

EFP 2.0: A Multi-Agent Epistemic Solver with Multiple E-State Representations

Francesco Fabiano
DMIF Department
University of Udine
I-33100 Udine, Italy
francesco.fabiano@uniud.it

Alessandro Burigana
DMIF Department
University of Udine
I-33100 Udine, Italy
burigana.alessandro@spes.uniud.it

Agostino Dovier
DMIF Department
University of Udine
I-33100 Udine, Italy
agostino.dovier@uniud.it

Enrico Pontelli
Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
epontell@cs.nmsu.edu

Abstract

Multi-agent systems have been employed to model, simulate and explore a variety of real-world scenarios. It is becoming more and more important to investigate formalisms and tools that would allow us to exploit automated reasoning in these domains. An area that has received increasing attention is the use of multi-agent systems which allow an agent to reason about the knowledge and beliefs of other agents. This type of reasoning, i.e., about agents’ perception of the world and also about agents’ knowledge of her and others’ knowledge, is referred to as epistemic reasoning.

This paper presents an updated formalization and implementation of a multi-agent epistemic planner, called EFP. In particular, the paper explores the advantages of using alternative state representations that deviate from the commonly used Kripke structures. The paper explores such alternatives in the context of an action language for multi-agent epistemic planning. The paper presents also an actual implementation of a planner that uses the novel ideas, demonstrating concrete performance improvements on benchmarks collected from the literature.

Motivation

Artificial Intelligence, or AI, has recently gained attention in several communities. It is, in fact, becoming essential for the majority of the real-world scenarios, e.g., Industry 4.0, to exploit techniques derived from the fields of automated reasoning and knowledge representations. In particular, the field of automated planning is one of the most important branches of AI. That is why we decided to focus our research on the planning problem.

Reasoning about actions and information has been one of the prominent interests since the beginning of the AI (McCarthy 1959). The “simple” task of reasoning in the classical planning environments rapidly evolved into more complex problems (Torreño, Onaindia, and Sapena 2014). This evolution, dictated both by research interests and real-world needs, developed interesting families of problems that vary in multiple aspects such as: i) the number of agents; ii) the determinism of the actions; iii) the agent’s communication policies; etc.

In particular, this paper studies one of these settings that, even if formalized by studies of philosophy/logic in the early sixties, is a somewhat recent introduction in the planning scenario (Van Ditmarsch, van Der Hoek, and Kooi 2007). That is, the Multi-agent Epistemic Planning problem (MEP) or, as usually it is called in literature, epistemic planning. Epistemic planners, differently from most of the other solvers, are not only interested in the state of the world but also in the knowledge or beliefs of the agents. This could also be viewed, as said in Gerbrandy (1999), as the process of reasoning on the information itself. It is easy to see that an efficient autonomous reasoner that could exploit both the knowledge on the world and about other agents’ information could provide an important tool in several scenarios, e.g., economy, security, justice or politics.

Nevertheless, reasoning about knowledge and beliefs is not as direct as reasoning on the “physical” state of the world. That is because expressing, for example, belief relations between agents often implies to consider nested and group beliefs that are not easily extracted from the state description by a human reader. This inherent complexity is reflected in computational overhead that brings, most of the time, infeasibility to the solving process. That is why it is necessary to advance in the study of the epistemic planning problem (Fabiano 2019; Le et al. 2018; Huang et al. 2017; Wan et al. 2015; Muise et al. 2015).

Therefore, in this work, we present an updated version of the Epistemic Forward Planner (EFP) presented in Le et al. (2018). As main contribution we integrated the planner with a new e-state (epistemic state) representation, based on the concept of possibilities (Gerbrandy and Groeneveld 1997), along with a new transition function derived by Fabiano et al. (2019). Finally, in the experimental evaluations, we will show how this new implementation outperforms the state-of-the-art planner, especially when combined with the removal of already visited e-states.

Epistemic Planning

Dynamic Epistemic Logic Epistemic reasoning was initially formalized by logicians in the early sixties. This formalization rapidly evolved from allowing to reason on the knowledge/beliefs of agents in a static environment into Dy-
namic Epistemic Logic (DEL), a formalism used to reason not only on the state of the world but also on information change in dynamic domains. As discussed in Van Ditmarsch, van Der Hoek, and Kooi (2007): “information is something that is relative to a subject who has a certain perspective on the world, called an agent, and that is meaningful as a whole, not just loose bits and pieces. This makes us call it knowledge and, to a lesser extent, belief.” Due to space limits we will provide only the fundamental definitions and intuitions of DEL; the interested reader is referred to Fagin and Halpern (1994) for further details.

