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Abstract

Multiple-environment Markov decision processes (MEMDPs)
are MDPs equipped with not one, but multiple probabilis-
tic transition functions, which represent the various possi-
ble unknown environments. While the previous research on
MEMDPs focused on theoretical properties for long-run av-
erage payoft, we study them with discounted-sum payoft and
focus on their practical advantages and applications. MEMDPs
can be viewed as a special case of Partially observable and
Mixed observability MDPs: the state of the system is perfectly
observable, but not the environment. We show that the specific
structure of MEMDPs allows for more efficient algorithmic
analysis, in particular for faster belief updates. We demon-
strate the applicability of MEMDPs in several domains. In
particular, we formalize the sequential decision-making ap-
proach to contextual recommendation systems as MEMDPs
and substantially improve over the previous MDP approach.

1 Introduction

Planning under probabilistic uncertainty is one of the core
problems in artificial intelligence, and Markov decision pro-
cesses (MDPs) are the standard model for it. MDPs consist
of a finite state space and finite action space along with a
probabilistic transition function that, given a state and action,
gives the probability distribution of the next state (Howard
1960). Every transition is also assigned a reward value. A
history is a sequence of state and action pairs, and a policy
specifies the choice of the next action for every history. The
classical objective for MDPs is to maximize the expected
discounted sum of the rewards (Puterman 1994).

To further model uncertainty in the planning process,
the MDP model is extended with partial observation, such
that state space is not perfectly observable. This leads
to partially-observable MDPs (POMDPs) (Sondik 1971;
Papadimitriou and Tsitsiklis 1987; Littman 1996). While sig-
nificant progress has been made for point-based solvers for
POMDPs (Kurniawati, Hsu, and Lee 2008; Pineau et al. 2003;
Smith and Simmons 2012; Shani, Brafman, and Shimony
2007; Spaan 2004), solving large POMDPs is still a challeng-
ing problem and an active research area.

Given the challenge to solve large POMDPs, an attractive
research direction is to identify a special subclass of POMDPs
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allowing more efficient analysis. In particular, there are two
properties or challenges that must be satisfied: first, this spe-
cial class must allow for more efficient algorithmic analysis,
and second, it must be able to model interesting applications.
For example, to model robotics applications, mixed observ-
ability MDPs (MOMDPs) have been considered; in this case,
the state space is a product space where the first component
is perfectly observable and the second component is partially
observable (Ong et al. 2010).

In this work, we consider multi-environment MDPs
(MEMDPs) (Raskin and Sankur 2014). MEMDPs are MDPs
equipped with not one, but multiple probabilistic transition
functions. These multiple transition functions represent the
various possible unknown environments. We study the prob-
lem of computing policies in MEMDPs with discounted-sum
payoff that maximizes the expected payoff, as well as their
practical advantages and applications.

Our contributions are as follows:

1. Efficient analysis. We show that MEMDPs are a special
class of MOMDPs (hence also POMDPs): there is no
information about the unobservable component and the
unobservable component does not change state. We show
that this specific structure of MEMDPs allows for more ef-
ficient algorithmic analysis; in particular, they have sparse
transitions, which allows for faster belief updates (linear
as opposed to quadratic). We also prove another property
of MEMDPs: they have monotone average belief entropy,
i.e. the uncertainty about the current state never increases.

2. Applications. We show that MEMDPs with discounted-
sum payoff provide adequate model for several applica-
tions, in particular for recommendation systems and para-
metric MDPs with unknown parameter values. In a rec-
ommendation system, MDPs represent the behavior of
customers, and hence the different probabilistic transition
function represents different types of customers, and the
decision making proceeds without knowing the precise
type. Hence recommendation systems are naturally mod-
eled as MEMDPs. Parametric MDPs consist of MDPs
where certain transition probabilities depend on some pa-
rameter values. When the parameter values are unknown,
but each parameter has a discrete range, then every com-
bination of parameter values represents an environment,
and thus they are naturally modeled as MEMDPs.



3. Implementation and experimental results. We propose an

implementation] of our efficient solutions for MEMDPs,
and report experimental results for stochastic maze explo-
ration, recommendation systems, and parametric MDPs;
and show that our approach outperforms the existing ap-
proaches.

Related Work. We discuss relevant related works in the
items below.

* MDPs and POMDPs. MDPs are a standard model for plan-
ning under uncertainty (Puterman 1994). Their partially-
observable extensions, the POMDPs, have also been
widely studied, both for theoretical results (Littman 1996;
Papadimitriou and Tsitsiklis 1987) as well as practical
tools (Kurniawati, Hsu, and Lee 2008; Silver and Veness
2010), including point-based methods (Pineau et al. 2003;
Smith and Simmons 2012; Spaan 2004) and simulation
techniques (Geffner and Bonet 1998; Silver and Veness
2010).

MOMDPs. MOMDPs and efficient algorithms for them
have been considered in literature for robotics applica-
tions (Ong et al. 2010). MEMDPs are a special class of
MOMDPs that allows for much simpler belief updates, and
yet can model interesting applications.

MEMDPs. MEMDPs have been studied with the focus
on theoretical properties and for long-run average pay-
off in (Raskin and Sankur 2014). However, this is quite
different from the discounted-sum payoff scenario. Since
long-run average payoffs are independent of finite pre-
fixes, policies can play long to learn (explore) in MEMDPs
with such payoff, and then play optimally with respect to
the environment (exploit). In MEMDPs with discounted-
sum payoff there is an exploration-vs-exploitation tradeoft.
Moreover, in contrast to the theoretical study of MEMDPs
with long-run average payoff, we focus on practical ap-
proaches to solve MEMDPs with discounted-sum payoff.
We show how several important problems can be modelled
in this framework, and present experimental results.

