
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Multi-Tier Automated Planning for Adaptive Behavior∗

Daniel Ciolek, Nicolás D’Ippolito
Departamento de Computación

Universidad Nacional de Buenos Aires
Argentina

Alberto Pozanco
Departamento de Informática

Universidad Carlos III de Madrid
Spain

Sebastian Sardiña
School of Science
RMIT University

Australia

Abstract

A planning domain, as any model, is never “complete” and
inevitably makes assumptions on the environment’s dynamic.
By allowing the specification of just one domain model, the
knowledge engineer is only able to make one set of assump-
tions, and to specify a single objective-goal. Borrowing from
work in Software Engineering, we propose a multi-tier frame-
work for planning that allows the specification of different
sets of assumptions, and of different corresponding objec-
tives. The framework aims to support the synthesis of adap-
tive behavior so as to mitigate the intrinsic risk in any plan-
ning modeling task. After defining the multi-tier planning
task and its solution concept, we show how to solve prob-
lem instances by a succinct compilation to a form of non-
deterministic planning. In doing so, our technique justifies
the applicability of planning with both fair and unfair actions,
and the need for more efforts in developing planning systems
supporting dual fairness assumptions.

Introduction

In AI planning (Ghallab, Nau, and Traverso 2004; Geffner
and Bonet 2013), a plan is synthesized against a model of
the environment—a planning domain—to achieve a given
goal from an initial state of the environment. Such model de-
scribes how actions change the world, via the specification
of their preconditions and effects. As any model, planning
domains are never “complete” and they inevitable make as-
sumptions on the dynamics of the environment. A limitation
of standard planning formalism is that they do not account
for deviations from such assumptions, and hence are not well
prepared for integration within an execution framework. A
common approach to handle discrepancies between what the
planner expected and what happened at run-time is to sim-
ply perform re-planning or plan-repair (Fox et al. 2006).
But, why would the system keep reasoning about the same
model of the world that has been proven “wrong”?

As an actor’s view on planning becomes more prominent
in the field (Ghallab, Nau, and Traverso 2014), and inspired
by work in Software Engineering (D’Ippolito et al. 2014),

∗Authors are listed in alphabetical order.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we propose a “generalized” planning framework that aims
to better account for the uncertainties at design/engineering
time. Concretely, rather than fixing the level of risk and ob-
jectives, we envision the specification of various assump-
tion levels, as well as different goals for each assumption
level. This is achieved by allowing the knowledge engineer
to specify a family of planning domains, each carrying a set
of assumptions. For example, in an fully idealized model of
the blocks world, a robotic arm always successfully grabs
blocks, whereas in less idealized models the griper may fail
when picking, maybe missing or even breaking it. Depend-
ing on the assumptions imposed on the gripper operation,
one may aim for different types of block towers.

The aim of the framework is to synthesize not one but
a collection of inter-related policies embedding, together,
adaptive behavior. So, as the environment violates assump-
tions, the agent should gracefully “degrade” to less refined
planning models. Since such models carry less assumptions
on the environment, less functionalities can generally be of-
fered. If the gripper may break a block while picking it,
building a complete block may just not be achievable. So,
with model degradation, comes goal degradation, usually to
a less ambitious (and often less demanding) one.

We call the above framework multi-tier adaptive planning
and is the topic this paper. Let us start with a simple example
to motivate the work and upcoming technical development.

Running Example

Consider a robot moving in a 1× n grid similar to the dust-
cleaning robot example in (Bonet and Geffner 2015). The
robot can walk one cell at a time or it can run covering mul-
tiple cells in one shot. Unfortunately, the physical shape of
the corridor and the physical guarantees of the robot’s actu-
ators are not fully known to the designer. Because of that,
in some scenarios, some cells may be impossible to navi-
gate and the robot may get damaged or even broken. So, the
knowledge engineer considers various possible assumption
levels on the environment’s behavior, together with corre-
sponding adequate objectives.

In the most idealized model D3, the designer assumes that
both walking and running actions succeed with no negative
side-effects. The goal there is for the robot to reach a desti-

66

(:action walk

:parameters

(?o - Cell ?d - Cell)

:precondition (and (at ?o)

(adj ?o ?d) (not (broken)))

:effect (and

(not (at ?o)) (at ?d)))

(:action run

:precondition

(and (at c2) (not (broken)))

:effect (and

(not (at c2)) (at c0)))

(:goal (and (at c0)

(not (scratch))

(not (broken))))

(a) In model D3, any running and walking
always succeeds.

(:action walk

:parameters

(?o - Cell ?d - Cell)

:precondition (and (at ?o)

(adj ?o ?d) (not (broken)))

:effect (oneof

(and (not (at ?o)) (at ?d))

(and (not (at ?o)) (at ?d)

(scratch))))

(:action run

:precondition

(and (at c2) (not (broken)))

:effect (oneof

(and (not (at c2)) (at c0))

(and (not (at c2)) (at c0)

(scratch))))

(:goal (and (at c0) (not

(broken))))

(b) In model D2, agent may move success-
fully but suffer minor scratch damage.

(:action walk

:parameters (?o - Cell ?d - Cell)

:precondition (and (at ?o)

(adj ?o ?d) (not (broken)))

:effect (oneof

(and (not (at ?o)) (at ?d))

(and (not (at ?o)) (at ?d)

(scratch))

(scratch)))

(:action run

:precondition

(and (at c2) (not (broken)))

:effect (oneof

(and (not (at c2)) (at c0))

(and (not (at c2)) (at c0)

(scratch))

(broken)))

(:goal (and (at c2) (not broken)))

(c) In model D1, movements may actually
fail and may even leave the robot broken.