Let $\mathcal{A}G$ be a set of agents s.t. $|\mathcal{A}G| = n$ with $n \geq 1$ and let \mathcal{F} be a set of propositional variables, called fluents. Each world is described by a subset of elements of \mathcal{F} (intuitively, those that are “true”). Moreover, in epistemic logic each agent $ag \in \mathcal{A}G$ is associated to an epistemic modal operator B_{ag} that represents the knowledge/belief of ag herself. Finally, epistemic group operators E_{α} and C_{α} are also introduced in epistemic logic. Intuitively, E_{α} and C_{α} represent the knowledge/belief of a group of agents α and the common knowledge/belief of α, respectively. To be more precise, as in Baral et al. (2015), we have that:

Definition 1 (Fluent formula) A fluent formula is a propositional formula built using fluents in \mathcal{F} as propositional variables and the propositional operators $\land, \lor, \rightarrow, \neg$. A fluent atom is a formula composed of just an element $f \in \mathcal{F}$; a fluent literal is either a fluent atom $f \in \mathcal{F}$ or its negation $\neg f$.

With a slight abuse of notation, we will refer to fluent literals simply as fluents.

Definition 2 (Belief formula) A belief formula is defined as follows:

- A fluent formula is a belief formula;
- If φ is a belief formula and $ag \in \mathcal{A}G$, then $B_{ag}\varphi$ is a belief formula;
- If φ_1, φ_2 and φ_3 are belief formulae, then $\neg\varphi_3$ and $\varphi_1 \lor \varphi_2$ are belief formulae, where $\lor \in \{\land, \lor, \rightarrow\}$;
- If φ is a belief formula and $\emptyset \neq \alpha \subseteq \mathcal{A}G$ then $E_{\alpha}\varphi$ and $C_{\alpha}\varphi$ are belief formulae.

From now on we will denote with $E^{C}_{\mathcal{A}G}$ the language of the belief formulae over the sets \mathcal{F} and $\mathcal{A}G$.

Example 1 Let us consider the formula $B_{ag_1}B_{ag_2}\varphi$. This formula expresses that the agent ag_1 believes that the agent ag_2 believes that φ is true. The formula $B_{ag_1}\neg\varphi$ expresses that the agent ag_1 believes that φ is false.

The classical way of providing a semantics for the language of epistemic logic is in terms of pointed Kripke structures (Kripke 1963).

Definition 3 (Kripke structure) Let $|\mathcal{A}G| = n$ with $n \geq 1$. A Kripke structure is a tuple $(\mathcal{S}, \pi, B_1, \ldots, B_n)$, such that:
- \mathcal{S} is a set of worlds;
- $\pi : \mathcal{S} \rightarrow 2^\mathcal{F}$ is a function that associates an interpretation of \mathcal{F} to each element of \mathcal{S};
- π is a binary relation over \mathcal{S}.

Definition 4 (Pointed Kripke structure) A pointed Kripke structure is a pair (\mathcal{M}, s) where \mathcal{M} is a Kripke structure as defined above, and $s \in \mathcal{S}$, where s points at the real world.

Following the notation of Baral et al. (2015), we will indicate with $M[S], M[\pi]$, and $M[\pi]$ the components S, π, and B_i of M, respectively. Intuitively, $M[S]$ captures all the worlds that the agents believe to be possible and $M[\pi]$ encodes the beliefs of each agent. More formally the semantics on pointed Kripke structures is as follows:

Definition 5 (Entailment w.r.t. a Kripke structure) Given a fluent f, a belief formula φ, a set of agents $\mathcal{A}G$ s.t. $|\mathcal{A}G| = n$, an agent $ag_i \in \mathcal{A}G$ with $1 \leq i \leq n$, a group of agents $\alpha \subseteq \mathcal{A}G$, a pointed Kripke structure (\mathcal{M}, s) with $M = (\mathcal{S}, \pi, B_1, \ldots, B_n)$:

1. $(M, s) \models f$ if $M[\pi][s] \models f$;
2. $(M, s) \models B_{ag_i}\varphi$ if for each t such that $(s, t) \in \mathcal{M}[\pi]$ it holds that $(M, t) \models \varphi$;
3. $(M, s) \models E_{\alpha}\varphi$ if for all $ag_i \in \alpha$:
4. $(M, s) \models E_{\alpha}\varphi$ if $(M, s) \models E_{\alpha}\varphi$ for every $k \geq 0$, where $E_{\alpha}^{k}\varphi = \varphi$ and $E_{\alpha}^{k+1}\varphi = E_{\alpha}(E_{\alpha}^{k}\varphi)$;
5. the semantics of the traditional propositional operators is defined as usual.

Epistemic Planning Domains Let us introduce the notion of multi-agent epistemic planning domain. Intuitively, an epistemic planning domain contains all the necessary information to define a planning problem in a multi-agent epistemic scenario.

