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Abstract

Several real-world problems in engineering and applied sci-
ence require the selection of sequences that maximize a given
reward function. Optimizing over sequences as opposed to
sets requires exploring an exponentially larger search space
and can become prohibitive in most cases of practical interest.
However, if the objective function is submodular (intuitively,
it exhibits a diminishing return property), the optimization
problem becomes more manageable. Recently, there has been
increasing interest in sequence submodularity in connection
with applications such as recommender systems and online
ad allocation. However, mostly ad hoc models and solutions
have emerged within these applicative contexts. In conse-
quence, the field appears fragmented and lacks coherence. In
this paper, we offer a unified view of sequence submodularity
and provide a generalized greedy algorithm that enjoys strong
theoretical guarantees. We show how our approach naturally
captures several application domains, and our algorithm en-
compasses existing methods, improving over them.

Introduction

Many real-world applications in engineering and applied
science have at their core the selection of sequences of ob-
jects that maximize a reward. In information gathering mis-
sions, for example, the objects are observations and the goal
is to select a sequence of them that maximizes the infor-
mation gain (Krause and Guestrin 2007; Piacentini, Bernar-
dini, and Beck 2019). In a similar fashion, a movie rec-
ommender system aims to provide its users with sequences
of items that maximize relevance (Ashkan et al. 2015;
Tschiatschek, Singla, and Krause 2017). The crucial point
in these applications is that the value of the sequence de-
pends not only on the objects belonging to it, but also on
their relative order. This is because the value of each object
changes based on its position in the sequence.

If optimizing over sets is already a daunting task, opti-
mizing over sequences quickly becomes intractable when
the problem at hand grows. However, the identification of
special properties in the objective function helps in mak-
ing the task more approachable. Submodularity, in partic-
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ular, has emerged as a powerful feature that can be lever-
aged to control complexity in the maximization of both set
and sequence functions. Submodularity can be understood
intuitively as a diminishing return condition. Consider again
an information-gathering mission. It is easy to see that each
new observation increases the information gain, but to a
smaller extent than the previous observations, with gain van-
ishing at infinity.

In areas as variegated as optimization, machine learning,
economics, medicine and sensor networks, there has been a
vast amount of work on the maximization of submodular set
functions (see Related Work). Only recently, the scientific
community has started to pay closer attention to sequence
submodularity prompted by applications such as online ad
allocation (Alaei and Malekian 2010) and recommendations
in online shopping (McAuley, Pandey, and Leskovec 2015),
entertainment (Ashkan et al. 2015) and courses (Mitrovic
et al. 2018). However, having arisen in specific applicative
contexts, the proposed models as well as the corresponding
algorithms lack generality and require making restrictive as-
sumptions on the objective function to maintain efficiency.

In this paper, to remedy the current ad-hoc approach and
lack of coherence in the field, we offer a unified view of se-
quence submodularity. By abstracting away specific applica-
tive details, we show that the optimization problem that lies
behind several applications can be captured by a particular
type of recursive submodular functional. We study its struc-
ture and, based on its properties, we propose a generalized
greedy algorithm that has theoretical guarantees as strong
as its classical counterpart on set functions, but does not re-
quire unrealistic restrictive assumptions. Our generalized al-
gorithm encompasses and improves the specific algorithms
that have been developed for several practical applications.
Another property that confers flexibility to our approach is
that we can easily enforce constraints on the cardinality of
the elements in the sequence (e.g. all elements must be dis-
tinct) in the domain description, which is particularly useful
in applicative problems.

The paper is organized as follows. After discussing related
work, we state the problem formally and introduce three,
very different application domains, which demonstrate the
expressiveness and generality of our approach. We then de-



fine and study submodularity for sequence functions show-
ing how, in general, a simple generalization from sets to se-
quences of the classical greedy algorithm fails to achieve
good performance. Subsequently, we propose and analyze a
new greedy algorithm that is proven to achieve the same per-
formance as the classical one for submodular set functions
(Theorem 2). After presenting how this result can be used
in our applicative examples (Theorem 3), we conclude the
paper with explicit numerical simulations for one of them.

Related Work

Work on submodularity spreads across multiple fields,
including optimization (Fujishige 2005; Nemhauser and
Wolsey 1978), machine learning (Golovin and Krause 2011;
Krause and Guestrin 2005), economics (Dughmi, Rough-
garden, and Sundararajan 2012; Lehmann, Lehmann, and
Nisan 2006), medicine (Hoi et al. 2006) and sensor networks
(Zhang et al. 2016; Krause, Singh, and Guestrin 2008). This
body of work focuses on set functions and, as most of the
problems considered are NP-complete, revolves around find-
ing good approximations of the optimal solution via greedy
approaches, which are very effective for non-decreasing,
submodular functions (Nemhauser and Wolsey 1978).

Only recently, work on sequence submodularity has
emerged. Streeter and Golovin (2009) first considered this
problem in the context of online resource allocation applica-
tions. Shortly after, Alaei and Malekian (2010) introduced
the term sequence submodularity and showed that if the
submodular function is non-decreasing and differentiable, a
greedy approach always achieves a solution that is at least
1- é of the optimal one for the maximization problem.
Zhang et al. (2016) consider string submodularity, which is
a weaker concept as the submodularity holds for the prefix
relationship instead of for any type of subsequence relation-
ship. They improve on Alaei and Malekian’s approximation
by introducing additional constraints on the degree of string
submodularity (curvature) of the objective function.