Listing 1: Actions walk left and run left in the three models.

nation cell c0 and intact. In a less idealized D2, both running
and walking actions still cause the robot to advance, but no
assumption can be made on their side effects and movement
may cause minor damages. The robot should then just aim to
reach the target destination c0. Finally, in the least idealized
D1, a walking action may sometimes cause the robot to get
minor damages without even advancing, and even worse, a
running action may get the robot broken and render it un-
usable. Under those weaker assumptions, the robot should
return to base location c2 for servicing.

Under the above multi-tier specification, the robot tries its
best, but adapts its behavior as it discovers some assump-
tions may not hold. To do so, the robot initially assumes
the most idealized world model and thus works for the most
ambitious goal: reach destination undamaged. But, upon ob-
serving an inconsistency with the assumptions, it must adapt
both the model of the environment as well as the objective
being pursued. For example, if the robot succeeds in advanc-
ing when moving but gets a minor damage, it should degrade
to D2. If it actually fails to move at all, it should degrade to
D1 to operate under such level weaker assumptions.

A solution to this scenario must, on the one hand, strive
for the best possible solution and, on the other hand, be
open to a potential future degradation. Concretely, the robot
should never attempt to perform an action that may prevent
graceful degradation. In our example, while, in principle,
running would be the most efficient way to reach the des-
tination, it may cause a catastrophic failure in tier level 1,
precluding the goals of every tier. Thus, the robot must be
conservative and should cautiously move by walking.

Multi-Tier Planning

We propose a multi-tier automated planning framework in
which the knowledge engineer can specify a ranked set of
assumptions about the environment and a corresponding set
of objective goals. A solution to such framework will display
adaptive behavior at execution time, by aligning the model
and objectives w.r.t. run-time observations. Before doing so,
though, we first go over the standard technical machinery for
non-deterministic planning.

A fully observable non-deterministic (FOND) planning
domain (Rintanen 2008; Gerevini, Bonet, and Givan 2006)
is a pair D = 〈V,O〉 consisting of a set of Boolean state
variables V and an operator set O. A state s ∈ 2V is the set
of variables that are true in the state. We use S to denote the
set of all states and l to denote the complement of literal l.

An operator is a tuple 〈o,Preo,Eff o〉, where o is a unique
name, Preo is a Boolean condition over V describing the
preconditions of operator o, and Eff o = e1 | · · · | en, with
n ≥ 1, is the (non-deterministic) effect of o where each ei is
a (set of) conditional effects C ⇒ E with C being a Boolean
condition over V and E a set (conjunction) of literals. The
intended meaning is that one of the ei effects ensues non-
deterministically, by the environment’s choice.

A policy controller is a function π : S �→ 2O that
maps state s ∈ S to a set of (executable) actions π(s).
A policy C executed from state s ∈ S on domain D de-
fines a set of possible executions Exπ(D, s) of the form
λ = s0o0s1 · · · sioisi+1 · · · , where s0 = s, oi ∈ π(si),
si |= Preoi , and si+1 is a possible successor state when oi
is executed in state si w.r.t. domain D, for all i ≥ 0. We
use last(λ) to denote the last state in (finite) execution λ and
Ex(D, s) to the set of all possible executions in D from state

67

s ∈ S (i.e., Ex(D, s) = Exπ∗(D, s), where π∗(s) = O).
Finally, a FOND planning problem P = 〈D, sI , φgoal〉

consists of a FOND domain D, an initial state sI , and a
goal φgoal as a conjunction of literals from V . There has
been several solution concepts for FOND planning depend-
ing on the fairness of non-deterministic actions. Roughly
speaking, a fair action is one in which all effects occur
infinitively often when the action is executed infinitively
many times in the same state (Geffner and Bonet 2013;
Sardina and D’Ippolito 2015). When all actions are assumed
fair, a strong-cyclic plan guarantees that the agent, by “re-
trying,” eventually achieves the goal (Cimatti et al. 2003). In
turn, when no fairness can be assumed, a plan with acyclic
executions that reaches the goal in a bounded number of
steps—a strong policy—is required. The Dual FOND (or
FOND+) hybrid variation has recently been introduced to
deal with domains that have both fair and unfair actions/-
effects (Camacho and McIlraith 2016; Geffner and Geffner
2018). In that setting, a solution amounts to a policy whose
“fair” executions w.r.t. the actions/effects assumed to be
fair (not necessarily all) are goal reaching. Lastly, we note
that while planning under non-determinism is EXPTIME-
complete (Rintanen 2004), effective optimized techniques
and solvers have been developed, and is an area of signif-
icant active work (e.g., (Muise, McIlraith, and Beck 2012;
Kuter et al. 2008; Kissmann and Edelkamp 2009; Muise,
Belle, and McIlraith 2014; Geffner and Geffner 2018)).

With the technical machinery on FOND planning at hand,
we are ready to formally present our framework for multi-
tier adaptive planning. Following (D’Ippolito et al. 2014),
we aim for the knowledge engineering to be able to specify
a variety of models carrying different assumptions.

Definition 1. A multi-tier planning domain (MTD) is a tu-
ple 〈Ω,≤〉 such that:

1. Ω is a set of FOND planning domains over the same vari-
ables V and operator signatures, and every operator has
the same preconditions across all domains in Ω;

2. ≤ is a partial-order relation over Ω such that D1 ≤ D2

implies Ex(D2, s) ⊆ Ex(D1, s) for all states s ∈ S; and

3. ≤ has a greatest element in Ω, denoted D̂, as well as a
minimum element.

The first condition states that an MTD is just a collection
of planning domains over the same vocabulary, with actions
having the same names and preconditions but with possi-
bly different effects across domains. The differences in op-
erators’ effects will reflect different assumptions on the en-
vironment and should reflect model “refinements.” Specifi-
cally, the second condition specifies that domains in lower
tiers of the hierarchy (D1) must produce the same behav-
iors as higher models (D2), and possibly more. The intu-
ition is that higher-level models are “refinements” of lower-
level models, posing possibly more assumptions on the en-
vironment (e.g., by actions having fewer non-deterministic
effects), hence permitting fewer execution runs.

