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Abstract

The standard PDDL language for classical planning uses sev-
eral first-order features, such as schematic actions. Yet, most
classical planners ground this first-order representation into a
propositional one as a preprocessing step. While this simpli-
fies the design of other parts of the planner, in several bench-
marks the grounding process causes an exponential blowup
that puts otherwise solvable tasks out of reach of the planners.
In this work, we take a step towards planning with lifted rep-
resentations. We tackle the successor generation task, a key
operation in forward-search planning, directly on the lifted
representation using well-known techniques from database
theory. We show how computing the variable substitutions
that make an action schema applicable in a given state is es-
sentially a query evaluation problem. Interestingly, a large
number of the action schemas in the standard benchmarks re-
sult in acyclic conjunctive queries, for which query evaluation
is tractable. Our empirical results show that our approach is
competitive with the standard (grounded) successor genera-
tion techniques in a few domains and outperforms them on
benchmarks where grounding is challenging or infeasible.

Introduction

Domain-independent planning relies on a model of the
world encoded in some suitable representation language. In
classical planning, a common such language is PDDL (Mc-
Dermott et al. 1998; Haslum et al. 2019), a first-order logic-
based language developed to support the International Plan-
ning Competition (IPC) and to standardize previous research
efforts (Fikes and Nilsson 1971; Pednault 1989).

While there is a remarkable diversity of planning tech-
niques (e.g., Kautz and Selman 1992; Bonet and Geffner
2001; Torralba et al. 2017), most PDDL planners ground the
first-order representation of the problem into a propositional
one as a preprocessing step. This makes sense since the
description and implementation of solution techniques be-
comes easier at the propositional level. The ground represen-
tation can be exponentially larger in the number of parame-
ters of the action schemas, but there are efficient grounding
techniques (e.g., Helmert 2009) that overall seem to make
this preprocessing an effective strategy. The shortcoming of
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this strategy, however, is that the entire set of ground actions
needs to be stored in memory.

As reported by Areces et al. (2014), most IPC bench-
marks are not particularly challenging for the grounding
step. Nevertheless, several interesting planning problems are
difficult not because of their combinatorial structure, but
because of the intractable size of their ground representa-
tions. These hard-to-ground problems arise in several dif-
ferent contexts, such as natural language processing, ge-
nomics, and organic synthesis (Koller and Petrick 2011;
Haslum 2011; Matloob and Soutchanski 2016).

Our work is a step towards planning directly on the first-
order representations. We use well-known techniques from
database theory to tackle the task of successor generation,
one of the key operations when planning using heuristic
search. The enumeration of all applicable ground actions de-
rived from an action schema in a given state s can be seen
as a database query where s is a database and the action
precondition is a query. We introduce successor generation
techniques based on standard query evaluation algorithms
(Ullman 1989). We analyze a large number of benchmarks
from the literature and find out that the preconditions of the
majority of action schemas correspond to acyclic conjunc-
tive queries, which can be evaluated in time polynomial in
the size of the state and number of applicable actions (Yan-
nakakis 1981).

We report empirical results for a prototype implementa-
tion of these techniques on a wide set of benchmarks, focus-
ing on successor generation. The use of lifted heuristics (cf.
Ridder 2013) in our implementation is left for future work.
Over the IPC benchmarks, our prototype is competitive with
a grounded baseline planner in a few domains. In a set of
focus benchmarks known to be challenging for grounding,
however, our prototype outperforms the grounded planners,
which often are not able to compute the ground representa-
tion of the problem. In these hard-to-ground domains, our
prototype solves almost three times more instances than the
previous state of the art for lifted planners (Ridder 2013). In-
terestingly, a simple greedy best-first search with the goal-
count heuristic obtains, to the best of our knowledge, the
best performance reported so far on the challenging Organic
Synthesis domain (Matloob and Soutchanski 2016).
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First-Order Classical Planning Problems

A STRIPS planning task is a tuple Π = 〈P, O,A, s0, γ〉,
where P is a set of predicate symbols, O is a set of objects,
A is a set of actions schemas, s0 is the initial state, and γ is
a goal condition.

Every predicate P ∈ P has an associated arity. If P is an
n-ary predicate and�t = 〈t1, . . . , tn〉 is a tuple of variables or
objects from O, then P (�t) is an atom. When we ground (i.e.,
substitute) the variables of an atom P (�t) with objects from
O, we obtain a ground atom. A state, such as s0, is a set of
ground atoms, interpreted as the set of all true atoms in this
state. Similarly, the goal condition γ is a set of ground atoms.
Any state s such that γ ⊆ s is a goal state. An action schema
a[Δ] ∈ A is a tuple 〈pre(a[Δ]), add(a[Δ]), del(a[Δ])〉, cor-
responding to the precondition, the add list and the delete
list of a[Δ]. These three elements of a[Δ] are finite sets of
atoms defined over P , such that Δ is the set of free variables
occurring in any atom of some element of a[Δ].

We can ground an action schema a[Δ] by substituting the
free variables Δ by objects in O, which results in a ground
action a without free variables (sometimes referred only as
action when the context is clear).

An action a is applicable in a state s if pre(a) ⊆ s. When
applying a in s, the successor state s′ is defined as s′ = (s \
del(a)) ∪ add(a). A sequence of ground actions a1, . . . , an
is applicable in state s if each ai is applicable in the state
generated by applying a1, . . . , ai−1 from s. The solution of a
planning problem is a sequence of ground actions applicable
to s0 that leads to a goal state. This sequence of actions is
called a plan.