Other authors have defined sequence submodularity
within a graph-based setting. Tschiatschek et al. (2017)
consider cases in which dependencies between elements
of a sequence can be captured via directed acyclic graphs
(DAGS) and present an algorithm with theoretical guaran-
tees for them. However, repetitions in the sequence are not
allowed and DAG submodular functions are not necessarily
string or sequence submodular. Mitrovic et al. (2018) extend
this graph-based framework to graphs and hypergraphs with
bounded in or out degrees.

Finally, Qian et al. (2018) take a departure from the
greedy approach and propose a Pareto optimization method
for sequence selection. They show that, for any class of sub-
modular functions previously studied, their approach can al-
ways reach the best known approximation guarantee.

Against the backdrop of this body of work, we aim to
show that the submodular functions appearing in practical
applications do not satisfy the constraints imposed by the ap-
proaches highlighted here. However, they do present a com-
mon structure that can be exploited to equip a suitably mod-
ified greedy algorithm with strong theoretical guarantees.
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Problem Statement

Let Q) be a set and H()) be the language over (2, i.e. the
set of sequences of elements in {2 of any length including
the empty sequence @. Let H¢(Q2) denote the sub-language
consisting of all sequences in H(€2) with distinct elements.
If S = (S1,...,5,) € H(2), we denote with |S| = n the
length of the sequence S. Given R, S € H(2), we say that R
is a subsequence of S (denoted R < .5) if R is obtained from
S by eliminating some of its elements, i.e. if there exists a
strictly increasing function p : {1,...,|R|} = {1,...,|S|}
such that R; = S,(;) for every i = 1,...,|R|. We use the
following convention to indicate a specific type of subse-
quences: if S = (S1,...,5,) e H(Q)and 1 <a <b<n, we
write S| = (S,, Sas1,---,5). We put S|° = @, if a > b.

In this paper, we focus on greedy algorithms for maximiz-
ing functionals defined on H(€2) that present the following
recursive form:

Fy(5) = 3 (S [F(SIE) - F(SED] ()

k=1

for S =(S1,...,S,) € H(Q2). Here, g : Q@ - R* is any func-
tion and F': H(Q) — R is a functional independent from the
specific order of the elements in S, monotonic and submod-
ular (formal definitions are given in the next section).

The problem of maximizing these functionals (typically
on finite sequences with length below a given value) is sig-
nificant because it lies at the heart of several practical ap-
plications, ranging from jobs scheduling to web recommen-
dation systems, as we will see below. Note that for a gen-
eral g, the functionals I, depends on the specific ordering
of the elements of the sequence, with the consequence that
the classical results on set functions cannot be applied.

Application Domains

We now introduce three, very different application domains,
which have a functional of the type of Eq. (1) at their core.
They represent classes of problems and demonstrate the ex-
pressiveness and generality of our approach.

Search-and-Tracking (S&T) Our first domain is a state-
of-the-art S&T application (Piacentini, Bernardini, and Beck
2019; Bernardini et al. 2016). S&T is the problem of locat-
ing a moving target in a given area and following it to desti-
nation. The target travels across a large geographical area by
following a road network (set of paths I'), and the observer
is a UAV with imperfect sensors. When the UAV loses track
of the target, a set of candidate flight search patterns {2 is
selected via a Monte Carlo simulation to direct the search
towards the areas in which it is more probable to rediscover
the target. The UAV, however, has not enough resources to
execute all candidates and a subset of patterns needs to be
selected and arranged in a feasible sequence for execution.
Each pattern o € ) provides visibility over a family of
paths I', ¢ T, i.e. if the target follows a route in I, the UAV
may be able to detect it while performing pattern o. Each
pattern o € () is also associated with: (i) a time stamp ¢(o),
indicating the mid-point of a time window during which the
target might plausibly be in the area covered by o; and (ii)



a detection probability ¢, with the following meaning: as-
suming that the target has taken a route in I';, if the UAV
performs the pattern o at time ¢(o), detection will be pos-
itive with probability ¢.. In all other cases, detection will
be negative. An a-priori uniform probability distribution on
the routes in I is assumed, as well as independence of the
outcomes of the search experiments conditioned to the fact
that the target has chosen a specified route.

Formally, this model can be described as follows. Given a
sequence of patterns S € H(Q) of length n, we consider
a joint probability distribution Ps on {0,1}" x I" where
Ps(w1,...,wn,v) denotes the probability that the target has
taken the road  and search in the n patterns S, ..., .S, have
given results, respectively, w1, . ..,w, (we assume that 1 in-
dicates a positive detection). The probability Ps is univo-
cally described by assuming that its marginal on I' is the
uniform distribution and that

Ps(wi, ... wn [7)

= M (1-w) T ¢s I (1-9s)
i:y¢ls, i:yelg, i:velg,
w;=1 w; =1 w; =0

The S&T problem is to determine, among all the se-
quences of a given length, the one that minimizes the ex-
pected first detection time. To formalize this problem, we
first define the following subset of sequences where patterns
are ordered over time:

T = {8 e H(Q)|t(Sk) < t(Sws1) VE=1,...,|S]} ()

For every S € Z with |S| = n, we define the first detection
time as the random variable 75 : {0,1}" — R such that

TS(LU) = { %Sk)

where K > max,eq t(o) is a constant playing the role, as
we will see below, of a penalty for the fact that detection has
not succeeded within S. We aim to minimize is E[7g], i.e.
the expected value of 75, on sequences of a fixed length 7.