Parametric MDPs. The control problem for parametric
Markov chains has been considered in (Ceska et al. 2019),
however, this work does not consider MDPs. The control
problem for parametric MDPs has been studied in (Arm-
ing et al. 2018); however, general POMDPs are used for
algorithmic analysis, whereas we propose MEMDPs to
model them and present efficient algorithm for MEMDPs.

MDPs with Imprecise Parameters (MDPIPs). In MD-
PIPs (White III and Eldeib 1994; Delgado, Sanner, and de
Barros 2011; Itoh and Nakamura 2007), there is a contin-
uum of possible transition functions and a “nature”player
can select any transition probability function for each ac-
tion in every decision epoch. In contrast, in MEMDPs
the environment is fixed throughout the duration of the
interaction, but it is not known precisely.

Related models. In Interval MDPs (Sen, Viswanathan, and
Agha 2006), the transition probabilities are not known but
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belong to known intervals. Hence, they can be seen as con-
tinuous counterparts of MEMDPs. In (Fern and Tadepalli
2010) they study Hidden Goal MDPs, which are analo-
gous to MEMDPs. However, the authors actually study
a restricted version of the model suitable for modeling
interactive assistants (HAMDPs), and the focus is on theo-
retical aspects (theoretical complexity and regret analysis).
In (Doshi-Velez and Konidaris 2013) they study Hidden
parameter MDPs, where Hidden parameters influence tran-
sition dynamics of the MDP. Their focus is on defining a
suitable generative model of how the hidden parameters in-
fluence the transition dynamics and on learning an instance
of such a model from observational data. In (Poupart et al.
2006) they employ a sophisticated representation of the
optimal value function to adapt the classical value iteration
to models where the hidden parameter space is uncount-
able. While the approach is very generic and elegant, the
presented experiments run on systems with at most 10 ob-
servable states. Finally, in (Wang et al. 2012) they focus
on proving that the uncountable-space model of (Poupart
et al. 2006) can be approximated by suitable Monte-Carlo
based discretization, which produces models analogous to
MEMDPs. The focus is on defining this discretization and
proving that the resulting discrete system approximates
the original one, but the discrete system is solved using
a point-based solver SARSOP for general POMDPs. In
contrast, we focus on two main aspects: First, we present
efficient algorithmic analysis of MEMDPs with discrete en-
vironment space and arbitrary transition dynamics within
each environment. We show that both point-based and
simulation-based general POMDP solvers can be signifi-
cantly optimized to exploit the structure of MEMDPs. One
particular novelty of our paper is proving that MEMDPs
admit linear-time belief updates. Second, we show that
MEMDPs together with our improved POMDP solvers
are effective for solving real-life problems with large num-
ber of states (with focus on recommender systems). To
summarize, our paper complements the previous works on
analogous models by focusing on efficient optimization in
discrete-space MEMDPs and showing the applicability of
these models on a real-life case-study.

* Recommendation systems. In previous work, recommenda-
tion systems have been modelled as MDPs (Shani, Hecker-
man, and Brafman 2005; Brafman, Heckerman, and Shani
2003). However, these approaches ignore the aspects of
unknown environments, i.e. they aggregate the behaviour
of all customers into a single probabilistic environment.
We show that modelling as MEMDPs, to take the variabil-
ity of customer preferences into account, can improve the
performance of contextual recommendation systems.

2 Preliminaries

We present the definitions of POMDPs, MEMDPs, strategies,
objectives, and other basic notions required for our results.
Throughout this work, we follow standard POMDP notations
from (Puterman 1994; Littman 1996).



2.1 Partially Observable Markov Decision
Processes

We denote by D(X) the set of all probability distributions
on a finite set X, i.e. all functions f : X — [0,1] s.t.
Yuex f(z) = 1. For f € D(X) we denote by Supp(f) the
support of f,i.e.theset {x € X | f(x)>0}.

Definition 1 POMDPs. A Partially Observable Markov
Decision Process (POMDP) is defined as a tuple P =
(Q, A, 8,1, Z,0,)\) where Q is a finite set of states; A is a
finite alphabet of actions; 6 : Q x A — D(Q) is a probabilis-
tic transition function that given a state s and an action a € A
gives the probability distribution over the successor states,
i.e., (q,a)(q") denotes the transition probability from q to
q" given action a; v : Q x A — R is a reward function; Z is a
finite set of observations; O : Q — D(Z) is a probabilistic
observation function that maps every state to an distribution
over observations; and \ € D(Q) is the initial belief.

We use d(q'|g,a) as a shorthand for §(q,a)(q"), O(o|q)
as a shorthand for O(q) (o), etc.

Perfectly observable Markov Decision Processes (MDPs)
can be seen as a special case of POMDPs where Z = () and
for each state ¢ the distribution O(q) assigns 1 to g.

Plays and Histories. A play (or a path) in a POMDP is
an infinite sequence p = (q07 ag,q1,01,42,02, - - ) of states
and actions such that gg € Supp(A) and for all 7 > 0 we have
5(qi,ai)(gi+1) > 0. We write Q for the set of all plays. A
finite path (or just path) is a finite prefix of a play ending with
a state, i.e. a sequence from (S'-.A)* - S. A history is a finite
sequence of actions and observations h = @107 ...a;-10; €
(A-Z)* s.t. there is a path w = spa151 . ..a,-18; with o; €
Supp(O(s;)) foreach 1 < j <.