As in standard planning, a problem instance task adds a
specific initial situation and a (set of) objectives.

Definition 2. A multi-tier planning problem (MTP) is a tu-
ple M = 〈〈Ω,≤〉, sI ,G〉 where 〈Ω,≤〉 is an MTD, sI is
M’s initial state, and G is a function mapping each domain
D in Ω to a goal G(D) (or just GD). �

Observe that unlike standard planning approaches, we al-
low the designer to specify various goals, depending on the
risk imposed by the assumptions on the environment. Often,
the weaker the assumptions, the lower level of functionality
that may be guaranteed (D’Ippolito et al. 2014).

Finally, we define a structure that associates a specific pol-
icy to each domain in an MTD, prescribing what behavior
should ensue from the executor under the different models.

Definition 3. A multi-tier controller (MTC) for an MTD
〈Ω,≤〉 is a function C : Ω �→ (S �→ 2O) mapping each
domain D ∈ Ω to a specific policy C(D) (or just CD). �

The challenge now is to formally capture when an MTC
amounts to a “solution” strategy for a multi-tier planning
problem. To do so, it is important to first understand how the
MTC structure is meant to be deployed in the environment.
Intuitively, at any point in time, the executor is operating rel-
ative on some planning domain (i.e., model) of the world D
from the ones available in Ω, by carrying out its correspond-
ing policy C(D) so as to bring about the level’s goal G(D).
Initially, the executor deploys policy C(D̂) from the initial
problem state sI on the most idealized domain D̂, aiming
at achieving the most ambitious goal G(D̂). However, if at
any point during execution, an inconsistency with the current
model Di is observed, the executor ought to switch to an al-
ternative domain Dj ∈ Ω such that Dj ≤ Di. Technically,
an inconsistency amounts to observing an actual state s that
cannot be explained with planning domain Di. Of course,
once the executor switches downwards—referred as degra-
dation—the model it operates on to a more permissive one
(i.e., one with weaker assumptions), the objective sought,
and hence the strategy, must be changed too. A smart ex-
ecutor, though, aims to degrade gracefully, that is, as little
as possible, switching to a planning domain that retains as
many assumptions as possible about the environment (and
the most ambitious goal).

Let us now develop the solution concept for MTPs. We
define the set of triggering states for a domain in an MTD as
those states in which the executor, when deployed in a given
multi-tier controller as per the above operational scheme,
may need to start operating under such domain. As expected,
the initial state sI is the triggering state for the highest level,
most idealized, domain D̂. For other domains, a triggering
state amounts to a degradation step.

Definition 4. Let C be an MTC for a MTD 〈Ω,≤〉, and let s
be a state (over variables VΩ). We inductively define the set
of triggering initial states for each planning domain D ∈ Ω
under C, denoted Init(D, C), as follows:

1. Init(D̂, C) = {sI};

68

2. if D is not the maximum in Ω (i.e., D �= D̂), then

Init(D, C) =
{s | D < D′, s′ ∈ Init(D′),

λ ∈ ExCD′ (D′, s′), o = CD′(last(λ)),
λos ∈ Ex(D, s′) \

⋃

D′′:D<D′′
Ex(D′′, s′).}

�
Let us explain the second case. Suppose the executor has

so far been carrying out policy CD′ on a domain model D′,
from some (triggering) state s′. Suppose this has yielded ex-
ecution run λ (consistent with D′). However, when execut-
ing the next prescribed operator o (as per the corresponding
policy CD′ for D′), the resulting evolution to a state s yields
an execution λos that can be explained by (i.e., its a legal
execution in) domain D but not by any model higher than
D (including D′). When this happens, state s is a triggering
state for D, that is state where the executor may have to start
operating under domain model D when using policy CD.

Next, for a controller C to be a solution for an MTP M, it
must achieve the associated goal of a domain in M from all
the triggering states of the domain in question.

Definition 5. An MTC C is a solution controller for an
MTP M = 〈〈Ω,≤〉, sI ,G〉 iff for every domain D ∈ Ω, the
projected policy CD is a solution plan for planning problem
〈D, s,GD〉, for every state s ∈ Init(D, C). �

Note that, unlike standard planning, this definition re-
quires each policy to work from more than one initial state.
However, it is not the case that all policies in C need to work
from the initial state sI . Such a requirement would be too de-
manding for capturing the intended operational framework
as described above, this is because most policies, if not all
but CD̂, will ever be used at state sI (unless the system comes
back to such state after some degradation).

Solving Multi-Tier Planning Problems

Informally, an MTP is a collection of similar planning prob-
lems and a solution amounts to solution policies for each
problem that can be “connected”, if necessary, at degrada-
tion time. A naive approach thus would repetitively compute
solution policies for each planning problem, making sure
they “connect.” We show here we can solve the whole prob-
lem in a principled manner and in one shot. Concretely, we
build a single Dual FOND planning task PM from a given
MTP M such that a strong-cyclic solution for PM amount
to an MTC solution for M. To argue for technique’s gener-
ality, we first identify a meaningful fragment of MTDs.

Definition 6. A planning domain D2 = 〈V2, O2〉 is an
oneof-refinement of a domain D1 = 〈V1, O1〉 iff V1 = V2

and for every 〈o,Pre2o,Eff 2o〉 ∈ O2, there is a D1-operator
〈o,Pre1o,Eff 1o〉∈O1 such that Pre1o=Pre2o and Eff 2o⊆Eff 1o; �

That is, D2 is like D1 but may contain fewer non-
deterministic effects on some operators. It turns out that, in
the context of Dual FOND planning, oneof-refinements cap-
ture all possible refinements in a multi-tier planning task—
any MTD is equivalent to a oneof-refinement type.