Definition 6 (Multi-agent epistemic planning domain) We define a multi-agent epistemic domain as the tuple $D = (\mathcal{F}, \mathcal{A}G, A, \varphi_1, \varphi_g)$ where:
- \mathcal{F} is the set of all the fluents of D;
- $\mathcal{A}G$ is the set of the agents of D;
- A represents the set of all the actions of D;
- φ_1 is the belief formula that describes the initial conditions of the planning process; and
- φ_g is the belief formula that represents the goal condition.

Moreover, from now on, with the term action instance we will indicate an element of the set $A\mathcal{I} = A \times \mathcal{A}G$. Intuitively, an action instance $a(ag)$ identifies the execution of the action a by the agent ag.

Given a domain D we will refer to its components through the parenthesis operator. For instance to access the elements \mathcal{F} and $\mathcal{A}G$ of D we will use the more compact notation $D(\mathcal{F})$ and $D(\mathcal{A}G)$, respectively.

Furthermore, we will indicate a state of an epistemic planning domain as e-state. Therefore, an e-state, that in our case can be represented by both a Kripke structure or by a Possibility\(^1\), captures a configuration of the world and of the agents’ knowledge/belief.

\(^1\)Concept introduced in the next Section.
Epistemic Action Languages

The action language $m.A^+$ Even though automated planning and DEL are both vastly explored fields of study, their combination, i.e., epistemic planning, has gained attention only recently in the AI community. In the last few years epistemic planning has been tackled using different techniques, such as:

1. reducing the epistemic planning to a classical planning problem (Muise et al. 2015; Kominis and Geffner 2015);
2. adapting algorithms from other planning domains, e.g., contingent planning (Huang et al. 2017); or
3. addressing the problem with already existing solvers supported by domain-specific external epistemic procedures to derive the agent’s knowledge status (Hu, Miller, and Lipovetzky 2019).

Nevertheless, all the previously mentioned approaches are not suitable to reason on the agents’ beliefs on the full extent of L_{Ag}^C. For instance: i) the reduction to classical planning implies bounded nested-knowledge; ii) the system presented in Huang et al. (2017) cannot deal with dynamic common knowledge; and finally iii) the use of domain-specific procedures implies a loss of generality that is a limit in a solver design. Moreover the approach in Hu, Miller, and Lipovetzky (2019) cannot reason about agents’ beliefs (i.e., on KD45 logic) but only on the agents’ knowledge (i.e., S5 logic). Hence it is important to find strategies to address the planning problem on the full extent of L_{Ag}^C where the underlying e-states are able to capture the concept of belief.

To the best of our knowledge, the first formalization of a comprehensive action language for multi-agent epistemic planning is $m.A^*$ (Baral et al. 2015). $m.A^*$ is high-level action language that allows to reason about agents’ beliefs on L_{Ag}^C where states are represented as Kripke structures. In particular, $m.A^*$ has an English-like syntax and exploits the concepts of events to define the transition function. The entailment, on the other hand, is defined following Definition 5.

In Baral et al. (2015), the authors distinguish between three types of actions:

1. world-altering actions (also called ontic): used to modify certain properties (i.e., fluents) of the world;
2. sensing actions: used by an agent to refine her beliefs about the world; and
3. announcement actions: used by an agent to affect the beliefs of other agents.

Given a domain D and an action instance $a \in D(A\Omega)$, a fluent literal $f \in D(F)$, a fluent formula φ, ψ we can introduce the syntax of $m.A^*$.

- a executable a if φ captures the executability conditions;
- a causes a if ψ captures the ontic actions;
- a determines a if ψ captures the sensing actions;
- a announces ϕ if ψ captures the announcement actions.

In multi-agent domains another important concept is the action observability. That is, the execution of an action might change or not the beliefs of an agent depending on whether or not she is aware of the action’s occurrence. $m.A^*$ identifies three levels of action observability given an action a, an agent ag:

- fully observant (denoted by $ag \in F_a$) if ag knows about the execution of a and about its effects on the world;
- partially observant (denoted by $ag \in P_a$) if ag knows about the execution of a but she does not know how a affected the world;
- oblivious (denoted by $ag \in O_a$) if ag does not know about the execution of a.

Let us observe that partial observability for world-altering actions is not admitted as, whenever an agent is aware of the execution of an ontic action, she must know its effects on the world as well. A final remark has to be done about the actions’ determinism. In both Le et al. (2018) and our approach the actions’ effects are assumed to be deterministic. This assumption can be relaxed allowing non-deterministic effects. From the planning prospective this can be done, for instance, following the approach presented in Kuter et al. (2008). For the sake of readability we will not explore $m.A^*$ in more detail and we refer the interested reader to Le et al.; Baral et al. (2018; 2015) for a complete description.