Beliefs. A belief b is a probability distribution on the set
of states, i.e., b € D(Q). We denote by B the set of all beliefs.
Informally, a belief gives the probability of being in a particu-
lar state of the POMDP given the past history of observations
and actions. At each point of a play, the current belief can
be exactly determined by looking at the prefix of the play
up to this point: the initial belief by is given as a part of the
POMDP; in i-th step, when the current belief is b;, an action
a; € A is played and an observation o € Z is received, it is
straightforward to compute the updated belief b;,; for the
new situation (Cassandra 1998).

Infinite-horizon Discounted Payoff. Given a play p =
(90, a0,q1,a1,q2,a2,...) and a discount factor 0 < v < 1,
the infinite-horizon discounted payoff Disc, of the play p is
Disc, (p) = XiZo 7' (gi, as).-

Strategies (or Policies). A strategy (or a policy) is arecipe
to extend prefixes of plays. Formally, it is a function o :
(2-A)*-Z - D(A) that given a finite history of observations
and actions selects a probability distribution over the actions.

Values of Strategies. Given a POMDP P, a strategy o,
and a discount factor -, the value v of ¢ is the expected value
of the infinite-horizon discounted payoff under strategy o, i.e.
the quantity v(o) = E{[Disc,].

Remark 1 For maximizing (or minimizing) the expected
infinite-horizon discounted sum, deterministic belief-based
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strategies (i.e. strategies o such that for each history h the
distribution o(h) is determined solely by the belief after
observing h) are known to be sufficient (Sondik 1971).

2.2 Multi-Environment Markov Decision
Processes

We define Multi-environment Markov Decision Processes
(MEMDPs) analogously to the definition in (Raskin and
Sankur 2014). Informally, an MEMDP consists of a finite
collection of perfectly observable MDPs, all of which have
an identical state space but differ in their transition functions
(i.e. in the probabilistic environments). We start in one of
these MDPs, selected at random. During the play we can
observe the current state, but we cannot observe in which of
the MDPs the state lies (the knowledge of the state does not
yield any knowledge about the MDP, as the MDPs have the
same state set). During the course of the play it is not possible
to switch to a different MDP, i.e. we play against a randomly
chosen but then fixed environment. A formal definition of an
MEMDP is given below.

Definition 2 MEMDPs. An MEMDP is a tuple M =
(Z,S, A, {0 }iex, {ri }iez, S0, \) where T is a finite set of en-
vironments; S is a finite set of control states; A is a finite
alphabet of actions; {0; }icz is a collection of probabilistic
transition functions, one for every environment i € L, each
being of type §; : S x A — D(S); {ri}iez : is a set of re-
ward functions, each of type r; : S x A — R; sg € S is the
initial state; and \ € D(X) is the initial distribution over the
environments. For simplicity and without loss of generality
we assume that all actions are enabled in all states and all
environments, i.e., for every state s € S, environment i € T,
and every action a the support of the distribution 6;(s, a) is
non-empty.

Each MEMDP M can be translated, in a natural way,
into a POMDP P,; whose state set is ) = S x Z, ob-
servation set is Z = S, transition function and rewards
are derived from M, and where observation received in
state (s,4) equals s with probability 1. Formally, for an
MEMDP M = (Z,S,A,{0;}icz, {ri}ticz,S0,\) We con-
struct a POMDP Py = (Qar, Anr, Oar5 701, 21, Ong, Anr)
where (i) the set of states is Qs = S x Z; (ii) the set of ac-
tions remains unchanged, i.e., Ay; = A; (iii) the transition
function is defined as 557 ((s,%),a)((s',7")) = ;(s,a)(s")
if 7 = 7" and 0 otherwise; (iv) the reward function is de-
fined as 7 ((s,4),a) = r;(s,a); (v) the set of observa-
tions is Zj; = S; (vi) the observation function is defined
as Onr((s,2))(s") = 1if s = s’ and 0 otherwise; (vii) the
initial belief is defined as Aps((s,4)) = A(4) if s = 59 and O
otherwise.

Example 1 Consider an MEMDP M with T = {1,2},
S = {s;t}, A = {a,b} and 61,00 as follows:
01(s,a) and 01(t,b) both assign probability 1 to state s,
01(s,b) and 61(t,a) both assign probability 1 to t, and
02(s,a),02(s,0),02(t,a),d2(t,b) are all identical, assign-
ing probability % to each of the two states. Assume s is the
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Figure 1: A POMDP associated to the MEMDP from Ex-
ample 1. Action names are pictured next to corresponding
transitions, grey rectangles indicate observations (note that
the observation function is deterministic, i.e. each state pro-
duces one concrete observation with probability 1). For suc-
cinctness, rewards (all of them equal to 1) and branching
probabilities are not pictured. The initial belief assigns prob-
ability 1 to (s,1) and (s,2).

initial state, the initial distribution over I is uniform, and all
rewards equal 1. The POMDP Py is pictured in Figure 1.

