitigate these drawbacks by con-
sidering some delete information. Two such techniques are
red-black planning (Domshlak, Hoffmann, and Katz 2015;
Fickert, Gnad, and Hoffmann 2018), where some state vari-
ables are un-relaxed, and partial delete relaxation with ex-
plicit conjunctions (Haslum 2012; Keyder, Hoffmann, and
Haslum 2012; Fickert, Hoffmann, and Steinmetz 2016),
where some combinations of facts are treated atomically.

Recently, one of the most influential concepts for
search enhancement in satisficing planning has been novelty
(Lipovetzky and Geffner 2012). The simplest form prunes
states that do not contain a fact (or a tuple of facts) that has
not been contained in previously explored states. The nov-
elty measure can also be tied to a heuristic (Lipovetzky and
Geffner 2017; Katz et al. 2017), preferring states that con-
tain novel facts among states with the same heuristic value.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Best-first width search (BFWS) (Lipovetzky and Geffner
2017) is a best-first search that combines traditional heuris-
tics with novelty measures as lexicographic preferences.
One of the measures employed in its best performing vari-
ants, BFWS(f5) and Dual-BFWS, is based on the delete re-
laxation: counting the number of relaxed subgoals achieved
along the path from the last state in which a relaxed plan was
computed (Lipovetzky and Geffner 2014).

We introduce a search algorithm called GBFS-RSL, that
is tailored around this technique. GBFS-RSL is an ex-
tension to greedy best-first search (GBFS) that performs a
bounded lookahead after each expansion, using relaxed sub-
goal counting as heuristic guidance. Local exploration meth-
ods like random walks or local search have been used before
to escape local minima and plateaus in GBFS (e.g. Nakhost
and Müller 2009; Xie, Müller, and Holte 2014; Lipovetzky
and Geffner 2017). In contrast, the main purpose of the
lookahead of GBFS-RSL is to accelerate progress towards
the goal. It is closely related to YAHSP’s lookahead (Vidal
2004), which inserts additional states into the open list by
applying actions of the relaxed plan. GBFS-RSL also ex-
ploits the structure of the relaxed plan to quickly try to find
a state closer to the goal, but follows the relaxed plan more
loosely by considering its subgoals instead of its actions.

Furthermore, we explore using heuristics based on red-
black planning (Domshlak, Hoffmann, and Katz 2015), gray
planning (an extension of red-black to limited-memory state
variables, Speicher et al. 2017), and explicit conjunctions
(Fickert, Hoffmann, and Steinmetz 2016) to provide the
relaxed subgoals. Their partially relaxed plans are more
accurate, and should therefore yield better subgoals. An
additional motivation is that these heuristics are typically
more expensive to compute than a standard delete relax-
ation heuristic, making the cheap approximation through
relaxed subgoal counting particularly desirable. On the
IPC benchmarks, a natural extension of GBFS-RSL with
online-refinement of explicit conjunctions considerably out-
performs state-of-the-art planners, beating e.g. Dual-BFWS
(Lipovetzky and Geffner 2017) by +42 and MERWIN (Katz
et al. 2018) by +31 instances in total coverage.

Background
We first introduce the basic planning definitions, and briefly
summarize the relevant heuristics and search techniques.

119



Planning Framework
An FDR (Bäckström and Nebel 1995; Helmert 2009) plan-
ning task is defined as a 4-tuple Π = 〈V,A, I,G〉, where
v ∈ V are the state variables, each with a finite domain Dv ,
A is a set of actions, each with preconditions and effects
(partial variable assignments), I is the initial state (complete
assignment), and G is the goal (partial assignment). We refer
to variable/value pairs as facts, written (variable = value).
For a partial assignment p, V(p) denotes the set of variables
on which p is defined. For a variable subset V ′ ⊆ V(p), the
assignment made by p on V ′ is denoted by p[V ′].