The action language $m.A^o$ The main contribution of this paper is an improved transition function and an implementation for $m.A^o$ (Fabiano et al. 2019). $m.A^o$ is an epistemic action language based on $m.A^*$ that, instead of using Kripke structures as e-states, uses possibilities (Gerbrandy and Groeneveld 1997). Before introducing our contributions it is therefore necessary to quickly introduce the notion of possibility.

In this section we will briefly present the main concepts related to $m.A^o$ and its e-states representation: possibilities. For a complete survey on possibilities we recommend Gerbrandy (1999).

Let us start by introducing some notions from the non-well-founded set theory.

Definition 7 (Non-well-founded set (Aczel 1988)) Let E^0 be a set, E^1 one of its elements, E^2 any element of E^1, and so on. A descent is the sequence of steps from E^0 to E^1, E^1 to E^2, etc. . . . A set is non-well-founded when among its descents there are some which are infinite.

A simple example of non-well-founded set is the set $\Omega = \{\Omega\}$ represented in Figure 1.

Definition 8 (Decoration and Picture) A decoration of a graph $G=(V,E)$ is a function δ that assigns to each node $n \in V$ a set δ_n in such a way that the elements of δ_n are exactly the sets assigned to successors of n, i.e., $\delta_n = \{\delta_{n'} | (n,n') \in E\}$.

Given a pointed graph (G, n) (i.e., a graph with a particular node $n \in V$ identified), if δ is a decoration of G, then (G, n) is a picture of the set δ_n.

2As mentioned in Fagin and Halpern (1994) the concept of knowledge and belief are encoded by two different logics: S5 and KD45, respectively.
In particular, in Aczel (1988) is shown that, in non-well-founded theory, every graph has a unique decoration and every decoration can be converted to a unique system of equations.

We are now ready to introduce the concept of possibility.

Definition 9 (Possibility) Let A be a set of agents and F a set of propositional variables:

- A possibility u is a function that assigns to each propositional variable $f \in F$ a truth value $u(f) \in \{0, 1\}$ and to each agent $ag \in A$ an information state $u(ag) = \sigma$.
- An information state σ is a (non-well-founded) set of possibilities.

The idea of possibilities is central in mA^ρ. In fact this language, instead of using Kripke structures, exploits possibilities as e-states. That is, mA^ρ, while keeping the same syntax of mA^ω, changes the way of representing an epistemic state. Changing the underlying structure implies also a different formalization of the transition function (introduced in the following Section). The differences in the e-state representation and in the transition function are what allowed us to outperform the state-of-the-art comprehensive epistemic planner presented in (Le et al. 2018) by orders of magnitude in most of the experiments.

Possibilities in MEP Following Fabiano et al. (2019) we will now briefly explain how a possibility can be used to represent an e-state (Figure 2). The main idea is to identify with each possibility u both an interpretation of the world and of each agent’s beliefs. That is, the component $u(f)$ assigns a truth value to the fluent f in u while $u(ag)$ represents the (non-well-founded) set of possibilities that could be true w.r.t. the agent ag.

The choice of possibilities over Kripke structures as e-state representation provides several advantages. The most important is that, as said in Gerbrandy and Groenendelf (1997), a possibility represents the solution to the minimal system of equations in which all bisimilar Kripke structures are collapsed. More intuitively this means that a class of bisimilar Kripke structures, that in mA^ω represents different e-states, is easily represented by a single possibility and therefore, by a single e-state in mA^ρ. That is, thanks to possibilities and to the newly introduced transition function it has been possible to maintain e-states with smaller size, w.r.t. EFP 1.0, during the solving process. From a more concrete point of view, implementing mA^ρ allowed us to work on e-states of reduced dimension\(^1\) without having to rely on minimization techniques, such as the algorithms presented

\(^1\)W.r.t. the e-states generated following mA^ω.
7. \(u \models C_\alpha \varphi \) if \(u \models E_0^k \varphi \) for every \(k \geq 0 \), where \(E_0^k \varphi = \varphi \) and \(E_0^{k+1} \varphi = E_0(E_0^k \varphi) \).

We are now ready to introduce an updated version of the transition function. The new transition function is more compact and therefore, more understandable than the original. Moreover, the "simplicity" of the e-states update formalization is reflected in a much cleaner and faster implementation. Let a domain \(D \), its set of action instances \(D(AI) \), and the set \(S \) of all the possibilities reachable from \(D(\varphi_0) \) with a finite sequence of action instances be given.