3 Advantages of MEMDPS and Relationship
to MOMDPS

In this section, we show that MEMDPs are a special case
of mixed-observability MDPs (MOMDPs), while offering
additional advantages: sparse transition representation, faster
belief updates and monotonic average belief entropy.
MOMDPs. Mixed-observability MDPs were introduced
in (Ong et al. 2010) as a model of systems in which certain
features of the state space are perfectly observable while the
others are not and can be observed only through imprecise
sensors. Formally, MOMDPs can be viewed as POMDPs
whose states are tuples (z,y) € X x ), where X’ and ) are
sets of perfectly and imperfectly observable features, respec-
tively. The transition function § is given by two functions
Ox: XxYxA—-D(X)and dy: X xYx AxX - D()) such
that §((2',y")|z,y,a) = ox(a'|z,y,a) - oy (y'|x,y,a,x").
Since the features in X are perfectly observable, we can
view the observations in MOMDPs as tuples (z, z), where
x € X, and z belongs to a fixed set of observations Zy. The
observation function O then satisfies, for each (x,y) € X' x ),
the condition Supp(O(z,y)) < {z} x Zy. This shows that
MOMDPs can be viewed as a sub-case of POMDPs.
MOMDPs vs. MEMDPs. We observe that MEMDPs
can be in turn viewed as a special case of MOMDPs: a
MEMDP (Z, S, A, {0; }iez, {ri }iez, S0, A) can be framed as
a MOMDP by putting X = S, Y = Z, and Zy being a sin-
gleton set (since in MEMDPs we do not observe, even par-
tially, any aspect of the environment apart from how it af-
fects the probabilistic outcomes of actions), and by setting
dx(2|x,y,a) =9, (x’|x a) (note that y is an environment)
and 0y (y'|z,y,a,2") = A, (y ), where A, is a Dirac distri-
bution concentrated on y: A, (y') is 1 if y' = y and is equal
to 0 otherwise.
To complete our picture of the relationships between
POMDPs, MOMDPs, and MEMDPs, we note that each
POMDP (Q, A, 0,7, Z,0,\) can be viewed as a MOMDP
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with X = {d}, where d is a dummy element, Y = Q,
dx(dld,q,a) = 1, and 6y(q'|d, q,a,d) = 6(q'|q,a) for all
(g,a) € @ x A. Hence, MOMDPs encompass the whole
structural complexity of POMDPs. On the other hand, the
form of MEMDPs is truly restricted, since there cannot be a
transition of positive probability between two states that may
yield the same observation.

To summarize, the special structure of MEMDPs rests in the
fact that the partially observable features are actually

* hidden, i.e. Zy is a singleton, the only observations we
receive are the perfect observations of observable features.

* static, i.e. once the initial partially observable (PO) feature
(the environment) is sampled, it is not changed ever again.

In particular, MEMDPs are indeed not an alternative to
(P/M)OMDPs, but a special case, with a special structure
exploitable for more efficient analysis.

In the following paragraphs we demonstrate three concrete
advantages of this special structure.

Sparse Transitions. As follows from the definition of a
MOMDP, to encode its transition function we need at most
|X[%-|V] - |A] + |X|? - [V)? - | A| numerical entries (the first
term corresponds to J x, the second to dy). On the other hand,
representing a transition function of a MEMDP requires at
most |S|? - |Z| - |.A|, which is asymptotically better than what
MOMDP might need, as there is no quadratic dependence on
Y (recall that in the MEMDP-MOMDP correspondence we
have X = S and ) = 7). Having a compact representation of
a transition function allows for more efficient utilization of
memory, which is important for analysis of large POMDPs.

Faster Belief Updates. The belief update is a very com-
putationally demanding part of algorithmic POMDP analysis.
Given a previous belief b, a last played action a and a con-
sequently received observation o, the task is to compute the
current belief U, b The full belief update can be computed
via a stralghtforward application of Bayes’ formula: the prob-
ability of being in a state ¢ under the new belief is

O(olq) - Eyreq (b(q") - 9(qld’, a))
Yueq (@) - X neq 0(q"d",a) - O(olg™)

The denominator can be computed using quadratic (in size
of the state set) number of arithmetic operations, due to the
double summation, but it is independent of ¢. The nomi-
nator requires a linear number of operations, but needs to
be computed for each ¢. Hence, the standard update needs
a quadratic number of operations, a rather demanding task
if the state space is large. In MOMDPs one only needs to
maintain the belief over the partially observable features, so
in (1) the summations range over ). Although this somewhat
improves the computation, since the number of partially ob-
servable features can be smaller than the number of states,
the quadratic dependence remains. In MEMDPs, the only un-
certainty is about the environment, i.e. beliefs can be viewed
as tuples (s,b), where s € S and b € D(Z) is an environment
belief. Given a previous belief (s, ), an action a, and an ob-
servation t € S (recall that observations in MEMDPs are the

same as control states), the new belief is (¢, U(fst’b)), where

U2 ,(q) = (1)



Ua(;"b) is computed via (1) as

ez (i) -6((,1)](s,i"), a)
Zi’eI b(il) ’ Zi”zl’ 5((t1 il’)l(sv i,)v a)
But due to the partially observable features being static in
MEMDPs, we have 6((¢,)[(s,i’),a) = §;(t|s,a) if i = ¢’
and 0((¢,1)|(s,i"),a) = 0 otherwise. Hence, (2) reduces to

b(i) - 6;(t|s,a)
Sirez b(i") - 0ur(t]s,a)

The nominator can be computed, for each 7, with a single
arithmetic operation, while the denominator can be computed
once with linearly many (in |Z|) operations and again re-used
for all 7. Hence, in MEMDPs, the environment belief update
requires /inearly many operations.