We now show how such goal involves the maximization
of a functional of the type of Eq. (1). We define a functional
F:H(Q) - R* with F(S) =1- Ps(0,...,0) if S + @ and
F(@) = 0. This functional represents the probability that
the sequence of patterns .S produces a successful detection
of the target and can be efficiently computed in a recursive
fashion as indicated in Piacentini et al. (2019).

Now, we can compute E[7g] as follows:

ifwp =1, wj=0forj<k
if w; = 0 for every j

E[Ts] = ]E:Ilt(sk)PS’f (07 ...0, 1) + KPS(07 R ,0)
S|
= 3 (50 [F(SI) - F(SIE] + K- F(5))

- T (K-S [ - B+ K

So, our optimization problem can be expressed as
T

max » (K -t(Sp) [F(SI)) - F(SF™M] 3
Sel k=1
81=T
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This functional coincides with F,(S) in Eq. (1) with g =
K-t

Note that S&T is a particular instance of a general detec-
tion problem in which we consider a set {2 of possible exper-
iments that aim to detect a specific event (e.g. the identifica-
tion of a gas cloud moving through an area). A time stamp
t(o) € R is associated with each experiment o € 2, which
can be repeated multiple times (e.g., several sensors can be
used at the same position). A sequence of experiments can
be seen as an element of H()) and the theory laid out for
S&T can be applied to this context too.

Job scheduling We now consider a job scheduling prob-
lem that was first studied by Stadje (1995). Assume that 2
is a set of jobs that need to be processed by a single ma-
chine subject to failure, which is modeled stochastically. We
associate a number P (o) with each job o € Q, which rep-
resents the probability that the machine does not fail while
performing . We assume that the machine is not aging so
the probability of not failing while performing a sequence of
jobs S'is simply P(S) = IT; P(S;). Every job o is also as-
sociated with a reward R(o) and a discount d(o) (typically,
the discount depends on the time ¢, needed to complete job
o, e.g. d(o) = e"7). The reward of performing the job o
after the sequence of jobs S has been performed is given by
d(S)R(c), where d(S) = [1; d(S;). The objective function
G on a sequence of jobs S is the expected total reward un-
der the assumption that the machine keeps processing jobs
of the sequence S until it fails. Formally, we have

S|
G(S) = Y, P(SIy™)d(S[y ) R(Sk)

k=1

“4)

(with the convention that P(@)d(2) = 1). The functional G
fits the class of functionals in Eq. (1) and is formally equiv-
alent to the functional considered in the S&T problem de-
scribed above. To see this, we put D(S) = P(S)d(S) and
we note that, by multiplying and dividing the k-th addend in
Eq. (4) by 1 - D(Sy), we obtain:

S gl by R(St)
6(5)= DK - DI plgs ©
If we now put F(S) = 1 - D(S) and g(0) = %, we

observe that G coincides with Fy; as defined in Eq. (1). The
main result reported by Stadje (1995) is that, restricting G
to sequences of distinct jobs of a fixed length n, the optimal
solution is a sequence S for which g is decreasing, namely

9(51) 2 9(52) 2 -+ 2 g(5n).

Recommender systems Finally, we present and extend a
recommender system application (Ashkan et al. 2015). In
this context, assume that €2 is a set of movies and the func-
tion g : @ — [0, 1] attributes the corresponding satisfaction
probability of a default user to each of them. Movies are or-
ganized under different topics, i.e. there is a set 7 of topics
and a function ¢ such that, for each o € , (o) € T is the
subset of the topics covered by o. The recommender system
generates a sequence S € H?(9).



The objective function G : H*(Q) — R is the probabil-
ity of the user satisfaction assuming the following stochastic
model of choice: the user chooses a topic ¢ in 7 uniformly
at random and picks the first item S; in the given sequence
for which ¢ € t(S;). We use the notation i(t) to indicate such
index . Formally, we have that ¢(¢) = min{i = 1,...,|S||t €
t(S¢)}. The user will be satisfied with probability g(.S;(¢)).

We can formally compute G/(.S) as follows:

G(S) = % > P(satisfied|t)
. teT 51 (6)
G > 9(Siry) = >, w(Si)g(Si)
teT i=1

where w(.S;) is the fraction of topics ¢ for which S; is the
first item in the sec(lluence that covers them. More precisely,
if we define F': H*(Q2) — R so that

|S]

F(S) = L:Jlt(Si) /IT]

is the fraction of topics covered by the sequence S, we
can write w(S;) = F(S|}) - F(S[i""), and, by substitut-
ing w(S;) in Eq. (6), we recognize that the functional is in
the form of Eq. (1).

Ashkan et al. (2015) study the optimality of the functional
F, over the set of sequences of distinct items of maximal
length |©2| and discover that the solution, as in the previous
example, is given by any S on which g is monotonically de-
creasing. In addition, they note that such optimal solution
S can be trimmed by iteratively discarding all items S; for
which F(S[%) = F(S[{™!) = 0. In this way, they obtain the
shortest possible recommended sequence of items still max-
imizing the satisfaction probability.