Theorem 1. Let 〈Ω,≤〉 be an MTD and D1,D2 ∈ Ω. Then,
D1 < D2 (i.e., planning domain D2 is a refinement of do-
main D1) iff there exists a planning domain D′

2 such that:

1. Ex(D2, s) = Ex(D′
2, s), for all s ∈ S (that is, D′

2 are
equivalent planning domains); and

2. D2 is an oneof-refinement of D1.

This states that the only meaningful difference between
ordered domains in Ω comes, only, in the refined do-
main (D2) having less (in terms of set inclusion) non-
deterministic effects in some operators.

Compilation to Dual FOND Planning

Let M = 〈〈Ω,≤〉, sI ,G〉 be a a multi-tier planning problem
such that D ≤ D′ if and only if D′ is a oneof-refinement of
D. Due to Theorem 1, restricting ≤ to a oneof-refinement re-
lation does not affect generality. From now on, for technical
legibility and without loss of generality, we assume domains
in Ω are STRIP-like with no conditional effects.1

In this section, we shall construct a single dual-FOND
planning problem PM = 〈DM, sM, GM〉 that will fully
capture problem M. For compactness, we use EffDo to de-
note the effects of operator o in planning domain D. We also
abuse notation and treat non-deterministic effects as sets.

Let us start by explaining the general strategy being en-
coded into PM. Roughly speaking, the planning problem
PM will model a dynamic system running as per multi-tier
specification M. As such, at any time, the system is op-
erating relative to some model D in Ω (initially, the most
ambitious D̂), trying to achieve D’s goal via an appropriate
plan, and degrading to an adequate (lower) model when ac-
tion outcomes’ do not align with model D. To achieve this,
the encoding will model an iterative two-phase process in
which an acting phase is, sometimes if necessary, followed
by an alignment & degradation phase. A special variable
act is used to distinguish both phases. As expected, during
an acting phase, an operator representing some domain ac-
tion is executed. This step involves the execution of a non-
deterministic action with fair semantics, and the optional
subsequent execution of an unfair version of the action. In
the latter case, the system will then evolve to an alignment
phase, in which the encoding verifies whether the outcomes
seen correspond to the assumed current model D; and if not,
the behavior is “degraded” to an appropriate (lower-level)
model that is able to explain the observed outcome.

It turns out that one of the key challenges is to encode
a proper and scalable alignment phase in a planning do-
main (i.e., in PDDL): how can we encode that a given effect
could be explained by some model in Ω (but not by another
model)? In some sense, doing so would amount to reducing
meta-level reasoning to the object (PDDL) level. We show
that, via a clever encoding, that reduction is indeed possible.
The technical difficulty is depicted in the following example.

1All results can be generalized to domains with conditional ef-
fects, but would result in a significantly more cumbersome presen-
tation and notation without providing significant insights.

69

Example 1. Consider the case in which the robot is oper-
ating in the highest domain model D3 and decides to ex-
ecute action walk. Upon execution, the robot senses vari-
able scratch true—the robot is now damaged. In the stan-
dard (intuitive) configuration, in which the robot starts non-
damaged, the robot should degrade its operational model to
domain D2, as that is the highest model explaining the dam-
age. However, if the robot happens to start damaged (i.e.,
scratched) already, then domain model D3 still explains the
transition, and no degradation should occur. Here, walk’s
effects under D3 and D2 are indistinguishable.

This example shows that just observing a proposition
(scratch) in a transition that does not appear in an ef-
fect (walk’s effect under D3) does not directly imply the
effect may not explain the transition. Can we then charac-
terize, succinctly, under which conditions a set of observed
propositions E is explained by some operator o in a domain
model D? It turns out we can.
Definition 7 (Effect Explicability). Let E be a set of liter-
als (e.g., effects that have just seen to be true after an action
execution). The conditions for operator o in domain D to
explain E, denoted Explains[o,D, E], is defined as follows
(recall Δ is the set symmetric difference operation):

Explains[o,D, E] =
∨

E′∈EffDo

∧

l∈EΔE′
l.

�
That is, some effect E′ of o in model D yields the
same result as effect E, if all the literals that one ef-
fect has an the other does not were already true (at
the outset of o’s execution). In our Example 1, if we
take E to be the second effect of walk in D2 (i.e.,
E = {(not (at ?o)),(at ?d),(scratch)}) we
have Explains[walk,D3, E] = scratch, as the literal
scratch is the only one in the effects’ symmetric differ-
ence.

Observe that if E and E′ are inconsistent, the formula will
contain the conjunction of a proposition and its negation,
thus reducing to false. In fact, the following result guarantees
the intended meaning of the above definition.

Lemma 1. Let s, s′ ∈ 2V ∪V be two domain states. Let E ∈
2V ∪V ⊇ s′ \ s be a set of literals including at least all new
literals in s′ w.r.t. to s. Then, state s′ is a possible successor
when operator o is executed in state s′ under model D if and
only if s |= Explains[o,D, E].

We are now ready to provide the encoding of M into a
dual-FOND planning problem PM = 〈DM, sM,GM〉.

Domain variables. The set of propositional variables V +

of DM is obtained by extending the set of variables V in
M’s domains with the following additional variables:
• εD, for each domain D ∈ Ω, that will be used to signal

that model D is a/the highest model explaining the effect
of the last executed action;

• �D, for each domain D ∈ Ω, that will be used to track the
most “ambitious” compatible model so far;

• act, use to denote the system is in the acting phase (oth-
erwise, it is in the alignment phase);

• uo, for each operator o ∈ D̂, that will be used to ensure
the execution of a unfair action; and

• end, used to denote the goal achievement of the current
model of execution.

Initial state & goal condition. The initial state of PM is:

sM = sI ∧ [�D̂ ∧
∧

D∈Ω−
(¬εD ∧ ¬�D) ∧ act ∧ ¬end].