A state is a complete variable assignment. An action
a ∈ A is applicable in a state s if it satisfies all of a’s pre-
conditions, i.e. s[V(prea)] = prea. Applying a in s yields
the same state as s, except that s�a�(v) = effa(v) for each
v ∈ V(effa). A plan π for a state s is a sequence of ac-
tions leading from s to a state compliant with the goal, and
is called optimal if π is the shortest among all plans for s. A
plan for I is a plan for the task Π.

Delete Relaxation
The delete relaxation is a simplification of the planning task,
where variables accumulate their values instead of switching
between them. The heuristic estimates of the delete relax-
ation heuristic hFF (Hoffmann and Nebel 2001) are given by
the length of a (not necessarily optimal) relaxed plan, and
can be computed in polynomial time.

Partial Delete Relaxation
While delete relaxation heuristics have had great success in
satisficing planning, there are domains where important as-
pects are ignored. Consider the following example:

The car needs to move from A to C. Each drive action
consumes fuel. The car initially holds one unit of fuel, so
it must refuel at location B. The task has two variables: the
location of the car (loc), and the fuel status (fuel). A delete
relaxed plan does not need to include the refueling action,
since the fact that the car has fuel is never deleted.

Partial delete relaxation methods can fix this issue. With
the red-black heuristic hRB (Domshlak, Hoffmann, and Katz
2015), some variables are treated with the standard, non-
relaxed, semantics. In the example above, if the fuel vari-
able is un-relaxed, the partially relaxed plan must refuel in
B, making it a real plan for this task.

A more fine-grained approach to partial delete relaxation
is based on explicit conjunctions, where specific combina-
tions of facts must be achieved simultaneously if required
in preconditions of actions. In the example above, the
key conjunction is being at location B while having fuel,
{loc = B, fuel = true}, which must be achieved as a pre-
condition for the drive action from B to C. Both individual
facts are reached after driving from A to B (under delete-
relaxed semantics), but not their combination because the

drive action deletes the fuel = true fact. The conjunction
can only be achieved by the refuel action, and the resulting
partially relaxed plan will be a real plan.

The hCFF heuristic (Fickert, Hoffmann, and Steinmetz
2016) is based on this concept. The conjunctions for hCFF

are generated by a variant of counter-example guided ab-
straction refinement, adding conjunctions that prevent con-
flicts in previous relaxed plans (Haslum 2012; Keyder, Hoff-
mann, and Haslum 2014). The heuristic is most effective if
the set of conjunctions is refined online (Fickert and Hoff-
mann 2017a; 2017b; Fickert 2018), as it allows the heuristic
to adapt to the search space as it is being explored.

Novelty Pruning
A recent search enhancement technique is based on measur-
ing the “novelty” of states: given a state s and a set of states
seen so far S, the novelty of s is the size of the smallest tuple
t of facts that are true in s but not in any other state s′ ∈ S.

Novelty-based techniques aim to improve the balance of
exploration and exploitation. The simplest such algorithm is
IW(k), which performs a breadth-first search with k-novelty
pruning, denoted Nk, pruning all states with novelty greater
than k (Lipovetzky and Geffner 2012). An extension to this
is C-novelty pruning (NC), where, for a given set of con-
junctions C, all states that do not make a conjunction c ∈ C
true for the first time are pruned (Fickert 2018).

More complex novelty measures have been devised that
tie the novelty score to a heuristic value, and consider the
novelty of a state only among other states with the same
(Lipovetzky and Geffner 2017) or lower (Katz et al. 2017)
heuristic value. In best-first width search (BFWS), the func-
tion ordering the open list is a tie-breaking sequence of mul-
tiple evaluation functions, where the primary function is a
novelty measure (Lipovetzky and Geffner 2017).

Relaxed Subgoal Counting
The empirically best-performing evaluation function for
BFWS is called f5, which is given by the tie-breaking se-
quence 〈w#g,#r,#g〉. The first evaluation function is a nov-
elty measure based on #g and #r, where, for a state s,

• #g(s) is the number of unsatisfied goal facts in s, and

• #r(s) is the number of achieved subgoals of the last re-
laxed plan π+ on the path to s from the state where π+

was computed (Lipovetzky and Geffner 2014).