Database Theory

We briefly review some relevant background from database
theory (Ullman 1989; Abiteboul, Hull, and Vianu 1995).

A database D = 〈D,R〉 is composed of a domain D and
a set R of finite relations over D. Each relation R ∈ R is
a set R ⊆ Dar(R), where ar(R) ∈ N is the arity of the re-
lation. We adhere to the convention of identifying databases
with a logical theory, where a tuple�c ∈ R is seen as a ground
atom R(�c) of a first-order language.

A query Q is a mapping between a database D and a rela-
tion Q(D). We focus on conjunctive queries where Q(D) is
defined as

{�c | ∃�z ϕ(�c, �z)} for some ϕ(�x, �z) =
∧n

i=1
Ri(�ti)

where each �ti is a tuple of length ar(Ri) with elements from
D and variables from �x and �z. We write vars(�t) for the set of
variables used in such a tuple. Conjunctive queries are often
written in rule form with distinguished variables �x:

Q(�x) :− R1(�t1), . . . , Rn(�tn),

which leaves implicit the existential quantification of vari-
ables �z that appear on the right-hand side (the body of the
rule) but not on the left-hand side (its head).

To illustrate, consider the database 〈D, {R1, R2}〉 with
D = {1, 2, 3}, R1 = {〈a, b, c〉 ∈ D3 | a ≤ b, c is odd},

and R2 = {〈a, b〉 ∈ D2 | a 	= b}. Then the conjunc-
tive query Q1(x) :− R1(2, x, x) evaluates to RQ1

= {〈3〉}
and Q2(y, x) :− R1(2, x, x), R2(x, y) evaluates to RQ2

=
{〈1, 3〉, 〈2, 3〉}.

Every conjunctive query Q(�x) :− R1(�t1), . . . , Rn(�tn)
can be associated with a hypergraph H(Q) = 〈V,E〉 with
one vertex v ∈ V for each variable occurring in the body
of Q and one hyperedge ei = vars(�ti) ∈ E for each atom
Ri(�ti). The GYO reduction of such a hypergraph is another
hypergraph obtained through a simple iterative procedure
that removes one hyperedge e ∈ E at each step until E has
a single hyperedge or no edge removal can be performed.
At each step, we can remove e ∈ E iff another hyperedge
f ∈ E exists such that the variables in e \ f only appear in
e. We say that such a step removes e in favor of f . H(Q) is
acyclic iff its GYO reduction is a hypergraph with a single
hyperedge (Ullman 1989).1 A conjunctive query Q is acyclic
iff its hypergraph H(Q) is.

Complexity of Query Evaluation If the input size of a
query evaluation problem is I = ‖Q‖ + ‖D‖ and its output
size is U = ‖Q(D)‖, one would prefer query evaluation al-
gorithms that are output-polynomial, in the sense that their
time and space complexity is polynomial in I +U . No com-
plete algorithm can have a runtime better than O(I + U),
since it needs to read the input completely and output Q(D).
Conjunctive query evaluation is NP-hard in general (Chan-
dra and Merlin 1977). For example, computing |Q(D)| is
#P-complete (Creignou, Khanna, and Sudan 2001). Hence,
no efficient general algorithm can exist unless P = NP. How-
ever, output-polynomial algorithms exist for acyclic con-
junctive queries (Yannakakis 1981). Papadimitriou and Yan-
nakakis (1999) show that conjunctive query evaluation con-
sidering query size or number of variables as the parameter
is W [1]-complete, and that although the extension of acyclic
queries with atoms of the form x 	= y is NP-hard, it is fixed
parameter tractable with regard to the same parameters as
above (Papadimitriou and Yannakakis 1999).

Relational Algebra Later, we describe conjunctive query
evaluation algorithms in terms of the select, project, join
and rename (SPJR) operations of relational algebra, a for-
malism which is equivalent in expressive power to conjunc-
tive queries (Codd 1970), but has a more operational flavor.
We give an intuitive description of this algebra and refer to
Abiteboul, Hull, and Vianu (1995) for a formal definition.

The SPJR algebra is based on named relations, often
called tables. A table is a relation where each position
(called column) has an attribute name. Given two tables
R and S, the basic operations are (i) to rename a column;
(ii) to project R into a set of attributes Y , obtaining a rela-
tion πY (R) where some columns of R have been removed
or rearranged; (iii) to select some tuples from R that either
coincide on two different attributes xi and xj (σxi=xj (R)),
or for which an attribute xi has a particular constant value
c (σxi=c(R)); and (iv) to join R and S. The (natural) join
R �� S selects all tuples from the Cartesian product of R and

1We use the standard database theory characterization of hyper-
graph α-acyclicity (Fagin 1983).
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S that match on shared attribute names, and then projects
out all copies but one of the duplicate attributes. In addition
to these four basic operations, one can define the semi-join
R� S as the projection of R �� S to the attributes of R.

Evaluating Conjunctive Queries

The evaluation of conjunctive queries can be described in
terms of query programs, sequences of assignments of SPJR
algebra expressions to relation variables, such as 〈R :=
R � S, S := S � R,Q := πX(R �� S)〉. These are in-
terpreted like imperative programming languages, i.e., the
first step in the example above replaces the relation R with
R�S, and the next step uses this updated relation. These as-
signments are local to the program, i.e. the actual database is
not changed. Query programs that only use (semi-)joins are
called (semi-)join programs.