Monotonic Average Belief Entropy. In POMDPs and
MOMDPs it may inevitably happen that the uncertainty about
the current state strictly increases. Indeed, consider a sim-
ple POMDP with three states g, u, v, a single action a, two
observations 01, 02 such that in ¢ we always receive o1 and
in u and v we always receive 09, and transition function §
s.t. (ulg,a) = 6(vlg,a) = % and §(ulu,a) = 6(vlv,a) = 1.
Whenever we are in state ¢, we know it exactly, i.e. the belief
in such a situation is b = (1,0,0). However after playing

the only possible action a the new belief is U” op = = (0,1 > 2
To formalize the notion of “uncertainty about the current
state,” we use the standard notion of Shannon entropy (Shan-
non 2001). The Shannon entropy (or simply, entropy) of a
discrete distribution f € D(X), where X is a finite set, is
defined as

") =

@

RIOE 3)

Mﬁ:zﬂmM&@@)

zreX

(a convention stipulates that 0 - log,(1/0) = 0). The higher
the entropy, the more uncertainty there is about the outcome
of sampling from f. In particular, the entropy of a belief
b represents the uncertainty about the current state. In the
example above, H(b) = 0 and H(U?,, = (0, %,é ) =1.
MEMDPs differ very much in this respect: no matter the
environment belief and which action we take, the entropy
of the subsequent belief will not increase on average (where
the average is taken over all observations, i.e. states of the
MEMDP, that we can receive after taking the action).

Theorem 1 Let M = (Z,S, A, {0; }iez, {7i }iez, S0, \) be a
MEMDP and let (s,b) € S x D(Z) and a € A be arbitrary.

Denote by Ua(,s_’b) a random vector which for each t € S

returns the updated environment belief U a(ft’b). Then
E[H(USP)] < H(b).

We note the existence of POMDP solving methods that
use the expected change of entropy as a heuristic to guide the
analysis (Cassandra 1998).

Despite MEMDPs having a very specific structure, they
can be used to model and solve interesting problems. We
cover these in the rest of the paper.
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4 Optimized Solvers

In this section we show how the special structure of MEMDPs
can be leveraged to optimize the execution of several standard
POMDP-solving algorithms.

Sparse Point-Based Value Iteration (SPBVI). Value iter-
ation (VI) is a standard algorithm for solving MDPs (Bellman
1957), which was also extended for a use in POMDPs (Sondik
1971), where it iteratively builds a more and more precise ap-
proximation of the optimal value function (which can be then
used to identify optimal behaviour). After n iterations the
output of VI consist of set V;, of |Q|-dimensional a-vectors,
and the optimal payoff achievable from any belief b can then
be approximated as max,ey, b-«, where - denotes the vector
dot-product. The main drawback of VI is that the set V;, may
grow very fast with the number of iterations. The Point-Based
Value Iteration (PBVI) algorithm (Pineau et al. 2003) allevi-
ates this scalability issue by approximating an exact value
iteration solution on a restricted set of beliefs and retaining
only some a-vectors in each step.

For MEMDPs, we consider a modified version of PBVI,
the sparse PBVI (SPBVI). This algorithm utilizes the spe-
cial structure of MEMDPs in several ways. First, it reduces
memory consumption by working with factorized transition
function. Next, we modify the algorithm to work with beliefs
of the form (s,b) € S x D(Z) instead of beliefs over the
entire space S x Z (this is straightforward, as in the POMDP
reformulation of a MEMDP M there is no reachable belief
assigning a positive probability to two tuples (s,1), (¢,7)
with s # t). This modification is similar to the one used for
MOMDPs, although (Ong et al. 2010) modify the SARSOP
algorithm instead of PBVI. We also integrate the linear-time
belief updates mentioned in Section 3 into SPBVI.

Monte Carlo MEMDP Planning. Off-line methods
based on value iteration may not scale to very large POMDPs.
To overcome this issue, on-line methods for solving POMDPs
were developed, which, instead of computing the whole (¢)-
optimal policy, compute only its local approximations needed
to select an (e)-optimal action for the current belief (Ross et
al. 2008; Geffner and Bonet 1998). One such well-known
algorithm is the partially observable Monte Carlo planning
(POMCP, (Silver and Veness 2010)). POMCP performs, in
each step, when the history is h and current belief is b, a
number of finite-horizon simulations starting from b in order
to compute an approximation of the optimal value function.
After all the simulations proceed, the best action according to
the estimated values is played, a new observation is received,
and the process continues as above. The crucial aspect of
POMCP is that the results of past simulations are stored in
a so-called search tree T, whose nodes correspond to some
of the histories that extend h. The information stored in 7
affects the way in which actions are selected in future simu-
lations, in order to balance exploration of yet undiscovered
paths with exploitation of information gained in the previ-
ous simulations. If a simulation produces a history not yet
stored in 7, a new node is added with information on the
outcome of this simulation. In particular, each node of T
stores the approximation of a belief for the corresponding



history?, so that beliefs do not have to be updated all the time.
To make belief updates even more efficient, the beliefs are
approximated using a Monte Carlo particle filter.

We consider several ways in which POMCP can be opti-
mized for use on MEMDPs. First, in all our modifications of
POMCP we exploit the factored transition function to allow
for more efficient sampling of successor states during simula-
tions. We also work with beliefs over the environment rather
than over S x Z. On top of these modifications, we consider
exact belief updates and past-aware POMCP.