In practical applications, as also noted by the authors, it
may be of interest to optimize over sequences that are not
necessarily of maximal length. In this direction, we propose
a generalization of the above model that also leads to a func-
tional of the type of Eq. (1). Instead of assuming that a movie
o € §) covers a set of topics ¢(o), we associate a probability
vector p” over 7 with each movie o, where p? (t) indicates
to which extent movie o covers topic t. Hence, we assume
that the choice mechanism of the user is now the following:
once the topic t has been selected, the user will pick S, with
probability p°1(¢). If S; is not chosen (which will happen
with probability 1—p“t (¢)), the user will pick Sy with prob-
ability p°2(t) and so on. If Si(ty is the one chosen, the user
will be satisfied with probability g(.S;(;)). In this case:

1 S|
— > 2 9(SHPG(t) =i]t)

1
— P(sat.|t) =
2 PCat ) =m0, 0,

G(S) =
(5)= 77 2

where

P(Gi(t) =i|t) = (1 —p5 (t))-(1 _pSifl(t))pSi (t)

If we now define

5]
F($)= 20" () (1= ()™ (1)
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as the probability that one of the items of the sequence S is
eventually picked, we have that

P(i(t) =i[t) = F(S[}) - F(S|7)
This shows that, in this more general case too, the functional

G has the same structure of the functional in Eq. (1).

Sequence Submodularity
Consider the language H(2) over a set Q. If § =

(S1y..+,50),8" = (S1,...,5),) € H(Q), their concatena-
tion is defined as:
S18"=(S1,...,80,81,...,5,)

For the sake of notational simplicity, concatenations with se-
quences (o) of length 1 will be denoted simply by S1o and
o LS, dropping the parentheses.

Definition 1. A function J : H(Q) — R is called forward /
backward monotonic if, respectively,

J(SLo) > J(S), J(oLS)>J(S) VSeH(Q),oeq

We use instead the term anti-monotonic if the inequalities
are inverted.

Definition 2. A function J : H(Q) — R is called forward
/ backward (sequence) submodular if for every S, R €
H(Q), o € Q, respectively,

J(SLR10)—-J(SLR) < J(S10) - J(S)
J(c1LR1S) - J(RLS) < J(oLS)-J(S)
For brevity, we drop sequence as we are only concerned
about those functions in this paper. On the subset " ¢

H(2) of sequences of length exactly n, there is a natural
action of the permutation group S,,:

w= (W1, wy), 08, — Bw = (wo(1y,-- -, Wo(n))

Definition 3. A function J : H(Q?) — R is permutation
invariant if, for every R € H(SQ) and for every 6 € Sy, it
holds J(O(R)) = J(R).

For permutation invariant functions, the backward and
forward notions above always coincide and, in that case, we
will refer to them as monotonic, anti-monotonic, and sub-
modular functions.

A Greedy Algorithm for Sequence Functions

Let us now fix a value 7" € N and consider the problem of
maximizing a function J : H(Q2) - R on the sequences
of fixed length T'. A popular, simple, suboptimal algorithm
for such maximization problems is the greedy algorithm
by Alaei and Malekian (2010), which generalizes the clas-
sical result in Nemhauser and Wolsey (1978) to sequence
functions. This algorithm produces recursively a sequence
S =(S54,...,S7) by adding new elements on the right side
of the sequence so that, forevery £ =0,...,7 -1,

J(S/ELSk) 2 J(S|FLo) Vo eQ 7)

Note that the first step, for k& = 0, simply gives J(.S1) > J(o)
for every o € €2; in other words, S is a maximizing sequence
among those of length 1.



The following result (see proof by Alaei and Malekian
(2010)) gives a lower bound on the performance of the
greedy algorithm in the presence of monotonicity and sub-
modularity of .J. Fix a value T € N, let ST be the sequence
generated by the greedy algorithm stopped at step 7' and
OT € H(Q) any maximizing sequence of .J restricted to se-
quences in H() of length T'.

Theorem 1. Assume that J is backward monotonic and for-
ward submodular. Then,
J(ST) > (1—%)J(OT) @)

We remark that if J is not permutation invariant, for the
result to hold, it is necessary that monotonicity is verified
backward and the submodularity is verified forward. It can
easily be shown that if J is forward monotonic and back-
ward submodular, then the same estimation will hold for the
backward version of the proposed greedy algorithm, where
the sequence is built by adding new elements on the left side
of the sequence instead of the right side.

Let us now go back to the recursive functionals of our in-
terest, i.e. those of the type of Eq. (1). Given a permutation
invariant, monotonic, and submodular function F' : H(Q2) —
R and a function g : 2 - R™, it is simple to see that Fy, is
forward monotonic and forward submodular, while, in gen-
eral, it does not possess the other two complementary prop-
erties. Hence, Theorem 1 cannot be applied. In Example 1,
we show that the classical greedy algorithm can perform ar-
bitrarily bad on such functionals.

Example 1. Consider Q) = {01,09,...,0,} and put Qy, =
{01,09,...,01} for k < n. Define F : H(Q2) - R by
0 itS=0
F(S) ‘{ foifS € H(Q) N H(Qp1)
where fi, = 2"V ifk = 1,...,n -1 while f, = 2". F is
permutation invariant, monotonic and submodular, since it
depends only on the element in the sequence with the maxi-
mum index k. Let g : Q — R* be defined by g(oy,) = 2"~
Note now that, when S = (oy,) is of length 1, the functional
F,(S) is given by
gn-t iftk<n-1

Fg(O'k):g(O'k)F(O'k):{ on ifk=n

Consequently, the greedy solution S™ of length n will nec-
essarily be such that ST = o,,. This implies that F(S™|}) -
F(S™51) = 0 for every k = 2,...,n and hence the choice
of the elements S} for k > 2 will have no effect on the
value of the functional Fy, which will remain unchanged
withvalue Fy(S™) = 2". On the other hand, we can compute

Fy(or.-100) = X g(0n)[F(or-0v) = F(or-11)]

n n—1
— kzl 2n—k(fk _ fk—l) — fn + kzo fk(Qn—kJrl _ Qn—k)
=274 (n-1)2""!
Therefore,

Eq(0'1,0'2, .. .,O'n) _
F,(S™) 2
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and, as n increases, the ratio between the two values be-
comes arbitrarily large. Hence, no bound of the form that is
guaranteed by Theorem 1 can possibly hold in this case.