A conjunctive query Q(�x) :− R1(�t1), . . . , Rn(�tn) can
in general be evaluated in two steps: take the natural join
of all atoms in the body and then project the result into
the distinguished attributes. To write this as a query pro-
gram, we first map each logical atom Ri(�ti) to a relational-
algebraic relation with attributes vars(�ti), selecting tuples
that agree with �t on constants and repeated variable names.
The resulting relation is called R′

i. For example, if R =
{〈a, b, c〉 ∈ {1, 2, 3}3 | a ≤ b, c is odd} and t = 〈2, x, x〉,
then R′ = {〈x �→ 3〉}. This mapping can be evaluated in
time linear in the size of Ri by a query program consisting
of selection and projection operations. The query program
for Q then is Q := πX(R′

1 �� · · · �� R′
n) where the join

is left-associative. The evaluation of this query program can
take time exponential in both I and U due to a combinatorial
explosion caused by the joins. In general, the order of joins,
as well as interleaving joins and projections, can make an
exponential difference in time and space complexity.

Evaluating Acyclic Conjunctive Queries

When the conjunctive query is acyclic, output-polynomial
evaluation algorithms exist. We next sketch two standard al-
gorithms: an algorithm based on a full reducer of a query
(Bernstein and Goodman 1981) and the algorithm by Yan-
nakakis (1981).

Full Reducer We first consider conjunctive queries
Q(�x) :− R1(�t1), . . . , Rn(�tn) where vars(�x) =

⋃
i vars(�ti).

In such queries all variables are distinguished and no pro-
jection is needed. A full reducer of such a query is a semi-
join program that filters out tuples from the relations R′

i de-
scribed above in a way that all remaining tuples are part of
a tuple in Q(D). Full reducers exist only for acyclic con-
junctive queries (Bernstein and Goodman 1981). Say the
GYO algorithm removes the hyperedges of H(Q) in the or-
der (e1, f1), . . . , (em, fm), where (ei, fi) indicates that iter-
ation i removed hyperedge ei in favor of hyperedge fi. Since
Q is acyclic, all hyperedges but the last one can be removed,
so the set of all ei and fi covers all hyperedges. If Ei and
Fi are the relations that induced the hyperedges ei and fi,
then the semi-join program 〈E1 := E1 � F1, . . . , Em :=
Em � Fm, Fm := Fm � Em, . . . , F1 := F1 � E1〉 is a

full reducer for Q. After computing the full reducer, we can
compute Q := Fm �� Em �� . . . �� E1, guaranteeing that
no intermediate relation is larger than ‖Q(D)‖. The evalua-
tion of the full reducer plus the subsequent sequence of joins
takes time O(n(I log I+U logU)) (Ullman 1989), i.e., it is
output-polynomial. We call the algorithm (computing and
evaluating a full reducer and computing a full join program)
the fully-reduced join algorithm.

Yannakakis’ Algorithm If not all variables are distin-
guished, the fully-reduced join algorithm is no longer guar-
anteed to be output-polynomial. In such cases, Yannakakis’
algorithm (1981) has better asymptotic guarantees, as it in-
terleaves the joins with projections. It starts by comput-
ing and executing a full reducer as explained above, and
then constructs a parse tree P(Q) of the query where every
atom Ri(�ti) is a node and node Ri(�ti) is a child of Rj(�tj)

iff the hyperedge corresponding to Ri(�ti) was removed
in favor of the hyperedge corresponding to Rj(�tj) in the
GYO algorithm. The algorithm then generates a query pro-
gram by traversing P(Q) bottom-up and appending R′

j :=
π�tj∪(�ti∩�x)(R

′
i �� R′

j) to the program each time it visits a
relation Ri(�ti) with parent Rj(�tj). Once the tree traversal
reaches the root node Ri(�ti) of P(Q), it appends the final
assignment Q := π�x(R

′
i), which projects the root node to

the distinguished attributes. While traversing the parse tree,
all intermediate relations have size bounded by O(IU) (Yan-
nakakis 1981; Ullman 1989). Furthermore, the algorithm has
runtime O((I + U)2) and is thus output-polynomial.

A Database Perspective of Classical Planning

Given a planning task Π = 〈P, O,A, s0, γ〉, we consider a
state s to be a database D(s) = 〈O, {RP,s | P ∈ P}〉 where
the objects of Π form the domain and there is one relation
for every predicate. The relation RP,s contains all tuples for
which the corresponding ground atom of P is in s, i.e.,

RP,s = {�o | P (�o) ∈ s}.
Each state can be seen as such a database and thus finding

the set of applicable actions for a state can be expressed as a
query. Let a[Δ] ∈ A be an action schema with precondition
{P1(�t1), . . . , Pn(�tn)}. The set of applicable ground actions
for a[Δ] are the ones that are grounded with object tuples
the following conjunctive query over D(s) which we call
the precondition query of a[Δ]:

Q(Δ) :− RP1,s(�t1), . . . , RPn,s(�tn)

To illustrate, consider the standard formulation of the
Gripper domain, where a robot with two grippers must
move some balls from one room to another. Let s be
the state where the robot and two balls are in room rA
and a third ball is in gripper g1. The database D(s) con-
tains the relations Rat,s = {〈b1, rA〉, 〈b2, rA〉}, Rcarry =
{〈b3, g1〉}, Rat-robby,s = {〈rA〉}, and Rfree,s = {〈g2〉}.
Action schema pick[b, r, g] models picking up ball b in
room r with robot gripper g, and has preconditions
{at(b, r), at-robby(r), free(g)}. Its applicable instantiations
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are described by the conjunctive query Q(b, r, g) :−
Rat,s(b, r), Rat-robby,s(r), Rfree,s(g). The query evaluates to
{〈b1, rA, g2〉, 〈b2, rA, g2〉} showing that in s the two appli-
cable instantiations are to pick up b1 or b2 with gripper g2.