In BFWS(f5), relaxed plans are computed only in states
where the #g counter changes compared to its parent (and in
the initial state), making f5 very cheap to compute overall.

We denote the relaxed subgoal counting heuristic by
hrsc, which corresponds to #r, but counting the number of
unachieved subgoals. Furthermore, we make one additional
change: #r considers all facts made true by the effects of
all actions in the relaxed plan as subgoals, whereas we only
consider the necessary subgoals, i.e. those that are required
as preconditions for other actions in the relaxed plan and
goals, ignoring facts that are only side effects. We made
this change to more accurately capture the intention of the

120



relaxed plan, and empirically found that it improves perfor-
mance for our search algorithm introduced in the following
as well as for BFWS(f5) (albeit to a lesser degree).

Relaxed Subgoal Counting for Lookahead in GBFS
The key challenges for using relaxed subgoal counting are
(a) to have a good strategy to select states for the computa-
tion of relaxed plans, and (b) to avoid comparison of subgoal
counts with different underlying relaxed plans.

In BFWS (Lipovetzky and Geffner 2017), (a) is answered
by computing a relaxed plan only in states where the number
of achieved top-level goals increases over its parent. Point
(b) is less important in BFWS, where the relaxed subgoal
counter is only used as a novelty measure, not as a heuris-
tic value directly. However, the novelty measure does not
distinguish between states with different underlying relaxed
plans, and these comparisons can potentially be misleading.

We introduce a new search algorithm called GBFS-RSL
(for Relaxed Subgoals Lookahead) that is designed around
these properties of the subgoal counting heuristic (Algo-
rithm 1). The algorithm is an extension of GBFS, with a
bounded lookahead search after each expansion of a state s.
The lookahead search is guided with a relaxed subgoal
counting heuristic hrsc, which makes the lookahead very fast
as heuristic evaluations are cheap. The challenges (a) and
(b) are effectively solved by initializing the subgoal count-
ing heuristic with a relaxed plan computed in the root state
of the lookahead (line 10), which is already availably assum-
ing that the search uses a (partial) delete relaxation heuristic.
When the lookahead finishes, it returns the state s′ with the
lowest hrsc-value seen in the local search space (breaking
ties arbitrarily, line 11). The heuristic value of that state is
then compared to that of s, and if s′ has a lower heuristic
value, it is inserted at the front of the open list (line 13).

We bound the lookahead using incomplete novelty prun-
ing (only considering the states seen within the current
lookahead search space for the novelty pruning). Using N1,
the lookahead search will expand at most as many states as
there are different facts in the task. GBFS-RSL could in
principle be instantiated with an arbitrary method to bound
the lookahead, e.g. a simple bound on the search depth or
number of expansions. However, novelty pruning improves
the exploration of the lookahead by taking the structure of
the local search space into account, and novelty-bounded
lookaheads have had great results in a related hill-climbing
search algorithm (Fickert 2018). The search algorithm for
the lookahead can also be chosen freely; in our evaluation
we consider best-first search with the ordering functions g,
g + h, and h, i.e. BrFS, A∗, and GBFS.

Online Refinement for hCFF

The hCFF heuristic is most effective when its set of conjunc-
tions C is refined online, and a suitable condition for when to
trigger the refinement is to identify a state where the heuris-
tic is inaccurate, e.g. local minima (Fickert and Hoffmann
2017a). In GBFS-RSL, such a situation occurs when the
lookahead does not return a state with lower heuristic value.
Thus, we can naturally extend GBFS-RSL by invoking its
refinement procedure in that case (line 15). The refinement

Algorithm 1: GBFS-RSL
1 Open := [I], Closed := ∅
2 while Open �= [] do
3 s := Open.pop()
4 if s ∈ Closed then continue
5 if s ⊇ G then return path to s
6 Closed := Closed ∪ {s}
7 if h(s) �= ∞ then
8 Insert the successors of s into Open
9 Let π+ be the relaxed plan extracted by h in s

10 Initialize hrsc with π+

11 s′ := lookahead(s, hrsc)
12 if h(s′) < h(s) then
13 Insert s′ at the front of Open

14 else // only with hCFF

15 Refine h in s

16 return UNSOLVABLE

adds a single conjunction to C based on the conflicts iden-
tified in the current relaxed plan, preventing at least one of
them from occuring again in future partially relaxed plans.