In Example 1, the optimizing sequence S is such that the
corresponding values ¢g(Sy) are in decreasing order g(S7) >
g(S2) > ---. This property is indeed general and, as such, it
also characterizes the applicative problems previously intro-
duced. It is a consequence of the following proposition:

Proposition 1. Ler S € H(Q) and k < |S| be such that

9(Sk) < g(Sks1). Let S be the sequence obtained from S
exchanging Sy, and Sy.1. Then,

Fy(8) > Fy(S)

Proof. Because of the permutation invariance of the func-
tion F', we have that:

Fy(S) = Fy(5)

=g9(Su)[F(S[7) - F(S[i )]

+9(Sk1) [F(S[7*1) = F(SIT)]

~g(Sk1) [F(S[{™" LSk1) ~ F(SIT™H)]
~g(Se)[F(S[™) = F(S|{™" LSk1)]

=[9(Sk+1) — 9(Sk)]

[F(S[F) = F(SIT) = F(S| LSkan) + F(SIFH)]

The proof is concluded by observing that the last term is
non-positive since g(Sx) < g(Sk+1) and F' is submodular.
O

In general, the classical greedy algorithm will not con-
struct a sequence that presents such an ordering of the ele-
ments g(S1) > g(S2) > ---. This is the cause of its poor per-
formance, as evidenced by Example 1. To overcome this dif-
ficulty, in the next section, we propose an alternative greedy
algorithm where this ordering is automatically enforced.

Generalized Submodular Functions

Compared with previous work, our optimization approach
is more general as it allows problems to be defined not only
over H(£2) (elements can be repeated) and H?(€2) (elements
are all distinct), but also over sets in which the number of
repetitions of each element can be constrained to be below a
certain value. To allow for such generality, we introduce the
key concept of fully extendable set of sequences and new
notions of monotonicity and submodularity adapted to it.

Definition 4. A subset T < H(S2) is called fully extendable
if the following conditions are satisfied.

1. Foreveryo €, (o) €Z;
2 IfReZand Q< R, then Q €Z;

3. If Q,R € Z, there exists U € L such that Q,R < U and
Ul<1Q|+|R|

The third property says that, given two sequences @, R €
7, there must exist another sequence U € Z of which both
are subsequences and whose length is at most the sum of the
two lengths. If Q) and R do not have any element in common,
the only possibility is that U is obtained by intertwining
and R and then |U| = |Q| + |R|.



We denote by Z(Q, R) the subset of sequences U satisfy-
ing property 3. defined above. Given () € Z, we also denote

I7(Q)={UeZ|Q<U, Ul =1Q+1}

In other words, Z*(Q) consists of the sequences in Z that
are obtained from () by adding one element. It follows from
properties 1. and 3. and the considerations above that if there
exist elements in  not appearing in @, surely Z*(Q) # @.

Example 2. H(Q) is a fully extendable set.

Below, we construct a family of fully extendable sets that
play a crucial role in our theory. Given a function g :  —
R* consider an ordering > of the elements of 2 for which
g is non-decreasing: o > ¢’ implies g(o) > g(o’). Notice
that this ordering is not unique when g is non injective. In
what follows, we assume that one such ordering has been
established (the specific choice made will not play any role
in our future considerations). A sequence S € H(€2) is called
g-ordered if Sy > -+ > S|g. We fix a notation: given S €
H(€2), we denote by n,(.S) the number of times the element
o appears in the sequence S. The following two properties
are a direct consequence of the way in which the g-ordering
has been defined:

(i) Given non negative integer numbers n,, for every o € €2,
there exists exactly one g-ordered sequence S such that
ns(S) = n, for every o € ().

(i1) Given two g-ordered sequences (), I, we have that ) <
Rif and only if n,(Q) < n,(R) for every o € Q2.

Given a subset Z < H(€2), define
Z(g) ={SeZ|Sis g-ordered}

When Z = H(Q) or T = H%(Q2), we will use the notation
H(Q,g) and H?(£, g), respectively, for Z(g). These sets
characterize our running example domains: in S&T prob-
lems, the set Z defined in Eq. (2) coincides with H(€2, —t)
and represents a natural restriction of the domain to cope
with time monotonicity, while, in the other two applications,
optimal solutions in the literature always present this or-
dered structure. More general examples of fully extendable
sets can be constructed as follows. For every o € ), fix a
number n, € {1,2,...} U {+oo} and consider the set of se-
quences

T = {S € H(Q)|n,(S) < ny Yo € O} )

Note that H(2) and H?(€2) are special cases of Z, obtained
when, respectively, n, = +oco and n, = 1 for every o € ().
We have the following result

Proposition 2. Consider a function g : Q@ - R* and the
set of sequences T defined in Eq. (9). The set Z(g) is fully
extendable.