Whether a precondition query can be efficiently evaluated
depends on whether its hypergraph is cyclic. In the rest of the
paper, we refer to action schemas in which the precondition
query has an acyclic hypergraph as acyclic action schemas
and the remaining action schemas as cyclic action schemas.

Acyclic Action Schemas

Precondition queries of acyclic action schemas can be evalu-
ated efficiently with the fully-reduced join algorithm, which
in this case is polynomial in the size of the state and the
number of applicable instantiations.

Consider now an action schema a[Δ] with |Δ| = n free
variables where only one v ∈ Δ appears in the add or delete
list while all others only occur in the precondition. If there
are m objects the number of applicable grounded actions for
a[Δ] can be mn. However, there can be at most m different
effects a grounded action can have as the choices for all vari-
ables except v have no effect on the successor. We say that
the n − 1 variables different from v are existentially quan-
tified.2 We do not care about which objects are grounding
these variables, we only care for which value of v objects
exist that satisfy the preconditions.

Instead of mentioning all parameters of the action in
the query’s head as distinguished variables, we only men-
tion those that occur in the effect. Existential quantifica-
tion of action parameters directly corresponds to the ex-
istential quantification in conjunctive queries. As an ex-
ample, consider the action introduce[a, b, c] with the pre-
condition {knows(a, b), knows(b, c)} and the add effect
{knows(a, c)}. If two people have more than one common
friend that can introduce them, there will be several ways to
introduce them to each other – all with the same effect. The
query Q(a, b, c) :− knows(a, b), knows(b, c) contains them
all while the query Q(a, c) :− knows(a, b), knows(b, c) con-
tains at most one tuple for each choice of a and c.

Precondition queries for schemas with existentially quan-
tified variables can be evaluated with Yannakakis’ algo-
rithm. As we discussed earlier, this algorithm is quadratic
in the size of the input I and the output U . Compared to the
fully-reduced algorithm this does not sound like an improve-
ment. However, the output in this case is slightly different.
The output here has the different tuples only considering the
distinguished attributes, instead of all attributes. This can be
significant smaller in schemas where there are many exis-
tentially quantified free variables.

In order to extract a valid plan for the original PDDL task,
we still need to know parameters for the existentially quan-
tified parameters. We compute them by slightly modifying
the algorithm. During the tree traversal, we keep one instan-
tiation of the existentially quantified free variables for ev-

2PDDL fragments more general than STRIPS allow explicit ex-
istential quantification. While our algorithm would also cover this,
here we only consider implicit quantification in STRIPS where pa-
rameters are only used in the precondition.

ery feasible tuple instantiating the distinguished variables.
In this way, we can create fully grounded actions without
generating redundant copies.

Cyclic Action Schemas

When the precondition of the action schema is cyclic, a join
program can have intermediate relations exponential in the
size of the state and number of applicable actions. One way
to mitigate this are evaluation plans (Abiteboul, Hull, and
Vianu 1995). These are strategies to decrease the chance of
exponentially large intermediate relations.

We consider only a static strategy based on a partial exe-
cution of a full reducer. We first obtain a semi-join program
computed from the GYO reduction of the precondition query
hypergraph. Since the query in this case is cyclic, the semi-
join program does not correspond to a full reducer. It can,
however, be seen as a “partial reducer” that still filters out
unnecessary tuples of some relations. Whenever we want to
instantiate a cyclic action schema, we first evaluate this “par-
tial reducer” and then compute a complete join program of
the precondition atoms ordered by increasing arity with ties
broken according to the order of predicates in the input.

Experimental Results

We implemented a lifted planner using the successor gener-
ator methods previously described. The source code is pub-
licly available (Corrêa et al. 2020). Our planner supports the
PDDL fragment representing STRIPS with equalities, in-
equalities, and types. It first compiles equalities and types
into static predicates. Schemas with parameters of an empty
type are removed. We handle inequality constraints in all our
query programs by removing tuples that violate a constraint
after every join. There is a more sophisticated algorithm for
acyclic conjunctive queries with inequalities that is fixed-
parameter tractable in the size of the query and the number
of variables (Papadimitriou and Yannakakis 1999) and could
improve the results. We consider this future work.

All experiments were run on an Intel Xeon Silver 4114
processor running at 2.2 GHz with maximum runtime of 30
minutes and a maximum memory of 16 GiB.