The transition function \(\Phi : D(AI) \times S \rightarrow S \cup \{\emptyset\} \) for \(m.A^A \) relative to \(D \) is defined as follows.

Definition 11 (\(m.A^A \) transition function) Allow us to use the compact notation \(u(F) = \{ f \mid f \in D(F) \land u \models f \} \cup \{ f \mid f \notin D(F) \land u \not\models f \} \) for the sake of readability. Let an action instance \(a \in D(AI) \), a possibility \(u \in S \) and an agent \(ag \in D(AG) \) be given.

If \(a \) is not executable in \(u \), then \(\Phi(a, u) = \emptyset \) otherwise \(\Phi(a, u) = u' \), where:

- **Let us consider the case of an ontic action instance \(a \). We then define \(u' \) such that:**
 \[
 e(a, u) = \{ \ell | (a \text{ causes } \ell) \in D \}; \quad \text{and} \quad e(a, u) = \{ -\ell | \ell \in e(a, u) \} \text{ where } -\ell \text{ is replaced by } \ell.
 \]
 \[
 u'(f) = \begin{cases}
 1 & \text{if } f \in u(F) \setminus e(a, u) \cup e(a, u) \\
 0 & \text{if } f \notin u(F) \setminus e(a, u) \cup e(a, u)
 \end{cases}
 \]
 \[
 u'(ag) = \begin{cases}
 \text{if } ag \in O_a, \quad & \Phi(a, w) \\
 \bigcup_{w \in e(a, w)} \Phi(a, w) & \text{if } ag \in F_a
 \end{cases}
 \]

- **If \(a \) is a sensing action instance, used to determine the fluent \(f \). We then define \(u' \) such that:**
 \[
 e(a, u) = \{ f | (a \text{ determines } f) \in D \land u \models f \} \\
 \cup \{ -f | (a \text{ determines } f) \in D \land u \not\models f \}
 \]
 \[
 u'(F) = u(F)
 \]
 \[
 u'(ag) = \begin{cases}
 \text{if } ag \in O_a, \quad & \Phi(a, w) \\
 \bigcup_{w \in e(a, w)} \Phi(a, w) & \text{if } ag \in F_a
 \end{cases}
 \]

- **If \(a \) is an announcement action instance of the fluent formula \(\phi \). We then define \(u' \) such that:**
 \[
 e(a, u) = \begin{cases}
 0 & \text{if } u \models \phi \\
 1 & \text{if } u \not\models \phi
 \end{cases}
 \]
 \[
 u'(F) = u(F)
 \]
 \[
 u'(ag) = \begin{cases}
 \text{if } ag \in O_a, \quad & \Phi(a, w) \\
 \bigcup_{w \in e(a, w)} \Phi(a, w) & \text{if } ag \in F_a
 \end{cases}
 \]

\(m.A^A \) Properties The newly introduced transition function allowed us to reason about fundamental properties that, as said in Baral et al. (2015), each multi-agent epistemic action language should respect. In particular, each epistemic reasoner should ensure that:

- if an agent is fully aware of the execution of an action instance then her beliefs will be updated with the effects of such action execution;
- an agent who is only partially aware of the action occurrence will believe that the agents who are fully aware of the action occurrence are certain about the actions effects; and
- an agent who is oblivious of the action occurrence will also be ignorant about its effects.

These propositions fully capture the concept of beliefs update and ensure that, when satisfied, the action language can be soundly used for multi-agent epistemic reasoning. Due to space limits we will only list these properties without presenting their proofs that can be found in the Supplementary Documents (available upon request).

In the following we will use \(p' \) instead of \(\Phi(a, p) \) when possible to avoid unnecessary clutter.

Proposition 1 (Ontic Action Properties) Assume that \(a \) is an ontic action instance executable in \(u \) s.t. \(a \text{ causes } l \) if \(\psi \) belongs to \(D \). In \(m.A^A \) it holds that:

1. for every agent \(x \in F_a \), if \(u \models B_x \psi \) then \(u' \models B_x \psi \);
2. for every agent \(y \in O_a \) and a belief formula \(\varphi, u' \models B_y \varphi \) iff \(u \models B_y \varphi \); and
3. for every pair of agents \(x \in F_a \) and \(y \in O_a \) and a belief formula \(\varphi, u \models B_x B_y \varphi \) then \(u' \models B_x B_y \varphi \).