This encodes the initial state sI of the MTP M and the
fact that the system starts in the Ω’s greatest, most ambi-
tious, domain model D̂ (proposition �D̂ and all other �x’s
are false) and in the action phase. In addition, all effect level
signaling variables εx are initialized to false (no action has
been executed), as well as the goal variable end.

Finally, the goal condition of PM is simply GM = end.
We will see below which actions make variable end true.

Domain operators. The planning domain DM will in-
clude two types of operators, one for modeling the actual do-
main actions and one for implementing the alignment check
(and potential degradation) process. Let us start with the for-
mer.

So, for each (domain) operator o in domain D ∈ Ω, we
include a operator 〈oD,Pre,Eff 〉 in DM, where:

• Pre = PreDo ∧ �D ∧ act ∧ ∧
o∈D̂ ¬uo, that is, action oD

is executable when o itself is executable in D, and the
system is currently operating under model D and is the
fair-acting phase (act is true and all ux are false); and

• Eff = EffDo ∪{uo}, that is, when operator oD is executed,
either one of original effects of o in D ensues or a distin-
guished predicate ou is made true.
When one of the effects of o in domain D happens, it just

resembles the dynamics of domain D. However, if the effect
that ensues is uo, the system evolves into a “unfair-acting”
phase (act ∧ uo), explained after the following example.
Example 2. The resulting walk action for the domain level
D2 in the compilation would look as follows in PDDL:

(:action walk_d2

:parameters (?o - cell ?d - cell)

:precondition (and (at ?o) (adj ?o ?d) (not (broken))

(d2) (act) (not (u_walk)) (not (u_run)))

:effect (oneof

(and (not (at ?o)) (at ?d))

(and (not (at ?o)) (at ?d) (scratch))

(u_walk)))

Next, when the the system evolves to the unfair-acting
phase (e.g., due to effect u_walk happening in the example
above), the only executable action will be a second version
of domain operator o, which in turn will include all effects
of o across all domains in Ω, together with additional book-
keeping variables εx to support the next alignment, and po-
tential degradation, reasoning phase. More concretely, for

70

each domain operator o in D̂, DM includes a rather power-
ful operator 〈ounfair,Pre,Eff 〉, where:
• Pre = act ∧ uo ∧ Preo, that is, the system is in the unfair-

acting phase for operator o; and
• Eff is a set of nondeterministic effects, each being a col-

lection (i.e., conjunction) of conditional effects built as
follows. For every effect E of operator o that is men-
tioned in a domain D but not in any lower one (i.e.,
E ∈ EffDo \⋃D′:D′<D EffD

′
o), Eff contains, as one of its

non-deterministic effects, the following complex effect:
∧

D′:D′≥D
(CE

D′ ⇒ E ∧ ¬act ∧ ¬uo ∧ εD′),

where CE
D′ =Explains[o,D′, E]∧

∧

D′′:D′′>D′
¬Explains[o,D′′, E].

Intuitively, the operator ounfair contains each possible
effects E of o (from any domain in M) as a non-
deterministic option. In turn, the set of conditional effects
for a particular effect E will not only make the effect
E itself ensue, but will also set a “marker” proposition
εD signaling the highest domains explaining the effect in
question. To realize that, condition CE

D′ above states that
the original effect E is explained (as per Definition 7) by
(some effect of) operator o at domain model D′ but not
by any other model higher than D′. When that is the case,
proposition εD′ is set to true, recording the fact that D′
is the highest model explaining such effect. Observe that
by the way all conditions are designed, they ought to be
mutually exclusive, so only one εx will be made true. In
addition, act is set to false so as to force the reasoner into
the alignment phase, to be explained shortly. (We note that
the effects of level D itself are accounted when D′ = D.)
Importantly, while oD operator will be treated fair, action

ounfair will be treated as unfair—this is where dual FOND se-
mantics (Geffner and Geffner 2018) come into play. Also, as
the following example shows, significant syntactic simplifi-
cations can be achieved in ounfair by analyzing conditions in
conditional effects and precondition of the action.
Example 3. Let us see complete Example 2 by showing the
unfair version of the walk action. After syntactic simplifica-
tion w.r.t. conditions and the action precondition, we obtain
the simpler, more readable, equivalent action:

(:action walk_unfair

:parameters (?o - cell ?d - cell)

:precondition (and (act) (u_walk)

(at ?o) (adj ?o ?d) (not (broken)))

:effect (and (not (act)) (not (u_walk))

(oneof

(when (true)

(and (not (at ?o)) (at ?d) (e3)))

(and (when (not (scratch))

(and (not (at ?o)) (at ?d) (scratch)

(e2)))

(when (scratch)

(and (not (at ?o)) (at ?d) (e3))))

(when (true) (and (scratch) (e1))))))

As we discussed before, this unfair action contemplates
the effects present in all the domain models. The intended
meaning of this is that whenever an action executes, it may
fail and we may observe effects of any domain level. How-
ever, we do not want the planner to rely on these possible
failures, so we contemplate them as unfair actions.

Alignment & degradation operators. When the unfair
version of a domain operator has been executed, an effect
could ensue that might not be explained by the current do-
main under which the reasoner is operating under (encoded
via propositions �x). If so, the system ought to gracefully
degrade to a lower level model that is able to explain the last
system evolution. We encode this reasoning, and potential
degradation, in the so-called alignment phase (act is false).