We use 59 domains divided into two sets. The first has
53 domains from the nine International Planning Compe-
titions (1998 to 2018) that our planner supports. If a do-
main was used in an optimal and a satisficing track, we re-
port the results from the optimal track. In total, the set has
1560 instances. We also tested the domains from the satis-
ficing track, with very similar results to the optimal track
(Corrêa 2019, Section 5.5). Our focus is on hard-to-ground
problems, so we also use six hard-to-ground domains:

• Organic Synthesis: The entire set contains 56 instances
and is split into three domains “Original” (20), “MIT”
(18), and “Alkene” (18). 3 This domain was also used in
the IPC, but only a subset of the easiest instances was
used there. The IPC set also contains a variant using an

3http://www.cs.ryerson.ca/∼mes/publications/. This set of in-
stances was designed by Russell Viirre and converted into PDDL
by Hadi Qovaizi.
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action schema split method (Areces et al. 2014), which is
considerably easier to ground.

• Pipesworld-Tankage: This is a variant of the domain with
the same name introduced in IPC 2004 (Hoffmann et
al. 2006). The IPC version used manually split action
schemas to simplify the grounding. Here we use the con-
siderably harder to ground non-split version. There are 50
instances in this domain.

• Genome Edit Distance: This domain was introduced by
Haslum (2011) as a challenging practical application of
planning. The domain was introduced in several different
formulations. We only use the two relational multi-step
formulations (split and non-split) because the others use
PDDL features not supported by our planner. Each formu-
lation has 156 instances.

We call the first set of benchmarks the IPC set, the second
one the HTG set and the union of the two the full set. When-
ever we mention the Organic Synthesis domain of the IPC
set, we refer to its non-split variant.

We first analyze different successor generator techniques
using a breadth-first search algorithm considering all action
schemas as unit cost.

Naive Joins

To establish a baseline, we first use the naive join program
to evaluate precondition queries. We use three variants that
differ in the order in which they join the relations. Variant J
uses the predicate order given by the action schema; variant
JR uses a random order; and variant J< orders the relations
by increasing arity breaking ties according to the order of J .
We use all of these variants in a breadth-first search and eval-
uate on the full benchmark set. Results for JR are averaged
over three runs.

We first report the results for the IPC set. Using the pred-
icate order from the input (J) surprisingly performed the
best, solving 454 tasks. Ordering the relations by arity (J<)
performed similarly with a coverage of 443, while a random
order (JR) led to worse results of 350–357 tasks solved (av-
erage 352.3). This difference in coverage shows the large
impact of join order on performance and that both orders
have a positive effect. The most interesting result in the IPC
set is the Organic Synthesis domain. Here, JR was only able
to solve 2 instances while J< solves 10 and J solves 11. Us-
ing the settings of the IPC 2018, limiting memory to 8 GiB,
J still solves 10 instances. This is a significant result since
no planner in the IPC 2018 solved more than 8 instances of
this domain optimally. This shows that database techniques
can enhance the performance in this domain, although it is
still necessary to consider some information about the struc-
ture of the precondition when instantiating it.

In the HTG set, J also achieves the highest coverage, with
83 instances, while J< solves 78 and JR solves 56–58 (av-
erage 57.3). In the original version of the Organic Synthesis
domain, no method solves a single instance. All methods run
out of memory when trying to instantiate action schemas.
As expected, the naive joins produce very large intermediate
results that exhaust memory. Although the database tech-

|A| Acyc. Acyc. 	= ∃-quant.

Barman (2011, 2014) 12 91.7% 91.7% 83.3%
Elevators (2008, 2011) 6 16.7% 16.7% 0.0%
Freecell 10 70.0% 70.0% 30.0%
GED 21 71.4% 100.0% 0.0%
Hiking 7 57.1% 85.7% 42.9%
NoMystery 3 66.7% 66.7% 33.3%
Org. Synt. 760 8.5% 91.4% 91.4%
Org. Synt. split 17564 90.2% 100.0% 55.9%
Pipesw. NoTank. 6 33.3% 33.3% 100.0%
Pipesw. Tank. split 10 10.0% 10.0% 100.0%
Rovers 9 88.9% 88.9% 66.7%
TPP 4 75.0% 75.0% 50.0%

Others (39 domains) 100.0% 100.0% 22.22%

IPC Domains 87.8% 90.7% 30.4%

Org. Synt. Original 52 9.6% 90.3% 90.3%
Org. Synt. MIT 52 9.6% 90.3% 90.3%
Org. Synt. Alkene 12 0.0% 100.0% 100.0%
GED Multi-step 14 35.7% 100.0% 0.0%
GED Multi-step, split 21 71.4% 100.0% 0.0%
Pipesworld Tankage 4 0.0% 0.0% 100.0%

HTG Domains 21.0% 80.1% 63.5%

Table 1: Proportions of action schemas in A that are acyclic
(Acyc.), acyclic when ignoring inequalities (Acyc. 	=), or
that have existentially quantified parameters (∃-quant.). Do-
mains where all actions are acyclic are grouped together.
Lines for multiple domains are averaged over domains.

niques enhance the performance in the IPC version of Or-
ganic Synthesis, there is still room for improvement.

Acyclic Schemas

The naive join methods fail in cases where the intermediate
relations become too large. For acyclic action schemas this
issue can be avoided by computing a full reducer. But how
many of the action schemas are acyclic? The second col-
umn in Table 1 shows the proportion of acyclic schemas in
each domain. In the IPC set the average proportion of acyclic
schemas is 87.8%. This is good news for our method, since it
means that grounding these schemas can be done efficiently
in all states. Unfortunately the situation looks worse in the
hard-to-ground instances, where the average proportion of
acyclic schemas is only 21%. In particular, the challenging
Organic Synthesis domain shows up in both benchmark sets
with less than 10% acyclic schemas. Looking closer at the
hypergraph of the precondition queries of these schemas,
it turns out that most of the cycles are caused by inequal-
ity constraints. If we ignore inequalities, the incidence of
acyclic schemas increases to over 90% in all Organic Syn-
thesis variants and to 80.1% in all hard-to-ground domains
(shown in the third column of Table 1). The notable ex-
ception is the domain Pipesworld-Tankage where all action
schemas are cyclic even when ignoring inequality relations.