Experiments
We implemented GBFS-RSL in Fast Downward (Helmert
2006). The experiments were run using the lab framework
(Seipp et al. 2017) on machines with Intel Xenon E5-2660
processors with a clock rate of 2.2 GHz, with time and mem-
ory limits of 30 minutes and 4 GB respectively. The bench-
mark set consists of all STRIPS domains from the satisficing
tracks of all International Planning Competitions up to 2018,
for a total of 1825 instances of 49 domains.

GBFS-RSL with Different Heuristics
First we compare the usage of different (partial) delete re-
laxation heuristics in GBFS-RSL: hFF (Hoffmann and Nebel
2001), the red-black heuristic hRB (Domshlak, Hoffmann,
and Katz 2015), its extension to limited-memory state vari-
ables hGray (Speicher et al. 2017), and hCFF (Fickert, Hoff-
mann, and Steinmetz 2016) with both offline and online re-
finement. Table 1 shows an overview for these heuristics
with different lookahead search algorithms, and a compari-
son to standard GBFS and YAHSP’s lookahead (Vidal 2004;
2011). All configurations use a dual queue with preferred
operators and lazy evaluation. The results of hCFF config-
urations are averaged over 5 random seeds as the heuristic
uses random tie breaking (the table shows rounded values);
standard deviation ranges from 2.6 to 9.4 (5.8 on average).

GBFS works best as the lookahead search algorithm for
all considered heuristics except hCFF, where A∗ is better.

Compared to standard GBFS, GBFS-RSL generally
works well if the lookahead does not add much overhead,
i.e. the computation of the base heuristic still accounts for
most of the overall time (this is the case in e.g. Agricola,
Snake, and Spider for hFF), or the lookaheads consistently

121



h
GBFS-RSL GBFS YAHSPNov. BrFS A∗ GBFS

hFF

N1

1359 1505 1518 1494 1529
hRB 1432 1490 1513 1508 1541
hGray 1486 1538 1543 1555 1579
hCFF

off 1454 1570 1555 1498 1603
hCFF

on 1531 1639 1613 – 1573

hCFF
off NC

1476 1577 1546 – –
hCFF

on 1584 1665 1627 – –

Table 1: Coverage of GBFS-RSL with different configura-
tions. The hCFF heuristic is included with offline (hCFF

off )
and online (hCFF

on ) refinement variants, and additional GBFS-
RSL configurations where the conjunctions are also used for
novelty pruning (NC). The columns on the right show a
comparison to standard GBFS and YAHSP’s lookahead.

find states with lower heuristic value (e.g. Elevators and Vis-
itAll). In VisitAll, the advantage for GBFS-RSL is most ob-
vious: all 40 instances (compared to 3 with standard GBFS)
are solved with at most 8 (non-lookahead) expansions. This
is due to the additive nature of the goals: the lookahead
greedily moves to as many unvisited locations as possible,
and the resulting state is almost guaranteed to be closer to a
goal state than the state where the lookahead was initiated.

Against intuition, the results with hRB are worse than
those with hFF, and GBFS-RSL with either hRB and hGray

does not beat standard GBFS. While the partially relaxed
plans obtained by hRB and hGray are closer to real plans,
their subgoals do not provide significantly better guidance
than those of hFF. We believe this is due to the structure
of these partially relaxed plans, which contain sequences
of actions that repair conflicts on black (non-relaxed) pre-
conditions. In our context however, these repair sequences
may create misleading subgoals, as the lookahead will likely
not follow these sequences exactly. Furthermore, red-black
planning was designed to address cases where the agent is
required to move back and forth, which may not be possible
in our lookahead due to novelty pruning.