Proof. All singleton sequences S = (o) are g-ordered and
respect the repetition constraint (since n, > 1). Therefore,
they are in Z(g) and property 1. in Definition 4 holds. Prop-
erty 2. also holds because any subsequence () of a sequence
in R € Z(g) is necessarily g-ordered and satisfies, thanks to

property (ii) above, the constraints n,(Q) < n,(R) < n,
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for every o € 2. To check property 3. consider now two se-
quences @, R € Z(g) and put, for every o € Q,

Mo = max{n,(Q),n,(R)}

Let U be the only g-ordered sequence such that n, (U) = 7,
(see property (i)). Since by construction n,, < n, for all o €
Q, we have that U € Z(g). Notice now that both () and R
are subsequences of U because of property (ii). Finally,

U= 3 no(U) < 3 [10(Q) + 16 (R)] = |Q] +|R]

e e

This completes the proof. 0

Let us now see the new notions of monotonicity and sub-
modularity adapted to fully extendable sets.

Definition 5. Given Z ¢ H(), a function J : H(Q) - R
is called Z-weakly monotonic if for every Q, R € Z, there
exists U € Z(Q, R) such that J(U) > J(Q).

Definition 6. Given T ¢ H(2), a function J : H(Q)) —
R is called I-strongly forward submodular if for every
Q,R,UecZwith@Q < Rando € suchthat Rlo1U €T, it
holds, J(R1o1U) - J(R1U) < J(QLoLU) - J(QLU).

Whenever, Z = H(Q), we will simply talk of weakly
monotonic and strongly forward submodular functions.

Remark 1. When Z = H()), since QLR, R1Q € Z(Q, R),
any backward or forward monotonic function is also weakly
monotonic. Moreover, a strongly forward submodular func-
tion is also forward submodular. This motivates the terms
weak and strong that we use.

A New Greedy Algorithm

We now introduce a generalized greedy algorithm and show
that, for functionals that are Z-weakly monotonic and Z-
strongly forward submodular, this new algorithm ensures the
same performance guaranteed by Theorem 1. We will then
show how to apply this result to our problems.

Take a function J : H(Q) — R and a fully extendable set
Z c H(N2). We fix a value T € N: the goal is to maximize .J
over the subset of Z of the sequences of length T". Put O7 to
be any such maximizing sequence for J.

We now consider a variation of the greedy algorithm to
approximately solve this maximization problem. The al-
gorithm produces recursively an ordered sequence ST =
(ST,...,ST) € T in the following way:

« S'=(S]) where S} € argmax J(0);
oeQ)

* Given S* = (S},...,SF) € Z, we define
Sk = argmax J(U)
UeT*(S*)

In other words, instead of simply augmenting the sequence
on the right hand side as the traditional greedy algorithm
does, we allow each new element to be placed in any position
among the elements of the previous sequence.

The following result provides a similar bound to that of
Theorem 1.



Theorem 2. Consider a function J : H(Q2) - R and a fully
extendable set T ¢ H(QY) and assume that J is T-weakly
monotonic and I-strongly forward submodular. Let OT be
a maximizing sequence for J among the sequences in T of
length T and let ST be the result of the previous algorithm.
Then,

J(ST) > (1— é)J(OT)

Proof. For simplicity of notation, in the proof, we put O =
OT. Fix k < T and consider

A=(M,...; ) € argmax J(U)

UeZ(S*,0)
We consider a partition of the indices

{1,2,...,n} ={i1,d2,.. . i} U{j1, 025+ s Jm}
where i1 < i < --+ < iy, are such that Slk =)\, forl=1,... k
and j; < jo < -+ < J, With m = n — k are the remaining
indices.

We now consider, for 0 < ¢t < m, the se-
quence A(Y) obtained from A by removing the elements
Xjoms Nj_1s -+ > Njp.s - Note that, by property 2. of fully ex-
tendable sets, A() € 7 for every ¢ and that A(™ = A and
A©) = % We can write

J(A) - J(5%) = S [IAD) - JAD)] (10)

Using the property of Z-strongly forward submodularity and

removing the elements )\j, ..., \;, from A~ and A,
we obtain that

JAD) = JATY < gw®y-J(s*)  an
for some U®) e T*(S*) (a sequence obtained from S*
adding in some position the element );,). Given the defi-
nition of the extended greedy solution S*, it follows that
J(U®) < J(S**1). This fact together with Eqs. (10) and
(11) yields:

J(A) = J(SF) < T [J(S*1) = J(SM)] (12)

The assumption of Z-weak monotonicity and the choice
of A to maximize J on Z(S*, O) ensure that J(A) > J(O).
Using this fact inside Eq. (12) gives:

J(S¥1) > %J(O) . (1 - %) J(5%)

forevery k =0,...,7-1. Applying recursively this relation,
we obtain that

T-1 i

J(ST) Ly (1-1)J00)
i=0
1

v

7=

- - (1- 250> (1- 1) 50)

44

Solving the Application Problems

We now go back to our optimization problem on functionals
of the type of Eq. (1) and study under which conditions we
can apply the theory laid out in the previous section. We then
discuss these results for our applicative domains.

We fix a permutation invariant, monotonic and submodu-
lar functional F, a function ¢ : 2 - R*, and we consider the
functional F, as defined in Eq. (1). We also fix a permutation
invariant set Z < H(2) such that Z(g) is fully extendable.
We aim to maximize F,(S) over the sequences in Z of a
given length T'. Proposition 1 implies that we can always
restrict to g-ordered sequences. Formally, it holds

Proposition 3. Given a permutation invariant set T ¢C
H(S2), it holds that, for every T € N,

max F,(9) = max F,(S (13)
12X () ma ()
|S|=T |S|=T

Note that the optimization problem in the S&T applica-
tion is directly defined on the set Z(g). Instead, in the other
two applicative domains, the authors define the problems on
the set Z = H(€2)? and show that relation (13) hold. Propo-
sition 3 establishes this equivalence as a general fact valid
for all these optimization problems.