To analyze the effect of evaluating acyclic precondition
queries efficiently, we ran our breadth-first search with the
configuration FRSJ,<, which uses the GYO algorithm in a
preprocessing step to test which queries are cyclic. As a side
effect, this step finds a full reducer for acyclic schemas and a
partial reducer for cyclic ones. During the search, all queries
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first execute this reducer. For acyclic schemas the algorithm
then executes the join program in the order established by
the hyperedge removals. For cyclic schemas, the final join
program is J<. Even though J performed better than J<

we use J< here because it is more principled.
Compared to J<, using FRSJ,< to generate successors im-

proves the coverage from 443 to 464 in the IPC set and from
78 to 99 in the HTG set. The largest improvement is in the
non-split IPC version of Organic Synthesis, where FRSJ,<

solves 19 of the 20 instances. All tasks solved by FRSJ,< in
this domain used 1.2 GiB or less while the IPC 2018 plan-
ners could solve only 8 tasks with a limit of 8 GiB.

The main advantage of using the full reducer is that it
avoids large intermediate relations. Trying to estimate how
often this occurs, we compared the largest intermediate rela-
tion size during the expansion of the initial state for J< and
FRSJ,<. In instances with only acyclic actions, the largest
intermediate relation computed by J< is sometimes two or-
der of magnitudes larger than the one computed by FRSJ,<.
In instances with cyclic schemas, the initial partial reducer
semi-join program used by FRSJ,< also seems to help. In
larger tasks of the Organic Synthesis domain variants, J<

ran out-of-memory, while FRSJ,< could still instantiate all
schemas. There were also 27 tasks where J< still can in-
stantiate all schemas, but FRSJ,< produces intermediate re-
lations 2–5 orders of magnitude smaller. There is no the-
oretical guarantee that FRSJ,< performs better than J< in
cyclic schemas, but this happens more often than not in our
benchmarks. However, even with FRSJ,< the cyclic schemas
require more tuples than the acyclic ones in most cases, so
future work on better join orders might pay off.

When comparing total search time, FRSJ,< has similar
runtime to J and J<. Although one might expect that the
FRSJ,< method would be slower due to the additional over-
head of evaluating a semi-join program prior to the full join
program, the method is competitive on all instances. In the
Organic Synthesis domain, the breadth-first search is faster
with FRSJ,< than with the other methods.

Existentially Quantified Preconditions

We also discussed a successor generator based on Yan-
nakakis’ algorithm that has a potential gain for instances
with existentially quantified parameters. For example, the
Organic Synthesis domain has action schemas with 17 pa-
rameters where only four appear in the effect. Some domains
such as Sokoban and Pipesworld have at least one existen-
tially quantified variable in all their schemas (see Table 1).
On average, the proportion of action schemas with one or
more existentially quantified variables per domains is 29.4%
and such actions occur in 35 of our 59 domains.

As there are many instances with a potential gain, we im-
plemented and evaluated a successor generator Y that uses
Yannakakis’ algorithm to create only one grounded action
for each choice of distinguished variables. For cyclic action
schemas Y uses the same fall back strategy as FRSJ,<. Sur-
prisingly, using Y in a breadth-first search is slightly worse
than using FRSJ,<. It solves three tasks less on the IPC set
and one less on the HTG set.
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Figure 1: Comparison of the number of generated states be-
fore the last layer with breadth-first search. Showing only
instances with at least one action schema with existential
quantified variables.

Although several instances have potential savings in the
number of generated states using Y , we did not see an im-
provement in our experiments. Figure 1 compares the num-
ber of generated states before the last layer using Y and
FRSJ,< in a breadth-first search. We only show instances
where at least one action schema has a variable that can be
existentially quantified. Most of the instances where Y re-
duces the number of generations are in the different Organic
Synthesis versions (IPC split and non-split and the versions
in the hard-to-ground set).

We also do not see much gain in time and memory. The
only domain where there is a reduction in peak memory is
Organic Synthesis, where Y significantly reduces the num-
ber of generated successors. However, in general, Y has an
additional overhead compared to FRSJ,< and thus the time
saved by avoiding duplicated states usually does not pay off.

Comparison to Grounded Planning

We also compare the performance of our two best methods,
FRSJ,< and Y , to a state-of-the-art grounded planner. We
first compare our methods to the breadth-first search imple-
mented in Fast Downward 19.06 (Helmert 2006).

The IPC set consists mostly of tasks that are easy to
ground, so we would expect a grounded planner to perform
better. Indeed, Fast Downward solves 638 instances, while
FRSJ,< solves 464. Still, the overhead of grounding action
schemas in each state is manageable and the coverage of
FRSJ,< is within 5 tasks of the coverage of Fast Downward
in 42 of the 53 domains. The notable exception in the IPC set
is of course the hard-to-ground domain Organic Synthesis.
As we saw in our previous experiment, FRSJ,< and Y solve
19 of the 20 IPC tasks. In fact, Y needs a total of 10.5 sec-
onds to solve all these 19 instances. Fast Downward solves
only 8 and fails to ground the remaining instances. This indi-
cates that faster search techniques or better heuristics would
not make a difference in these cases.