In the best case, the state observed after the execution of
an action corresponds to one of the expected ones w.r.t. the
current planning domain model the executor is operating un-
der. Technically, the reasoner continues operating under cur-
rent model D (proposition �D is true), provided domain D
has been able to explain the evolution of the last executed
action: proposition εD′ has been set to true for some domain
D′ that is either D itself or a higher one in the hierarchy
(recall effects in higher level domains are subsets of). So,
in such case, the planner (and executor) is able to execute
special action 〈CONTINUED,Pre,Eff 〉 to keep planning/ex-
ecuting under the current model and goal:

• Pre = (¬act∧�D∧∨
D′≥D εD′), that is, the action can be

executed during the alignment phase when the current do-
main or one of its refinements accounts for the last effect
outcome.

• Eff = (act ∧ ∧
D∈Ω− ¬εD), that is, effect signals are all

reset and the system goes back to the action phase.

If, on the other hand, the state observed does not con-
form to the current operating model (i.e., proposition εD is
false), then the system must degrade to a lower tier where
the environment model would fit the observation, and ad-
just the objective to the corresponding (often less ambitious)
goal. Needless to say, we expect a “smart” reasoner/execu-
tor to degrade as little as possible, by retaining as many as-
sumptions on the environment as possible and only dropping
those that have been observed to be wrong. This will allow
the agent to aim for the highest, most valuable, goal so far.

Technically, when D,D′ ∈ Ω such that D′ < D, we in-
clude an operator 〈DEGRADEDD′ ,Pre,Eff 〉 in PM, where:

• Pre = ¬act ∧ �D ∧
∨

{D∗:D∗≥D′,¬(D≥D∗≥D′),D∗ �≥D}
εD∗ ; and

• Eff = ¬�D ∧ �D′ ∧∧
x∈Ω(¬εx ∧ act).

That is, the controller can degrade from current operating
domain D to domain D′ if the last effect seen was explained
by lower domain D′ or any other domain higher than D′ that
is unrelated to D (so as to handle MTPs with a non-linear
structure). The effect results in the controller being degraded
to level D′ (proposition �D′ becomes true), all booking ex-
plicability effect prepositions εx being reset, and the rea-
soner progressing to the acting phase.

71

Note that, effectively, the dynamics of level variables �x
are outside the control of the reasoner, as these depend only
on which non-deterministic effects have occurred and how
(i.e., how variables εx have been set).

Goal operators. The only part remaining is the overall
goal of the multi-tier problem. Intuitively this should be
“achieve the highest level goal”, which under a conservative
degradation process, it reduces to “achieve the goal of the
current operating model.” We therefore include goal actions
〈CHECKGOALD, (GD ∧ �D), end〉, one per domain D ∈ Ω.

This completes the encoding of a multi-tier planning
problem M into a single non-deterministic planning domain
PM. We now prove its correctness w.r.t. Definition 5. First,
any solution policy for the planning task amounts, as is, to a
solution to the corresponding multi-tier planning problem.

Theorem 2. If π is a strong-cyclic solution for PM, then
controller Cπ(D) is an MTC solution for M, where:

Cπ
D(s) = π(s ∧ �D ∧ act ∧

∧

o∈D̂
¬uo), for all s ∈ S.

Proof Sketch. Consider si ∈ S and D ∈ Ω such that
si ∈ Init(D, Cπ), and an infinite and fair execution λ ∈
ExCπ (D, si). We show that goal G(D) holds true somewhere
along λ as follows:

1. We transform λ into an execution λ̂ ∈ ExCπ (DM, s+i),
with s+i = si ∪ {act, �D}, by adding propositions act and
�D to every state in λ and replacing every domain operator
o with its oD version.

2. If soD appears infinitively often in λ̂, we replace every
second appearance of the form soDs′ by two-action steps
soD(s ∪ {uoD})ounfair(s

′ ∪ {act, εD′}) such that D′ ≥ D
is the highest domain in Ω that contains the effect of o that
supports the transition soDs′—we know there is one be-
cause λ̂ is a legal execution in DM from state s+i . By do-
ing this changes in λ̂ we are guarantee that the execution
is fair, while still preserving the fact that every domain ac-
tion in it has the effects as per domain D. So, execution λ̂
mirrors the original λ for domain D but over the extended
language of DM.

3. Because si ∈ Init(D, Cπ), there exists a finite execu-
tion λi ∈ Exπ(DM, sI) (i.e., execution in PM via pol-
icy π) that ends in state si ∪ {�D, act}. This means that
λiλ̂ ∈ ExCπ (DM, sI), and since λiλ̂ is fair (w.r.t. the
fair actions) and λ̂ has λD always true, it follows that
λ̂ has to reach the PM’s goal by executing operator
CHECKGOALD. Then, its precondition GD holds true at
some point in λ̂ and therefore in λ too. �

That is, the MTC controller C under domain D and in state
s, what the strong-cyclic solution for PM prescribes when
�D is true and the reasoning cycle is in the acting phase.

In addition, any possible MTC solution will be repre-
sented by some strong-cyclic policy of PM (i.e., complete-
ness).

Theorem 3. If C is an MTC solution for M, then there ex-
ists a strong-cyclic solution π for PM such that Cπ(D) =
C(D), for every domain D in M (where Cπ(D) is as in The-
orem 2).

Proof Sketch. Policy π follows the domain actions pre-
scribed by CM exactly, augmented with the booking aux-
iliary actions as needed. A similar argument, based on exe-
cution traces, as in Theorem 2 can be built. �

We close by noting that the size of PM is increased by a
linear number of bookkeeping propositional variables, and
a quadratic number (w.r.t. the number of domains in Ω)
of extra actions. So, while the multi-tier planning frame-
work appears to be more involved than the standard (non-
deterministic) planning, it can be suitably reduced to the
latter, with an encoding that is, arguably, fairly natural and
comparable in size. Importantly, though, the solution pro-
posed relies on the fact that we can specify both fair and
unfair actions in the same planning model. This is a feature
that will prove a challenge when actually realizing the tech-
nique in current planning technology, as we shall see next.