Belief updates in POMCP. POMCP performs fast and
approximate belief updates using particle filters. We call this
standard variant POMCP-pf. While the method is highly
efficient, it can lead to accuracy issues due to particle depri-
vation. As exact belief updates can be done in linear time in
MEMDPs, we consider a variant of POMCP with exact belief
representation and updates according to Equation (3). We call
this variant POMCP-ex. We aim to show that this modifica-
tion of POMCP, which was hinted as useful for POMDPs
with small state space in (Silver and Veness 2010), can be
efficiently applied to MEMDPs with a large number of states.

Past-Aware POMCP (PAMCP). When POMCEP finishes
the round of simulations for history h, selects an action a,
and gets observation o, it only keeps the sub-tree 7" rooted in
the node corresponding to history hao as the new search tree;
the remaining branches are pruned away. However, in many
application domains of MEMDPs, such as recommendation
systems described below, we need to perform many execu-
tions of the planning algorithm in quick succession: e.g. for
a recommender system, customers arrive continuously, and
serving each customer amounts to a single execution of the
online planning algorithm starting with empty history of ac-
tions and observations. Hence, it makes sense to pass all the
information from the simulation to future executions. We de-
note by PAMCP (“past-aware”) the variant of POMCP which
does not prune the search tree during its execution, so that the
whole tree can be passed to future executions. We distinguish
PAMCP-pf and PAMCP-ex depending on whether PAMCP
uses particle filters or an exact representation of beliefs.

S Applications and Experiments

5.1 Applications

We apply MEMDPs in several domains, in particular for
recommendation systems and parametric MDPs.
Recommender Systems. Recommender systems have
multiple real-life applications such as e-commerce or media
recommendation platforms. Their aim is to predict a user’s
preference in order to make adequate recommendations. Two
main categories of such systems are usually found in the lit-
erature: content-based filtering approaches seek to map user
profiles to items based on the item’s characteristics, while
collaborative filtering approaches exploit the knowledge of
user’s past choices to make recommendations. We focus on
the latter setting: (Shani, Heckerman, and Brafman 2005)
and (Brafman, Heckerman, and Shani 2003) formulated a

?In each step, the current belief is uniquely determined by the
current history and the initial belief.
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sequential-decision making approach to recommendations
systems as MDPs, where states encode the user’s past be-
haviour, and actions account for the recommendations® made
by the system. We extend this formulation to MEMDPs in
order to take the variability between users’ profiles into ac-
count. That is, in the MDP formulation the transition proba-
bilities (e.g. a probability that the user clicks on a link given
her previous history of interactions and the recommenda-
tion performed) are inferred from aggregated historical data
of all user’s interaction with the system. In contrast, in our
MEMDP formulation we cluster customers according to vari-
ous attributes (age, sex, etc.), and for each cluster we infer a
probabilistic transition function characterizing the behaviour
of customers within the cluster. In our experiments, we first
consider a synthetic dataset designed to exhibit high differ-
ence between environments. Secondly, we experiment with
real-life data, by exploiting actual past sequences of users
choice. We first cluster the sequences in order to build the
environments, and we then infer the system’s transition proba-
bilities from these sequences using a classical k-gram model
(where k is the history length) with maximum likelihood
estimation (Indurkhya and Damerau 2010, Ch. 15).

Parametric MDPs. Parametric MDPs consist of MDPs
where certain probabilities are specified in terms of parameter
values; e.g., given parameters x and y, outgoing transition
probabilities in state sy can be x and 1 — z; outgoing tran-
sition probabilities in state s; can be 2z and 1 — 2z; and
outgoing transition probabilities in state so can be = + y and
1 — x — y; and so on. For parametric MDPs where the values
of the parameters are unknown and each parameter has a
discrete range, every possible combination of values for the
parameters represent an environment. Thus they are naturally
modeled as MEMDPs.

Multi-Environment Robot Navigation. We also evaluate
our algorithms on an MEMDP variant of the standard Hall-
way benchmark (Littman, Cassandra, and Kaelbling 1995).
We consider a model of a robot navigating towards a goal
state with potential errors in movement (i.e. each action has
a small probability to fail and not be performed, dependent
on the environment) in a labyrinth whose exact structure is
hidden, but is known to be drawn out of a pool of mazes.

5.2 Experiments

Recommendation Experiments. We run the MEMDP-
optimized algorithms on two instances of the recommender
model: First, an instance obtained from an artificially gen-
erated dataset, where each customer shows a strong prefer-
ence towards buying a certain item. Second, we consider an
instance obtained from a real-life Microsoft Foodmart re-
tail dataset*. While similar datasets exist in the data mining
and pattern analysis community, they are often anonymized,
which makes it harder to cluster users, or they contain very
short sequences, unfit for reliable probability estimates.

To evaluate the algorithms’ performance, we use several

3These are represented as an ordered lists of recommended items,
similar to online search engines.