On hard-to-ground instances, we would expect our meth-
ods to perform better. The first block of Table 2 shows cover-
age results for Fast Downward’s and our blind search meth-
ods on the HTG set. We see that the gap in Organic Syn-
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BFS GBFS

# of Inst. FD FRSJ,< Y FD FRSJ,< Y LAMA L-RPG

Organic Synthesis 56 20 44 44 20 47 50 20 14
Original 20 1 8 8 1 11 14 1 0
MIT 18 2 18 18 2 18 18 2 0
Alkene 18 17 18 18 17 18 18 17 14

Genome Edit Distance 312 46 44 44 312 312 312 312 113
Multi-step 156 24 22 22 156 156 156 156 48
Multi-step, split 156 22 22 22 156 156 156 156 65

Pipesworld-Tankage 50 14 11 10 20 22 22 18 10

Total 418 80 99 98 352 381 384 350 137

Table 2: Coverage for the HTG set. Comparing our two best methods, FRSJ,< and Y , to Fast Downward (FD) with two different
search configuration: breadth-first search (BFS), and greedy best-first search using goal-count as heuristic (GBFS). We also
compare them to the L-RPG and LAMA planners. For each search configuration, the best method in each domain is highlighted.

thesis widens with larger instances that FRSJ,< and Y can
still solve but Fast Downward fails to ground. For the do-
mains Genome Edit Distance and Pipesworld-Tankage, Fast
Downward still solves more tasks, although the difference to
our lifted methods is smaller. In these large instances we ex-
pect Fast Downward’s main bottleneck to be the grounding
while the main bottleneck of our methods is the search. We
thus expect that using an informed search with a heuristic
function will change the results.

To test this hypothesis, we implemented the goal-count
heuristic (Fikes and Nilsson 1971) in our planner. The goal-
count heuristic is an action-independent heuristic that simply
counts the number of ground atoms in the goal condition γ
that are unsatisfied in the state being evaluated. The second
block of Table 2 shows how a greedy best-first search with
this heuristic performs in Fast Downward, FRSJ,< and Y .

We can see that the heuristic indeed had a larger benefit
for lifted methods which now dominate the results of Fast
Downward. With the heuristic, the search expands fewer
states which means the overhead of computing the successor
states is less relevant. A grounded planner on the other hand
requires the same amount of effort to ground the task. This
can be seen in the Organic Synthesis domain, where all tasks
that Fast Downward fails to solve run out of memory. The
same is true for the Pipesworld domain, where our methods
solve 4 tasks that Fast Downward is not able to ground.

On the HTG set, our methods have faster runtimes even
for the instances which Fast Downward can ground. Figure 2
shows the total time spent by Y and by Fast Downward’s
GBFS with the goal-count heuristic. The lifted method is
faster than Fast Downward in most of the tasks. In particular
in the domain Genome Edit Distance (no-split), the ground-
ing process takes too long and dominates the total time. This
plot also shows that the split versions end up reducing some
of the benefits of our methods. When comparing peak mem-
ory, the same behavior is observed. Our planner has a lower
peak memory than Fast Downward in almost all tasks. The
tasks where Fast Downward used more memory are the ones
where it also needed more time. In fact, in these instances,
both the runtime and memory usage were dominated by the
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Figure 2: Total time (in seconds) for Y and Fast Downward
with GBFS and the goal-count heuristic for the HTG set.
The time computed for Fast Downward is the sum of the
grounding and the search procedures.

translator component. This supports the main claim of our
work: the lifted methods introduced here are more adequate
tools for domains where grounding is the main bottleneck. If
these tasks were scaled up, Fast Downward would probably
not be able to finish their grounding, while our lifted planner
would still have a chance to solve them.

Using the heuristic also helps on the IPC instances where
the gap between Fast Downward shrinks from 174 tasks to
163. Fast Downward’s GBFS solves 1213 tasks while both
FRSJ,< and Y solves 1050 tasks when equipped with the
goal-count heuristic. While the effect is smaller on these
benchmarks, we still see that the heuristic had more benefit
in the lifted than in the grounded planner. Better heuristics
could make lifted planners competitive on these domains.

Solving Hard-to-Ground Domains

To get a better understanding of our methods in the hard-to-
ground domains, we also compared them to complete plan-
ning systems. We compared our methods to LAMA (Richter
and Westphal 2010) and to L-RPG, the state-of-the-art plan-
ner using lifted representations (Ridder 2013). The last two
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Figure 3: Total time (in seconds) for Y and L-RPG with
GBFS and the goal-count heuristic for the HTG set.

columns of Table 2 show the coverage results of LAMA and
L-RPG. As we can see, LAMA has a very similar coverage
as a GBFS with goal-count in Fast Downward. This rein-
forces the result that the only bottleneck of these domains
is the grounding and not the search itself. Adding a power-
ful search method to a grounded planner does not improve
the coverage in these domains, simply because the search it-
self is not the most challenging part. The time and memory
usage of LAMA is similar to GBFS with goal-count: both
time and memory consumption are dominated by the trans-
lator component because of the grounding.