In contrast, GBFS-RSL with hCFF has dramatically
higher coverage than its baseline. The extension with on-
line refinement adds another big leap in coverage, which
confirms our expectation that unsuccessful lookaheads are a
suitable condition to trigger the refinement process for hCFF.
Consistent with previous work (Fickert 2018), using the con-
junctions of hCFF for novelty yields yet another boost in per-
formance, reaching a coverage of 1664.6 (±8.96).

For comparison, we adapted the lookahead technique of
YAHSP (Vidal 2004; 2011) to lazy GBFS, inserting a single
lookahead state at the beginning of the open list after each
expansion similar to GBFS-RSL. This outperforms GBFS-
RSL with all considered heuristics, but, surprisingly, cover-
age drops when adding online refinement. In some domains
(e.g. Barman, Childsnack), the YAHSP lookahead often fails
to find a better state, and the frequent refinement incurs too
much computational overhead in hCFF.

G
B

FS
-R

SL

B
FW

S(
f 5

)

D
ua

l-
B

FW
S

L
A

M
A

M
er

cu
ry

M
E

R
W

IN

C
ov

er
ag

e

GBFS-RSL – 20 16 20 15 13 1665
BFWS(f5) 8 – 5 15 11 9 1530
Dual-BFWS 9 22 – 18 12 10 1623
LAMA 6 19 10 – 5 4 1574
Mercury 9 19 13 14 – 2 1605
MERWIN 10 20 14 17 12 – 1634

Table 2: Pairwise comparison of GBFS-RSL and state-of-
the-art satisficing planners. The number in row r and col-
umn c shows the number of domains where the planner in
row r has higher coverage than the one in column c (consid-
ering domain-wise rounded coverage for GBFS-RSL).

State-of-the-Art Comparison
We next compare our best performing configuration (GBFS-
RSL with hCFF and online refinement) to various state-
of-the-art planners: the BFWS-based planners BFWS(f5)
and Dual-BFWS (Lipovetzky and Geffner 2017), LAMA
(Richter and Westphal 2010), Mercury (Domshlak, Hoff-
mann, and Katz 2015; Katz and Hoffmann 2014), and its
successor MERWIN (Katz et al. 2017; 2018).

Table 2 shows a pairwise comparison. GBFS-RSL has
higher coverage in more domains than the other way around
for each considered planner. The closest competitors are
MERWIN (GBFS-RSL is better in 13 and worse in 10 do-
mains) and Dual-BFWS (better in 16, worse in 9). GBFS-
RSL has strictly higher coverage than the other planners in
Childsnack, Data Networks, Floortile, Pipesworld-Tankage,
and Spider. Furthermore, in 10 other domains, GBFS-RSL
has similar coverage but strictly lower search time than any
other planner, e.g. Hiking (on average 89% faster than the
next best planner), Thoughtful (75% faster), and Depots
(58% faster). On the other hand, it performs poorly in Park-
ing, Sokoban, and Termes. In Parking, each lookahead gen-
erates a large number of states and GBFS-RSL quickly hits
the memory limit on larger instances1; in Sokoban and Ter-
mes, the lookahead often returns a state that was already
closed (or, in Sokoban, identified as a dead end). Overall,
GBFS-RSL has the highest coverage out of the considered
planners by a significant margin of +31.

Conclusion
We have introduced a new lookahead strategy in greedy best-
first search with (partial) delete relaxation heuristics. When
using the hCFF heuristic with online-refinement of conjunc-
tions, we observe significant gains over current state-of-the-
art satisficing planners. For future work, different weights
(or entirely different search algorithms) could be tried in the
lookaheads. Furthermore, different variants of hrsc could be
explored, and we had some initial success when considering

1We remark that this issue can be effectively solved by adding
the h2 preprocessor (Alcázar and Torralba 2015).

122



hadd values of the achieved subgoals instead of just counting
them. In principle, GBFS-RSL is not restricted to delete re-
laxation heuristics, but could be used with other heuristics
that have a different means of providing subgoals as well.