*Microsoft Foodmart retail database, http:/www.philippe-
fournier-viger.com/spmf/index.php?link=datasets.php



(synth) MDP SPBVI POMCP-pf | POMCP-ex
accuracy | 0.10+0.03 || 0.77 £0.09 || 0.67 = 0.19 | 0.75 = 0.08
env. pred. - 0.96 = 0.04 || 0.83 +£0.23 | 0.94 = 0.05
time 0.26s ~ 12h 19.9s 20.5s
(a) Results for N = 10 and k = 2 (|Z] = 10, |S| ~ 100)
(synth) MDP SPBVI POMCP-pf | POMCP-ex
accuracy | 0.12 +0.03 - 0.64 +0.27 | 0.77 = 0.07
env. pred. - - 0.79 £ 0.33 | 0.96 + 0.04
time 5h30mn Out of mem. 9mn36s 14s

(b) Results for N =8 and k=5

(IZ] = 8,1S] ~ 38000)

(synth) MDP SPBVI POMCP-pf | POMCP-ex
accuracy | 0.02 +0.01 - 0.04 £0.09 | 0.40 = 0.15
precision | 0.03 + 0.01 - 0.08 +0.09 | 042 +0.15
env. pred. - - 0.06 +0.10 | 0.50 + 0.15
time 6mnS8s Out of mem. ~1h47mn 7mn10s

(c) Results for N = 60 and k = 2 (|Z] = 60, |S| ~ 4000)

(F-mart) MDP SPBVI POMCP-pf | POMCP-ex
accuracy | 0.15+0.06 || 0.16 + 0.06 || 0.11 £0.05 | 0.13 £ 0.06
precision | 0.19 £ 0.05 - 0.26 + 0.05 | 0.29 + 0.06
env. pred. - 0.73£0.26 || 0.23 +0.21 | 0.49 + 0.20
time 12s 4mn34s 1mn46s 1mn20s

(d) Results for N =22 and k = 2 (|Z] = 5, | S| = 507)
(F-mart) MDP SPBVI POMCP-pf | POMCP-ex
accuracy | 0.61 £0.14 | 0.62 £ 0.14 || 0.62 £ 0.14 | 0.62 £ 0.14
precision | 0.74 + 0.09 - 0.78 + 0.08 | 0.78 + 0.08
env. pred. - 0.60 + 0.31 || 0.54 +0.35 | 0.53 +0.36
time 11mn57s 12mn38s 46s 23s

(e) Results for N =3 and k = 8 (|Z| = 5, |S| = 9841)
(synth) POMCP-pf POMCP-ex PAMCP-pf | PAMCP-ex
accuracy | 0.64 +0.27 || 0.77 £ 0.07 || 0.68 + 0.24 | 0.75 + 0.08
env. pred. | 0.79 £ 0.33 || 0.96 + 0.04 || 0.85 +0.30 | 0.94 + 0.06
time 9mn36s 15s 14s 36s

(f) Comparison of the POMCP variants in the setting (b).

Table 1: Recommendation system results for the synthetic and real-life (Foodmart) dataset. N = number of items, £ = maximal
length of customer’s past behaviour we track. For each setting we consider an MDP formulation of the problem (MDP, solved
via Value Iteration), and an MEMDP formulation solved by various algorithms: sparse PBVI (SPB VI), and several modifications
of POMCP, which differ in whether they use exact (-ex) or Monte Carlo particle filter (-pf) belief updates, and in whether they
are past-aware (PAMCP-) or not (POMCP-). We do not report the precision for SPBVI as we could only access the best action
recommended by the policy and not the scores for each action in the underlying PBVI implementation.
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Figure 2: Plots of success and crash rates in the parameterized Hallway benchmark. The x axis is log-scale. Another case is one
where the robot neither reaches a target state (success) nor a sink “trap” state (crash), but instead keeps wandering in loops.

information retrieval evaluation measures (Rijsbergen 1979,
Chapter 7), such as the prediction accuracy, which measures
how often the user selects the first item on the recommen-
dation list. When it is possible to recommend many items
at once, the accuracy carries limited information on the sys-
tem’s performance as it only accounts for the best prediction.
Hence, when possible, we also report precision of the recom-
mender, which assesses how well the user’s actual preference
is ranked in the recommendations list. More formally, at each
planning step the POMCP algorithm returns an approxima-
tion of optimal value for each action (i.e., each item) and we
use these values to rank the recommendations (recommenda-
tion with the best value is ranked first, etc). Then we compute
the reciprocal rank of the item the user actually selects in this
list. We average these reciprocal ranks over all time steps,
hence, the precision can be interpreted as a mean reciprocal
rank (in each step we assume only one relevant item - the one
selected by the user). Since each user’s interaction can be in

54

principle of any length, we aggregate the scores of the met-
rics using a discounted payoff with discount factor vy = 0.95.
We also measure how well each algorithm managed to sort
customers it interacts with into correct profiles (environment
accuracy, env. pred.: since all the POMDP solvers keep (in
some form) track of the current belief about the environment,
we compute the environment identification success rate ac-
cording to the average probability it assigns to the correct
environment.

The Monte Carlo algorithms were evaluated with 1000
simulation iterations and horizon 2. Using larger horizon
only leads to slight improvement in performance. VI's and
SPBVI’s parameters are chosen so as to give the best results
in reasonable solving time. As baselines, we compare with
the performance of POMCP-pf (which corresponds to stan-
dard POMCP with additional optimization for computational
efficiency, hence is comparable in terms of accuracy) to study
the benefits of our optimizations, and with that of the MDP



formulation (solved via Value Iteration), to highlight the im-
portance of explicitly considering different environments for
this type of applications.