Validation and Discussion

In this section, we demonstrate that MTPs can indeed be
solved today with existing planning technology, but argue
that additional effort in Dual FOND is necessary. The first
obstacle is the availability of FOND planning technology
supporting both fair and unfair assumptions. To the best of
our knowledge, the only off-the-shelf planner to do so is
Geffner and Geffner (2018)’s FOND-SAT system. By lever-
aging on SAT solvers, their system yields an elegant declar-
ative technique for FOND planning that features the pos-
sibility of combining fair and unfair actions. So, we report
on using FOND-SAT over the encoding for our non-running
example. Notwithstanding, the experiments reported are in-
tended to demonstrate the existence of systems to solve
MTPs and to provide a baseline for future work, rather than
for providing a performance evaluation.

Listing 2 shows a fragment, in a readable plan-like format,
of the outcome when FOND-SAT is ran on our encoding for
the non-running example.2 First of all, the plan cautiously
avoids the run action altogether, as it may get the robot bro-
ken and precludes the achievement of all tier goals.

After performing the walk fair-version action in (line 2)
corresponding to the highest model D3, the plan checks its
effects (line 3). If proposition u_walk remains false (lines
4-9), the effect in model D3 has occurred—the robot has
done a successful move. If another walk (line 4) succeeds
as well (lines 5-7), the robot achieves the top level D3’ goal
(line 6). Note that, in such a run, no alignment action is in-
cluded: the walk unfair version has never been performed
and hence only effects of D3 has ensued.

If, instead, the first walking action (line 2) yields the spe-
cial effect u_walk, the plan jumps to line 11. There, the

2The full plan as well as more experiments can be found in the
extended version of this paper (Ciolek et al. 2020). The code to
perform the compilation from a MTP to Dual-FOND task can be
found at https://github.com/ssardina-planning/pypddl-translator.

72

1(:plan [

2 (walk_d3 c2 c1)

3 (if ((not (u_walk))) [

4 (walk_d3 c1 c0)

5 (if ((not (u_walk))) [

6 (check_goal_d3)

7])

8 ...

9]

10 (else) [

11 (walk_unfair)

12 (case (eff_e3_walk) [

13 (walk_e3_explained_by_d3)

14 (continue_d3)

15 ...

16]

17 (case (eff_e2_walk) [

18 (walk_e2_explained_by_d2)

19 (degrade_d3_d2)

20 ...

21]

22 (case (eff_e1_walk) [

23 (walk_e1_explained_by_d1)

24 (degrade_d3_d1)

25 ...

26]

27]])

28

Listing 2: A fragment of the policy found by FOND-SAT.

only action available is the unfair version of walking (line
11), which has all the effects, as non-deterministic options,
of the walking action across all domains D3, D2, and D1.
As FOND-SAT does not handle conditional effects, we sim-
ulate each conditional effect for the effect chosen by a set
of walk_eE_explained_by_dx whose precondition is
CE

Dx
, together with the original precondition of the operator

(walk in this case). Finally, if the effect chosen could be ex-
plained by the current operating domain (line 13, explained
by domain D3), the system executes a continue operation at
the current level, enabling the next domain action. On the
other hand, when the effect is explained by a lower domain
than the one operating under (lines 18 and 23), degradation
to the corresponding domain is carried out (line 19 and 24).
It is easy to see how this plan also represents a MTC, by tak-
ing only the fair versions of the operators (all other actions
and propositions encode the controller’s internal memory).

Now, what would happen if the robot starts scratched,
as discussed in Example 1? It turns out the problem be-
comes unsolvable. The reason is that any observed scratch
after movement does not need to be explained by a dif-
ferent model than D3, as the scratch is explained already
by being true originally. Thus, when walking always ad-
vances the agent, it would never degrade its behavior, re-
main operating in D3 without ever achieving D3’s goal.
If, however, we drop the non-scratched requirement from
D3, the problem would be solvable again, though with a
slightly different policy. The robot would just try to achieve

the top goal, degrading only to D1 if it does not move
after a walk action. Since, as discussed, D2’s scratch ef-
fect would be explained by D3 itself, line 18 would be-
come walk_e2_explained_by_l3 and line 19 would
become continue_l3.

While the above demonstrates the possibility to solve
MTPs using existing planning technology, running our sim-
ple example takes around 600 seconds to produce a 29 states
controller in an i7-4510 CPU with 8GB of RAM, when us-
ing the off-the-shelf version of the planner. This clearly in-
dicates the need for more and better dual-FOND implemen-
tations or the development of specialized optimizations for
MTPs. For example, as we are only allowing degradation
and not upgrades, one can modify the SAT encoding to spec-
ify a number of controllers to be used per domain level,
without allowing transitions from lower to upper levels. In
preliminary tests we did we experienced a speed-up of ap-
prox 30%. Another optimization involves an estimation of
the number of controllers required to solve the MTP, for ex-
ample by running the top level domain which will provide a
lower bound.

Conclusions

To some extent, this work aims to contribute to Ghallab,
Nau, and Traverso (2014)’s call for an actors’ perspective
on planning, by proposing a planning-based framework that
“integrates better planning and acting.” Under such frame-
work, the knowledge engineer has the opportunity to con-
sider multiple levels of assumptions and goals. The prob-
lem amounts to synthesizing a meta-controller that is able
to gracefully degrade its “level of service” when the as-
sumptions on the environment are not met. We developed
a compilation technique to construct such adaptive meta-
controllers via dual-FOND planning. We note that plain
FOND planning, under which every action is assumed fair,
would not work: the agent could decide to keep trying an
action to obtain one of its “failing” effects so as to force an
un-intended degradation that will activate an “easier” lower-
level goal (this artifact was already observed by Camacho
and McIlraith (2016)).