The comparison to the L-RPG planner is also very favor-
able to our methods. L-RPG is a lifted planner that also uses
lifted heuristics. The best configuration of L-RPG uses a
lifted version of the FF heuristic (Hoffmann and Nebel 2001;
Ridder 2013). Additionally, L-RPG computes equivalence
relations between objects to find symmetries. The total cov-
erage of L-RPG is 137, while Y solves 384 tasks. L-RPG
does not use sophisticated techniques to generate successors
and thus this is the main bottleneck of the planner. These
results show that for these hard-to-ground domains the suc-
cessor generation is one of the main bottlenecks for lifted
planners. Our methods are also faster than L-RPG in all
instances. Figure 3 compares the total time of L-RPG and
Y . In the smallest instances, the preprocessing to compute
equivalence relations takes more time than our translations
but does not pay off. In larger instances, our methods are
faster than L-RPG in spite of a less informed heuristic. This
could be due to L-RPG spending too much time instantiat-
ing action schemas or to the lifted FF computation of L-RPG
being too expensive in these domains.

Related Work

Planning techniques that do not depend on the ground rep-
resentation of the problem have long existed, although re-
cent research has focused on grounded planning. For in-
stance, some planning-as-satisfiability approaches use en-
codings that avoid the need for grounding all actions at
preprocessing by using propositions representing the actual
grounding of the action executed at each time step (Kautz
and Selman 1992; Kautz, McAllester, and Selman 1996;
Robinson et al. 2008). Similar encodings have been pro-

posed in recent compilations of numeric and temporal plan-
ning to SMT or CSP (Bofill, Espasa, and Villaret 2016;
Espasa et al. 2019; Bit-Monnot 2018). Other approaches to
planning, such as partial order planning, have also explored
the use of lifted instead of ground actions (Penberthy and
Weld 1992; Younes and Simmons 2002; 2003).

In the context of planning as heuristic search, the Un-
pop planner by McDermott (1996) plans with lifted action
schemas using simple unification and regression techniques,
but it was outperformed by other contemporary heuristic
search planners that used grounded representations. Many
of the heuristic search planning techniques use some form
of preprocessing that combines grounding with a relaxation-
based reachability analysis that avoids the grounding of
some of the actions that can be proven not to be applicable
in any state reachable from the initial state (Helmert 2009).
The ground actions that result from this procedure are often
clustered in a decision-tree-like data structure that speeds up
the successor generation task by up to two orders of mag-
nitude on some IPC benchmarks (Helmert 2006). The query
optimization techniques we present in this paper are inspired
by the ones that Helmert (2009) applies to the offline gener-
ation of the set of ground actions, but we apply them in an
online fashion, and explicitly exploit the acyclicity of pre-
condition queries.

More recent work in the context of lifted planning in the
heuristic search context includes the work by Ridder (2013).
Ridder’s L-RPG planner focuses more on lifted versions of
standard heuristics than on the successor generation task,
which is left unaddressed. We compare the performance of
L-RPG with our approach in the experimental results sec-
tion, which offers empirical evidence on the importance of
an efficient lifted successor generator.

Areces et al. (2014) develop an automatic action schema
splitting technique that reduces the number of parameters
of action schemas, at the cost of modifying the state space
topology. Since theirs is a model reformulation approach,
it has the advantage that it can be coupled with any plan-
ner. Gnad et al. (2019) present a machine-learning method
that incrementally grounds larger and larger parts of the
full set of ground actions until a plan can be found. Lifted
approaches have also been considered for other planning-
related tasks such as the computation of problem invariants
and symmetries (Rintanen 2017; Röger, Sievers, and Katz
2018; Sievers et al. 2019; Fišer 2020).

Moving beyond the planning literature, there exists a
wealth of related work in the database field that goes be-
yond the techniques used in this paper. For example, Got-
tlob, Leone, and Scarcello (2002) discuss generalizations
of query acyclicity based on hypertree-width that could be
leveraged in future work. It is also possible to approach
the successor generation problem from other perspectives
that are strongly related to database theory, such as con-
straint satisfaction (Gottlob, Leone, and Scarcello 2000;
Vardi 2000; Dechter 2003). The Rete pattern matching algo-
rithm (and associated data structures) by Forgy (1982) also
addresses closely related problems.
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Conclusions

We have shown how to efficiently perform lifted successor
generation in classical planning using well-known database
techniques. The problem of generating all ground actions
that derive from an action schema and are applicable in a
given state is equivalent to evaluating a query given by the
schema precondition in a database given by the state. In
many cases, the action preconditions of standard planning
domains fall into the tractable case of acyclic conjunctive
queries. We experimentally evaluate different query opti-
mization techniques for both the acyclic and cyclic cases.
Our results show that this approach has an acceptable over-
head in most standard benchmarks, and is a preferable al-
ternative to state-of-the-art grounded planners in domains
that have traditionally been excluded from the International
Planning Competitions because they are too hard to ground.

There are many possible future directions for this work.
Firstly, it would be interesting to cover more expressive
modeling languages supporting features such as conditional
effects and axioms. Secondly, more efficiently dealing with
actions with many parameters makes it possible to revisit
some of the efficiency trade-offs in algorithms that make
use of macro actions (Botea et al. 2005). Finally, the tech-
niques developed in this paper could be combined with lifted
heuristics (Ridder 2013) or other recent planning techniques
that do not require a set of ground actions (Francès et al.
2017).
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