The results of the experiments, including the total run-
ning time of each algorithm, are presented in Table 1. We
note that the POMDP obtained from MEMDP has |Z| - |S|
states, i.e. we solve POMDPs (of a special shape) whose size
ranges from 1000 to more than 200,000 states. We observe
that when there is a significant difference between the envi-
ronments, the MEMDP-based recommender systems always
outperform the MDP-based one; This is especially true in the
synthetic dataset experiments by design (tables (a), (b), (c)
and (f)). Secondly, POMCP-ex outperforms POMCP-pf both
in recommendation and environment prediction accuracy, es-
pecially when the model contains numerous environments,
which shows the benefits of leveraging the MEMDP structure.
The performance of MEMDP algorithms against the MDP
baseline is less competitive in the Foodmart scenario, where
there are high correlations between user’s preferences. Still,
MEMDP models typically yield higher precisions, which
is a meaningful measure in a real-life scenario as users are
typically suggested several recommendations, not just one.
The MDP approach uses value iteration over the whole state
space. This method is inefficient for large state spaces, since
the complexity of a single iteration is worst-case quadratic.

In Table 1 (f), we also see that POMCP-ex offers, among all
4 POMCEP variants, the best trade-off between running time
and accuracy (PAMCP-pf is slightly faster, but has worse
accuracy). Overall, the experiments suggest that in terms
of prediction accuracy, MEMDPs are most valuable where
there are many different types of customers with varying
preferences. However we still observe some improvements
even in the smaller settings: In particular, POMCP-ex, i.e. the
variant with exact belief updates, almost always outperforms
POMCP-pf. This shows the importance of having exact belief
updates, which the MEMDP formulations allow to perform
efficiently even for large state spaces. Also, SPBVI is much
more computationally efficient than PBVI (which typically
runs out of memory or does not finish in a reasonable time
on most of these settings), while preserving the accuracy.

Parametrized MDPs We consider a parameterized ver-
sion of the classical maze-solving Hallway benchmark.
The goal is to reach a target cell without being destroyed
in a trap. The layout of the maze is known in advance
(we use a maze of dimension 5 x 10), but the probabil-
ity p of an error in movement (“skidding” off the desired
direction of movement) is an unknown parameter from
the set {0,0.01,0.02,0.04,0.08,0.16,0.32,0.45}. We com-
pared two approaches to the situation: modeling it as a
POMDP (akin to (Arming et al. 2018)) solved with the
POMCP algorithm, and modeling as a MEMDP solved with
PAMCP-ex. We evaluated the “success rate” and “crash” met-
rics (the ratio of evaluation runs in which we reached a target
cell, and in which we fell into a trap, respectively). The results
are pictured in Figure 2. We observed that the POMDP solver
always takes the “risky” path close to the trap, no matter the
environment, due to its inability to detect a safer but longer
alternative path. This daredevil strategy performs well for
safe environments but fails for the riskier ones. We see that
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length env. pred. success time
(A) | 28.0+234 | 0.97+0.32 | 0.67+0.32 | 16mnl2s
(B) | 50.8+10.3 | 0.38+0.35 | 0.37+0.34 | 1h2Imn
(©) | 143+8.3 | 0.50+£0.32 | 0.92+0.21 | 2mn22s

Table 2: POMCP-pf for the maze-solving problem.

the POMDP version only behaves reasonably for low values
of p, effectively failing to take into account the risk-taking
aspect. In particular, the crash rate rises very dramatically for
the POMDP approach. On the other hand, in the MEMDP
formulation we achieve a much more balanced performance
throughout the parameter range. For small values of p, the
success rate of PAMCP-ex is smaller, since the algorithm
hedges for the possibility that the value of p is high. On the
other hand, the crash rate is much more even and with increas-
ing p: the MEMDP approach is able to detect danger and act
extremely conservatively, significantly decreasing the crash
rate. Moreover, the MEMDP was much faster: a single eval-
uation episode took, on average, 1479.35s for the POMDP
approach and only 30.15s for the MEMDP approach.

MEMDP Hallway. Finally we consider a MEMDP ver-
sion of the Hallway benchmark in which the skid probability
is fixed but there are multiple possible mazes in which the
agent can be placed. We evaluate the algorithms in term of
this expected payoff (1ength is the average length of a
found path to the goal), probability of successfully reach-
ing the target (success is again the ratio of simulations
in which the robot manages to reach one of the goal states),
and in terms of environment prediction accuracy (denoted as
env. pred.). We present results of POMCP-pf on three
instances: instance (A), with 25 x 25 rather densely populated
by randomly placed walls (|Z| = 60, | S| ~ 2500), and instance
(B) 50 x 50 grid with no walls (|Z| = 30, |S| ~ 10000) and
(C) 5 x 5 grid with no walls (|Z| = 60, |S] ~ 100). Absence of
walls in (B) and (C) makes finding the correct environment
harder, as without sensing the walls in this large settings the
only way to gain information is to enter a position where a
goal is in one of the mazes. The results are shown in Table 2.

We see that despite environment classification being indeed
harder in (B) and (C), in all scenarios the accuracy is much
larger than that of simple guessing, and the solver is able
to finish in reasonable times. Both PBVI and SPBVI timed
out on the large instances ((A) and (B)), but interestingly,
for the smallest instance, (C), where |Z] - |S| ~ 6000, our
SPBVI terminates in about 75 minutes while PBVI did not
terminate even after 11 hours, which shows the computational
advantage of exploiting the sparsity structure in MEMDPs.

6 Conclusion and Future Work

In this work we consider MEMDPs with discounted-sum
payoff, their practical advantages, and applications. There
are several possible directions of future work, including ex-
ploration of other heuristics (such as those based on belief
entropy) and the applications of MEMDPs in other domains.
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