Proposition 2 (Sensing Action Properties) Assume that \(a \) is a sensing action instance and \(D \) contains the statement \(a \text{ determines } f \). In \(m.A^A \) it holds that:

1. if \(u \models f \) then \(u' \models C_F f \);
2. if \(u \models \neg f \) then \(u' \models C_{F^-} f \);
3. \(u' \models C_{P_1}(C_F f \lor C_{F^-} f) \);
4. \(u' \models C_{F_1}(C_{P_1}(C_F f \lor C_{F^-} f)) \);
5. for every agent \(y \in O_a \) and a belief formula \(\varphi, u \models B_y \varphi \) iff \(u \models B_y \varphi \); and
6. for every pair of agents \(x \in F_a \) and \(y \in O_a \) and a belief formula \(\varphi, u \models B_x B_y \varphi \) then \(u' \models B_x B_y \varphi \).

Proposition 3 (Announcement Action Properties) Assume that \(a \) is an announcement action instance and \(D \) contains the statement \(a \text{ announces } \varphi \). If \(u \models \varphi \) in \(m.A^A \) it holds that:

1. \(u' \models C_{F_1} \psi \);
2. \(u' \models C_{P_1}(C_{F_1} \psi \lor C_{F^-} \psi) \);
3. \(u' \models C_{F_1}(C_{P_1}(C_{F_1} \psi \lor C_{F^-} \psi)) \);
4. for every agent \(y \in O_a \) and a belief formula \(\varphi, u \models B_y \varphi \) iff \(u \models B_y \varphi \); and
5. for every pair of agents \(x \in F_a \) and \(y \in O_a \) and a belief formula \(\varphi, u \models B_x B_y \varphi \) then \(u' \models B_x B_y \varphi \).
In Baral et al. (2015) is shown how the above listed properties capture the concept of update in epistemic environment. Therefore, we consider two epistemic action languages that respect all of the above mentioned properties correct w.r.t. the knowledge/belief update. That is the case with $m\mathcal{A}^*$ and $m\mathcal{A}\rho^*$.

Epistemic Forward Planner

Along with the new transition function formalization in this work we also present an updated version of the epistemic planner EFP (Le et al. 2018), called EFP 2.0\(^4\). This new solver redesigned every element of EFP 1.0 to introduce multiple e-states representations and, therefore, multiple transition functions. On the other hand, our implementation keeps the same modular structure of EFP 1.0.

We will now introduce how EFP 2.0 works and how it differs from its predecessor.

EFP 2.0 Structure

The planning process executed by EFP 2.0 is a *breadth-first search* with duplicate checking. Let us note that the computation of the initial state is not a trivial task in MEP. In particular, given a belief formula φ_i it is, in general, possible to generate infinite e-states that respect φ_i. To overcome this problem EFP 1.0 imposes that the initial state description should be a *finitary S5*-theory (Son et al. 2014). In EFP 2.0 we still require the initial description to be a finitary S5-theory but we allow φ_i to be less specific. In particular, without going into details of finitary S5-theories, whenever a fluent f is not considered by φ_i EFP 2.0 assumes that is common knowledge between all the agents that f is unknown.

Another remark that has to be done is about the e-states. EFP 2.0 has a “templatic” e-state definition. This means that each solving process can be executed using the desired e-state representation with its relative transition function. Currently EFP 2.0 implements two e-states representations, *i.e.*, Kripke structures and possibilities, and two transition functions: i) the one introduced in Baral et al. (2015) (for Kripke structures); ii) the transition function for possibilities introduced above. Another important concept that EFP 2.0 integrates is the Kripke structures size reduction. We, in fact, implemented two algorithms (Paige and Tarjan 1987; Dovier, Piazza, and Policriti 2004) that starting from a Kripke structure compute its bisimilar, and therefore, coarsest refinement, presented in Paige and Tarjan (1987), to minimize the e-states size. We also tried to compact the e-states using the algorithm presented in Dovier, Piazza, and Policriti (2004) but the performances were almost identical. This is probably because the Kripke structures we are considering are relatively small in size.

Finally EFP 2.0 introduces the concept of “*already visited e-state*”. Excluding the already visited states during the planning is a common practice and it is done in the majority of the solving processes. Nevertheless, EFP 1.0 did not implement the visited states comparison. That is because comparing two e-states is not as trivial as comparing, for instance, two sets of fluents. In fact, being each e-state in $m\mathcal{A}^*$ a Kripke structure, comparing two e-states means to check for *isomorphism* between them. Given the inherent complexity of the isomorphism algorithm the e-states visited check could, therefore, results in a even less efficient solving process. That is why in EFP 1.0 the comparison for already visited states was left as future development. On the other hand, with possibilities the equality check should be faster since, thanks to the non-well-foundeness, we can collapse each possibility in a small system of equations and exploit the already calculated possibilities information. That is why in EFP 2.0 we implemented the visited e-state check initially for possibilities and later for Kripke structures. As shown in Table 1, we found that all the solver’s executions (with both possibilities and Kripke structures as e-states) were faster when the check was active.