Our work is related to works aiming to extend the classical
planning formalism to accommodate more robust behavior,
including Fault Tolerant and Robust Planning (FTP), e.g.,
(Domshlak 2013; Buffet and Aberdeen 2005), planning with
richer “dynamic” goals, e.g., (Lago, Pistore, and Traverso
2002; De Giacomo et al. 2016; Shivashankar et al. 2012).
It also keeps some relationship with different control archi-
tectures (Myers 1999; McGann et al. 2008), though those
systems tend to replan when goals (or perceived state) hap-
pen to change, whereas we aim to generate policies that take
into account all the scenarios prior to the system’s execution
(as per model). See (Ciolek et al. 2020) for more details.

As stated, our proposal was inspired by that of D’Ippolito
et al. (2014) in Software Engineering. Their account,
though, is limited to a linear hierarchy of models, so inde-
pendent assumptions, as in our example, cannot be repre-
sented. Moreover, D’Ippolito et al.’s framework require so-
lution (sub-)controllers of lower tiers to simulate those in

73

upper tiers, and thus it would not be able to handle our no-
running example. Finally, being rooted in knowledge repre-
sentation, we are able to exploit planning technology.

There are several limitations of our framework in its cur-
rent form. The approach is based on lattice structures that
do not guarantee full ordering of environment models. As
a consequence, the executor may have to arbitrarily select
and commit to one degradation option from multiple avail-
able ones, without being able to re-consider such choice later
on upon further inconsistencies. Also, we have not provided
a mechanism for enhancement, that is, for “upgrading” to
more refined models, for example, when certain transient
failure has been fixed. An option could be allowing the spec-
ification of known repair actions as part of the model (e.g.,
servicing an artifact or emptying a tank) that would ”fix” a
given unintended effect. It is not clear, however, how to en-
force the execution of such repair actions only when they
(re)enable higher-level goals.

Acknowledgements
Alberto Pozanco carried out this work during his visit to
RMIT University supported by FEDER/Ministerio de Cien-
cia, Innovación y Universidades – Agencia Estatal de Inves-
tigación TIN2017-88476-C2-2-R and RTC-2016-5407-4.

References
Bonet, B., and Geffner, H. 2015. Policies that generalize: Solv-
ing many planning problems with the same policy. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI),
2798–2804.
Buffet, O., and Aberdeen, D. 2005. Robust planning with (l)rtdp.
In Proc. of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 1214–1219.
Camacho, A., and McIlraith, S. A. 2016. Strong-cyclic planning
when fairness is not a valid assumption.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147(1-2):35–84.
Ciolek, D.; D’Ippolito, N.; Pozanco, A.; and Sardina, S. 2020.
Multi-tier automated planning for adaptive behavior (extended ver-
sion). In arXiv e-prints, https://arxiv.org/abs/2002.12445.
De Giacomo, G.; Gerevini, A.; Patrizi, F.; Saetti, A.; and Sardina,
S. 2016. Agent planning programs. Artificial Intelligence 231:64–
106.
D’Ippolito, N.; Braberman, V. A.; Kramer, J.; Magee, J.; Sykes,
D.; and Uchitel, S. 2014. Hope for the best, prepare for the worst:
multi-tier control for adaptive systems. 688–699.
Domshlak, C. 2013. Fault tolerant planning: Complexity and com-
pilation. In Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS).
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan stability:
Replanning versus plan repair. In Proc. of the International Con-
ference on Automated Planning and Scheduling (ICAPS), 193–202.
AAAI Press.
Geffner, H., and Bonet, B. 2013. A Concise Introduction to Models
and Methods for Automated Planning. Morgan & Claypool Pub-
lishers.

Geffner, T., and Geffner, H. 2018. Compact policies for fully ob-
servable non-deterministic planning as SAT. In Proceedings of the
Twenty-Eighth International Conference on Automated Planning
and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29,
2018., 88–96.

Gerevini, A.; Bonet, B.; and Givan, B., eds. 2006. Booklet of 4th
International Planning Competition.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann Publishers Inc.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2014. The actor’s view
of automated planning and acting: A position paper. Artificial In-
telligence 208:1–17.

Kissmann, P., and Edelkamp, S. 2009. Solving fully-observable
non-deterministic planning problems via translation into a general
game. In Proceedings of the Annual German Conference on AI,
1–8.

Kuter, U.; Nau, D., S.; Reisner, E.; and Goldman, R., P. 2008. Us-
ing classical planners to solve nondeterministic planning problems.
In Proc. of the International Conference on Automated Planning
and Scheduling (ICAPS), 190–197.

Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Planning with a
language for extended goals. In Proc. of the National Conference
on Artificial Intelligence (AAAI), 447–454.

McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.; and
McEwen, R. S. 2008. A deliberative architecture for AUV control.
In 2008 IEEE International Conference on Robotics and Automa-
tion, ICRA 2008, May 19-23, 2008, Pasadena, California, USA,
1049–1054. IEEE.

Muise, C.; Belle, V.; and McIlraith, S. A. 2014. Computing con-
tingent plans via fully observable non-deterministic planning. In
Proc. of the National Conference on Artificial Intelligence (AAAI).

Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved non-
deterministic planning by exploiting state relevance. In Proc. of the
International Conference on Automated Planning and Scheduling
(ICAPS), 172–180.

Myers, K. L. 1999. CPEF: A continuous planning and execution
framework. AI Magazine 20(4):63–69.

Rintanen, J. 2004. Complexity of planning with partial observabil-
ity. In Proc. of the International Conference on Automated Plan-
ning and Scheduling (ICAPS), 345–354.

Rintanen, J. 2008. Regression for classical and nondeterministic
planning. In Proc. of the European Conference in Artificial Intelli-
gence (ECAI), 568–572.

Sardina, S., and D’Ippolito, N. 2015. Towards fully observable
non-deterministic planning as assumption-based reactive synthe-
sis. In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI), 3200–3206.

Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-agent
planning. In Proc. of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 981–988.

74