Remark 2. If we maximize over T = HY(Q) with sequences
of maximal length T = |Q)|, Proposition I yields the stronger
result that each element in Z(g) is actually a maximum. This
result has been proven by Stadje (1995) and Ashkan et al.
(2015) for the specific application scenarios that they tackle.

Our aim is now to show that, under suitable assumptions,
the functional F; satisfies the assumptions of Theorem 2
with respect to the fully extendable set Z(g).

We set the following notation:

AF(R,0)=F(RLio)-F(R)

AQF(R, 01,02) = AF(RLO’l,Jz) - AF‘(.R7 0'2)
= F(RJ.O‘lJ_O'Q) - F(RJ_O'l) = F(RJ_O'Q) + F(R)

(14)

Note that the submodularity of F' is equivalent to the re-
quirement that AF (R, o) is antimonotonic in R for every
fixed o € (). The following is the main result of this section.
It guarantees that the functional F), is Z(g)-weakly mono-
tonic and Z(g)-strongly forward submodular if F', beyond
being monotonic and submodular, also satisfies a property
concerning the second variation term defined in Eq. (14).

Theorem 3. If F' is a permutation invariant, monotonic and
submodular function that also satisfies the property

A?F(R,01,02) is monotonic in R for every o1,05 (15)

then, for any non-negative function g and permutation in-
variant set T € H(Q) such that Z(g) is fully extendable, it
holds that F, is I(g)-weakly monotonic and Z(g)-strongly
forward submodular.

Proof. We first show that F), is 7(g)-weakly monotonic by
proving the stronger result that, given Q) < U € Z(g), it holds
J(U) > J(Q). By induction, it is sufficient to prove that in
the special case when |U| = |@Q| + 1. In this case, we have that



@ =R1S and U = R1oLS for suitable sequences R, .S and
o € ). We reason as follows:

Fy(RLo1S) - Fy(RLS)
=g(0)AF(R,0)

S|
+ glg(sk) [AF(Rio1S|¥™, Sk) - AF(RLS|F, S1)]

(16)
Note now that

> [AF(RLULS\ 1 Sk) - AF(RLS[F, Sk)]
= F(RLUJ_S) F(R1o)-F(R1S)+ F(R)
=AF(RLS,0) - AF(R,0) 2 -AF(R,0)

(a7

where the last inequality follows from the fact that, since I
is monotonic, AF(RLS, o) > 0.
Using inequality (17) in (16), we obtain

Fy(RLo1S) - Fy(RLS)

5 [0(51) ~9(0)
[AF(RLJLSH“ LSk) - AF(RLS[F™, Sk)] >0

The last inequality follows from the fact that g(.S; ) —g(o) <
0 for every k and I’ being submodular. This proves that I,
is Z(g)-weakly monotonic.

We now investigate submodularity. We choose @, R, U ¢
Z(g) with Q < R and o € Q such that Rioc1U € Z(g).
By following the same computation as in (16) and using the
definition of A2F, we obtain that

[Fy(RLo1U) - Fy(RLU)]
~[Fy(QLoLlU) - Fy(QLU)]

=9(o)[AF(R, 0) AF(Q,0)]+ Z 9(Uk)

J[AYF(RLUR  0,Uy) - AQF(QLU| L0, Un)]
(18)
By rewriting A% F functions as differences of AF functions
and repeating the computation done in (17), we obtain that
U]
Y [A?F(RLU, 0,Ur) - A2 F(QLUY ™, 0, U) ]
k=1
=AF(RLU,0) - AF(R,0)
-AF(QLU,0) + AF(Q,0)
-[AF(R,0) - AF(Q,0)]
(19)
where the last inequality follows from the fact that, since F’
is submodular, AF(RLU,0) - AF(QLU,0) <0.
Using inequality (19) in (18), we have

[Fy(RLolU) - Fy(RLU)]
[F (QLoLU) - F,(QLU]

< Z [9(Uk) - g(o)]

[AQF(R1U| L0, Uy) = A?’F(QLUN ™, 0, Uy)] <0
The last inequality follows from the fact that g(Uy ) —g(o) <
0 for every k and from the monotonicity assumption on

A?F. This proves that F, is Z(g)-strongly submodular. [J
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Application Domains

To apply Theorem 3 to our applicative contexts, we need to
verity, for each of them, that the corresponding functional F'
satisfies the following properties:

e F'is permutation invariant;
e F'is monotonic;

e F is submodular (equivalently, AF(R,o) is anti-
monotonic in R for any fixed o);

* A2F(R,01,09) is monotonic in R for any fixed o1, 0o.