As future work we also plan to exploit the bisimulation algorithm for the equality check on possibilities that, having faster implementations than isomorphism, *e.g.* (Dovier, Piazza, and Policriti 2004), should make EFP 2.0 even more efficient.

Experimental Evaluation

In this Section we compare the new multi-agent epistemic planner EFP 2.0 with, to the best of our knowledge, the only other comprehensive multi-agent epistemic solver in literature, *i.e.*, the planner presented in Le et al. (2018). All the experiments were performed on 3.60GHz Intel Core i7-4790 machine with 32GB of memory.

From now on, to avoid unnecessary clutter, we will make use of the following notations:

- L to indicate the (optimal) length of the plan;
- \wp to indicate that the solving process returned an Wrong Plan;
- TO to indicate that the solving process did not return any solution before the timeout (25 minutes);
- EFP 1.0 to denote the Breadth-First search planner presented in Le et al. (2018). We chose the Breadth-First solver because we wanted to focus on the base of the solving process so that all the future optimizations could benefit from this research.
- K-MAL to identify our solver while using Kripke structures as e-state representation and the transition function of Baral et al. (2015).
- K-BIS to identify our solver while using Kripke structures as e-state representation and the algorithm to find the coarsest refinement, presented in Paige and Tarjan (1987), to minimize the e-states size. We also tried to compact the e-states using the algorithm presented in Dovier, Piazza, and Policriti (2004) but the performances were almost identical. This is probably because the Kripke structures we are considering are relatively small in size.
- P-MAR to identify our solver while using possibilities as e-state with the transition function introduced in the previous Section.

All the configurations K-MAL, K-BIS, and P-MAR check for already visited states. To indicate the same configurations without the visited states check we will use K-MAL-NV, K-BIS-NV, and P-MAR-NV.

We evaluate EFP 2.0 on benchmarks collected from the literature (Komini and Geffner 2015; Huang et al. 2017). In particular, these domains are:

\(^4\)Source code available upon request.
1. **Collaboration and Communication (CC).** In this domain, \(n \geq 2 \) agents move along a corridor with \(k \geq 2 \) rooms in which \(m \geq 1 \) boxes can be located. Whenever an agent enters a room, she can determine if a certain box is in the room. Moreover, agents can communicate information about the boxes’ position to the other agents. The goals consider agents’ positions and their beliefs about the boxes (Table 2).

2. **Selective Communication (SC).** SC has \(n \geq 2 \) agents that start in one of the \(k \geq 2 \) rooms in a corridor. An agent can tell some information and all the agents in her room or the neighboring ones can hear what was told. Every agent has the freedom to move from one room to its adjacent. The goals usually require some agents to know certain properties while other agents ignore them (Figure 3).

3. **Grapevine.** \(n \geq 2 \) agents are located in \(k \geq 2 \) rooms. An agent can move freely to each other room and she can share a “secret” with the agents that are in the room with her. This domain supports different goals, from sharing secrets with other agents to having misconceptions about agents’ beliefs (Table 1).

4. **Coin in the Box (CB).** \(n \geq 3 \) agents are in a room where in the middle there is a box containing a coin. None of the agents know whether the coin lies heads or tails up and the box is locked. One agent has the key to open the box. The goals usually consist in some agents knowing whether the coin lies heads or tails up while other agents know that she knows or are ignorant about this (Table 3).

5. **Assembly Line (AL).** In this problem there are two agents, each responsible for processing a different part of a product. Each agent can fail in processing her part and can inform the other agent of the status of her task. Two agents decide to assemble the product or restart, depending on their knowledge about the product status. The goal in this domain is fixed, i.e., the agents must assemble the product, but what varies is the depth of the belief formulae used as executability conditions (Table 4).

All our experiments (Tables 1–4, Figure 3) show that EFP 2.0, if used with its fastest configuration P-MAR, performs significantly better than EFP 1.0. We believe that these results derive from several factors.

First and foremost the choice of using possibilities as e-states and \(m,A' \) as action language ensured that every e-state generated during the planning process had always smaller or equal size w.r.t. the same state generated in EFP 1.0. In particular, EFP 1.0, generating e-states with non-minimal size, introduces extra (always increasing) overhead at each action application w.r.t. EFP 2.0. Moreover the implementation of P-MAR exploits already calculated e-states information when it creates new ones reducing even more the e-states generation time. From our results it is clear that EFP 1.0 and P-MAR perform similarly on very small instances of the problems but as soon as the problem grows the two solvers have different behaviors. In fact, while EFP 1.0 search time increases very rapidly P-MAR stays relatively stable. That is because when the problems become more complex the planner, generally, has to generate more e-states. Regarding the other configurations of EFP 2.0, namely K-MAL and K-BIS, we note that they generally outperform EFP 1.0. Nevertheless, in some cases (Tables 2 and 4), we note some exceptional peeks in these configuration’s performances. These peeks are the results of: i) the use of the visited-state check that in some configurations may add an extra overhead that in EFP 1.0 was not present; and ii) a less optimized entailment-check function, w.r.t. EFP 1.0, in the configurations of EFP 2.0 that are based on Kripke structures. A remark has to be done on the K-BIS configuration. From the results (Tables 1–4) it is clear how this configuration, even if ex-