Acknowledgments
This work was funded by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science).

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning. In
Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), 2–6. AAAI Press.

Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.

Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.

Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black plan-
ning: A new systematic approach to partial delete relaxation. Arti-
ficial Intelligence 221:73–114.

Fickert, M., and Hoffmann, J. 2017a. Complete local search:
Boosting hill-climbing through online heuristic-function refine-
ment. In Proceedings of the 27th International Conference on Au-
tomated Planning and Scheduling (ICAPS’17), 107–115. AAAI
Press.

Fickert, M., and Hoffmann, J. 2017b. Ranking conjunctions for
partial delete relaxation heuristics in planning. In Proceedings of
the 10th Annual Symposium on Combinatorial Search (SOCS’17),
38–46. AAAI Press.

Fickert, M.; Gnad, D.; and Hoffmann, J. 2018. Unchaining the
power of partial delete relaxation, part II: finding plans with red-
black state space search. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI’18), 4750–4756.

Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Combining the
delete relaxation with critical-path heuristics: A direct characteri-
zation. Journal of Artificial Intelligence Research 56(1):269–327.

Fickert, M. 2018. Making hill-climbing great again through on-
line relaxation refinement and novelty pruning. In Proceedings of
the 11th Annual Symposium on Combinatorial Search (SOCS’18),
158–162. AAAI Press.

Haslum, P. 2012. Incremental lower bounds for additive cost plan-
ning problems. In Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12), 74–82.
AAAI Press.

Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.

Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.

Hoffmann, J. 2001. FF: The fast-forward planning system. The AI
Magazine 22(3):57–62.

Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing the
limits of partial delete relaxation. In IPC 2014 planner abstracts,
43–47.

Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A. 2017.
Adapting novelty to classical planning as heuristic search. In Pro-
ceedings of the 27th International Conference on Automated Plan-
ning and Scheduling (ICAPS’17), 172–180. AAAI Press.
Katz, M.; Lipovetzky, N.; Moshkovich, D.; and Tuisov, A. 2018.
MERWIN planner: Mercury enchanced with novelty heuristic. In
IPC 2018 planner abstracts, 53–56.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2012. Semi-relaxed plan
heuristics. In Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12), 128–136. AAAI
Press.
Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving delete
relaxation heuristics through explicitly represented conjunctions.
Journal of Artificial Intelligence Research 50:487–533.
Lipovetzky, N., and Geffner, H. 2012. Width and serialization of
classical planning problems. In Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI’12), 540–545. Mont-
pellier, France: IOS Press.
Lipovetzky, N., and Geffner, H. 2014. Width-based algorithms
for classical planning: New results. In Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI’14), 1059–
1060. Prague, Czech Republic: IOS Press.
Lipovetzky, N., and Geffner, H. 2017. Best-first width search:
Exploration and exploitation in classical planning. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence (AAAI’17),
3590–3596. AAAI Press.
Nakhost, H., and Müller, M. 2009. Monte-carlo exploration for
deterministic planning. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI’09), 1766–1771.
Pasadena, California, USA: Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127–177.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M. 2017.
Downward Lab. https://doi.org/10.5281/zenodo.790461.
Speicher, P.; Steinmetz, M.; Gnad, D.; Hoffmann, J.; and Gerevini,
A. 2017. Beyond red-black planning: Limited-memory state vari-
ables. In Proceedings of the 27th International Conference on Au-
tomated Planning and Scheduling (ICAPS’17), 269–273. AAAI
Press.
Vidal, V. 2004. A lookahead strategy for heuristic search planning.
In Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS’04), 150–160. Whistler, Canada:
Morgan Kaufmann.
Vidal, V. 2011. YAHSP2: Keep it simple, stupid. In IPC 2011
planner abstracts, 83–90.
Xie, F.; Müller, M.; and Holte, R. 2014. Adding local exploration
to greedy best-first search in satisficing planning. In Proceedings
of the 28th AAAI Conference on Artificial Intelligence (AAAI’14),
2388–2394. Austin, Texas, USA: AAAI Press.

123