Let us start with the S&T application. In that context, F'(.S)
is the probability that the target is detected thanks to the
execution of the sequence of search patterns S. Given the
assumptions made on the probabilistic model, F'(.S) does
not depend on the order of disclosing the outcome of the
searches, equivalently, it is permutation invariant. The other
properties can also be derived from the probabilistic inter-
pretation. Specifically, monotonicity simply follows from
the fact that the larger the set of search patterns performed,
the larger is the probability of positive detection. Note now
that AF (R, o) is the probability that detection is negative in
R and successful in o: as a consequence, the larger is 12 and
the smaller is AF (R, o). This says that AF'(R, o) is anti-
monotonic in R. Similarly, ~A%F(R, 01, 05) is the proba-
bility that detection is negative in R and successful both in
o1 and in o9 and, for the same reasons, it is anti-monotonic
in R. Therefore, A2F (R, o1, 05) is monotonic in R.
Regarding the job scheduling domain, note that D(S) is
permutation invariant and anti-monotonic in S and observe

AD(S,0) = D(S1o) - D(S) = D(S)[D(0) - 1]

A2D(S, 01,02)
= D(Slo’lldg) - D(Sial) - D(SLO'Q) + D(S)

= D(S)[1-D(o1)][1 - D(02)]

This implies (since D(o) < 1 for every o) that AD(S, ) is
monotonic in S for every o, while A2D(S,01,09) is anti-
monotonic in S for every o; and o9. Considering the com-
plementary function F'(S) = 1 - D(S), we immediately ob-
tain that F' satisfies the assumptions of Theorem 3.

Finally, for the recommender systems case, the function
F(S) is the probability that an item has been picked within
the sequence S and is thus, mathematically, identical to the
probability of the S&T problem example. This implies that
Theorem 3 is applicable to this case too.

Experimental Results

To show the potential of our method, we now provide ex-
plicit numerical simulations for the S&T application de-
scribed above. In particular, we now show the advantage of
using the generalized greedy algorithm over the standard one
by running both algorithms on several, randomly generated
S&T problems. To highlight when the two algorithms ex-
hibit different behaviors, we consider scenarios in which the
detection probability of each pattern depends on the execu-
tion time associated with it. If the patterns associated with
a lower ¢ have a high detection probability, the standard and
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Figure 1: Average objective values obtained by the standard and the generalized greedy algorithms.

the generalized greedy search perform similarly. They prefer
these early patterns by placing them at the beginning of the
sequence and add the remaining patterns to the end of the se-
quence. Conversely, if the detection probabilities associated
with patterns with a greater ¢ are high enough, the standard
greedy immediately places those patterns at the beginning
of the sequence, but, as patterns are only added on the right
side of the sequence, it never exploits early search patterns.
In this way, it constructs short sequences that do not make
full advantage of the richness of the set €. Instead, the gen-
eralized greedy, being free to place patterns in any position,
manages to exploit both types of patterns.

We generate 11,000 realistic problems instances, each
with 20 candidate patterns and 40 destinations.! Each pat-
tern o is associated with a random sample of destinations.
Time stamps are generated sequentially by taking a random
sequence of all the search patterns S = (o1, ...,0,) and im-
posing that a search pattern ¢t(o;) = t(o;-1) + r, where r is
arandom number. The detection probability is a linear func-
tion of the indexes of the sequence of search patterns in S
with different angular coefficients: ¢,, = m - + g, where
m is a value between -1 and 1, and ¢ is such that >, ¢,
is constant across the scenarios. A scenario with m = -1
corresponds to the case of patterns with a lower time stamp
having higher detection probabilities, while, a scenario with
m = 1, represent the case of patterns with higher time stamp
having higher detection probabilities. When m = 0, all the
patterns have the same detection probability.

For each problem, we run the generalized and the standard
greedy algorithms over sequences of maximal length 10. We
consider two types of sequences: in the first, we establish
that all patterns must be distinct, in the second, instead, we
allow at most 3 repetitions for each pattern.

Figure 1 shows the average objective values found by the
two algorithms for different scenarios: the left plot corre-
sponds to the case of distinct patterns, while the right plot
to the case of a maximum of 3 repetitions per pattern. The
figure shows that, in all cases, the generalized greedy algo-
rithm dominates the standard algorithm. As expected, the
difference in performance is particularly high (considering

"For details, see supplementary material available online at
https://doi.org/10.5281/zenodo.3695080
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Table 1: Average running time (in seconds) of the standard
and the generalized greedy algorithms with a maximum of 1
or 3 pattern repetitions.

max rep = 1 max rep = 3
0.004 £0.001  0.015 £ 0.004
0.016 £ 0.006 0.067 +0.025

Gstandard

generalized

the ratio) in scenarios where the search patterns associated
with a greater execution time have a higher detection prob-
ability. The average running time across all scenarios of the
two algorithms and across all instances is reported in Ta-
ble 1. While the generalized greedy algorithm is slightly
more time consuming than the standard algorithm, the run-
time is acceptable the real applications as the optimization
of the objective function is typically performed within a time
limit of one minute (Piacentini, Bernardini, and Beck 2019;
Bernardini, Fox, and Long 2017).

Conclusions

In this paper, we show that, in several applicative domains,
the problem of finding a sequence of objects that maxi-
mizes a reward can be expressed as the maximization of
a recursive functional that exhibits the structure captured
by Eq. (1). After proving that existing greedy algorithms
do not yield strong theoretical guarantees for such a func-
tional, we study its properties and introduce the concepts of
weak monotonicity and strong forward\backward submod-
ularity. By leveraging them, we introduce an efficient gen-
eralized greedy approach that ensures finding solutions that
are O(1 - 1) of the optimal. Our method is general and can
be applied to any domain with an objective function that can
be transformed in the form of Eq. (1). To support this thesis,
we present evidence that our technique works across several
applications and provide explicit numerical simulations for
one particular domain, S&T. The experiments directly show
the power of our new algorithm. Our work contributes to the
discussion on submodularity by stepping away from the spe-
cific details of practical applications and presenting general
properties of functionals often encountered in them, which
can be exploited to find better solutions more efficiently.
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