Table 1: Runtimes for the Grapevine domain. We compare the configurations with and without the visited e-states check. EFP 1.0 errors are caused by a wrong initial e-state generation.

| \(|AG|\) | \(|F|\) | \(|A|\) | \(L\) | EFP 1.0 | K-MAL-NV | K-MAL | K-BIS-NV | K-BIS | P-MAR-NV | P-MAR |
|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 9 | 24 | 2 | WP | .09 | .09 | .19 | .20 | .03 | .02 |
| 4 | WP | 9.19 | 8.13 | 13.54 | 12.76 | 1.34 | 1.25 |
| 5 | WP | 94.49 | 75.32 | 111.38 | 84.46 | 8.67 | 7.71 |
| 6 | WP | 372.64 | 278.93 | 398.10 | 232.54 | 27.63 | 20.26 |

Figure 3: Comparison between EFP 1.0 and P-MAR on SC instances with \(k = 11 \) rooms and \(|AG| = 9\).
is based on EFP 1.0, the remodeling of the solver allowed for a more efficient algorithm. The connection between Kripke structures and non-well-founded sets. vi) derive heuristics, as in Le et al. (2018), to optimize the code. This optimization is reflected by the comparison between K-MAL and EFP 1.0. In fact, these two configurations both use Kripke structures as e-states and possibilities, namely EFP 2.0.

Another important factor that makes EFP 2.0 faster than EFP 1.0 is the concept of visited e-states. As we can see in Table 1, the planner takes advantage from this check even when the e-states are represented as Kripke structures. The fact that the visited-state check increases the performances of EFP 2.0 proves that, even if this check relies on ‘heavy’ algorithms, the epistemic planning process benefits from the reduced size of the e-states.

Moreover, as future continuations to this work, we plan to: i) consider other alternatives to Kripke structures and possibilities; ii) formalize the notion of epistemic static laws; iii) further investigate the connection between Kripke structures and non-well-founded sets. iv) introduce the concept of distributed knowledge in EFP 2.0; v) implement the concept of non-consistent belief in EFP 2.0; and vi) derive heuristics, as in Le et al. (2018), to prune the search space; and vii) consider symbolic e-states.

Table 2: Runtimes for the Collaboration and Communication domain.

Table 3: Runtimes for the Coin in the Box domain.

Table 4: Runtimes for the Assembly Line domain. The last row identify the instance where the executability conditions are expressed through common knowledge.

In this paper we introduced an updated formalization of the transition function for the multi-agent epistemic action language mA^ρ. In particular, the newly introduced transition function allowed us to prove some desirable properties of mA^ρ and helped us in deriving a clean and efficient implementation for a comprehensive epistemic planner based on possibilities, namely EFP 2.0.

We also provided some experimental results by comparing the state-of-the-art comprehensive epistemic planner EFP 1.0 (Le et al. 2018) with EFP 2.0 on benchmarks collected from the literature. As shown in the reported tables, the employment of possibilities as representation for epistemic state achieves better results, especially when coupled with the visited-state check. By conducting an analysis on the algorithms we believe that this higher efficiency is due to i) the employment of the dynamic programming paradigm that allowed us to re-use already calculated information about e-states; and ii) the reduced size of the e-states w.r.t. EFP 1.0. Finally the complete refactoring of the solver presented in Le et al. (2018) allowed to apply corrections and optimizations to the original solving process.

An immediate development to this work will be the implementation of a visited-state check based on bisimulation to reduce even more the planning times. Moreover, as future continuations to this work, we plan to: i) consider other alternatives to Kripke structures and possibilities; ii) formalize the concept of non-consistent belief in mA^ρ; iii) implement the notion of distributed knowledge in EFP 2.0; iv) introduce the concept of epistemic static laws; v) further investigate the connection between Kripke structures and non-well-founded sets. vi) derive heuristics, as in Le et al. (2018), to prune the search space; and vii) consider symbolic e-states.
representations such as BDDs.

Acknowledgments
This research is partially supported by: the NSF HRD 1914635 and NSF HRD 1345232 projects, the University of Udine PRID ENCASE project, and the GNCS-INdAM 2017–2020 projects.

References