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Abstract

We address two central notions of fairness in the litera-
ture of nondeterministic fully observable domains. The first,
which we call stochastic fairness, is classical, and assumes
an environment which operates probabilistically using possi-
bly unknown probabilities. The second, which is language-
theoretic, assumes that if an action is taken from a given state
infinitely often then all its possible outcomes should appear
infinitely often; we call this state-action fairness. While the
two notions coincide for standard reachability goals, they dif-
fer for temporally extended goals. This important difference
has been overlooked in the planning literature and has led
to the use of a product-based reduction in a number of pub-
lished algorithms which were stated for state-action fairness,
for which they are incorrect, while being correct for stochas-
tic fairness. We remedy this and provide a correct optimal
algorithm for solving state-action fair planning for LTL/LTL ¢
goals, as well as a correct proof of the lower bound of the
goal-complexity. Our proof is general enough that it also pro-
vides, for the no-fairness and stochastic-fairness cases, mul-
tiple missing lower bounds and new proofs of known lower
bounds. Overall, we show that stochastic fairness is better be-
haved than state-action fairness.

1 Introduction

Nondeterminism in planning captures uncertainty that the
agent has at planning time about the effects of its actions.
For instance, “remove block A from the table” may either
succeed, resulting in “block A is not on the table”, or fail,
resulting in “block A is on the table”. Plans in nondetermin-
istic environments are not simply sequences of actions as in
classical planning; rather, the next action may depend on the
sequences of actions (and observations') so far, and are cap-
tured by policies (also known as strategies and controllers).

Broadly speaking, nondeterminism manifests in one of
two ways: stochastic and adversarial environments.

Stochastic Environments Nondeterministic —environ-
ments with probabilities are often modeled in planning
as Markov Decision Processes (MDPs), i.e., as state-
transition systems in which the probability of an effect
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depends only on the current state and action. However,
sometimes the probabilities of action effects are not
available, non stationary, or hard to estimate, e.g., an
agent may encounter an unexpected obstacle, or an ex-
ogenous event or failure occurs. A long thread in the
literature aims to understand what it means to plan in
such environments (Daniele, Traverso, and Vardi 1999;
Pistore and Traverso 2001; Cimatti et al. 2003;
D’Ippolito, Rodriguez, and Sardifia 2018). One com-
mon intuition is that the goal should be achievable by
trial-and-error, expecting only a finite amount of bad luck:
e.g., repeating “remove block A from the table” should
eventually succeed. This amounts to assuming that some
unknown distribution assigns a nonzero probability to
each of the alternative effects. Thus, although there are
no explicit probabilities, the stochastic principle is still in
place. We call such assumptions stochastic fairness. Plans
in this setting are called strong-cyclic, and their importance
is evidenced by the existence of several tools for finding
them, e.g., NDP (Alford et al. 2014), FIP (Fu et al. 2016),
myND (Mattmiiller et al. 2010), Gamer (Kissmann and
Edelkamp 2011), PRP (Muise, Mcllraith, and Beck 2012),
GRENADE (Ramirez and Sardifia 2014), and FOND-SAT
(Geffner and Geftner 2018). Such policies ensure the goal
with probability 1 (Geffner and Bonet 2013).

Adversarial Environments Nondeterministic environ-
ments without probabilities are often modeled as fully ob-
servable nondeterministic planning domains (FOND). These
are state-transition systems in which the effect of an action is
a set of possible states, rather than a single state as in classi-
cal planning. Policies that guarantee success, i.e., the goal is
achieved no matter how the nondeterminism is resolved, are
called strong solutions. Under adversarial nondeterminism it
is often reasonable to require that a policy should guarantee
success under some additional assumptions about the envi-
ronment. For instance, a typical assumption is that repeating
an action in a given state results in all possible effects, e.g.,
repeating the action “remove block A from the table” would
eventually succeed (and eventually fail). Note that this can
be expressed as a property of traces, and so for the purpose
of this paper, we call such notions language-theoretic fair-
ness. We focus on one central such notion which we call
state-action fairness and which says, of a trace, that if an



action a is taken from a state s infinitely often in the trace,
and if s’ is a possible effect of a from s, then infinitely often
in the trace s’ is the resulting effect of action a from state s.
Although there are many notions of fairness, this particular
notion has been identified as providing sufficient assump-
tions that guarantee the success of solutions that repeatedly
retry (D’Ippolito, Rodriguez, and Sardifia 2018).

What is the relationship between fairness in an adversar-
ial setting and fairness in a stochastic setting? Planning as-
suming either notion of fairness means that the policy can ig-
nore some traces, which are guaranteed not to be produced
by the environment. Also, it turns out that when planning
for reachability goals (i.e., eventually reach a certain target
set of states) the two notions of fairness are interchangeable.
More precisely, a policy achieves the reachability goal as-
suming stochastic fairness (i.e., it is a strong-cyclic solution)
iff it achieves the reachability goal assuming state-action
fairness (i.e., the target set is reached on all state-action fair
traces). On the other hand, it turns out that the two notions
of fairness are not interchangeable in the context of plan-
ning for temporally extended goals, such as those expressed
in linear temporal logic LTL or its finite-trace variant LTL ;.

Outline of the Paper and Contributions In Section 3
we point out the distinction between stochastic fairness
and state-action fairness in the context of planning. Once
this distinction has been noted, in Section 4 we analyze a
product-based reduction for solving fair planning problems
that has often been used in the literature. We show that this
technique is correct for stochastic fairness but not for state
action fairness. As a result, there is currently no published
correct algorithm for handling state-action fairness for tem-
porally extended goals. We provide one in Section 5, as well
as complexity upper bounds for the problem: 2EXPTIME for
combined and goal complexity, and INEXPTIME for domain
complexity. In Section 6 we provide a proof of the matching
2EXPTIME lower bound for combined and goal complexity.
Our proof is general enough that it also provides, for the
no-fairness and stochastic-fairness cases, multiple missing
lower bounds and new proofs of known lower bounds. Do-
main complexity is IEXPTIME-hard already for reachability
goals, leaving a gap between deterministic and nondetermin-
istic exponential time. In Section 7 we discuss related work
in the verification literature where various notions of fairness
have been studied in a different context, and the difference
between stochastic fairness and language-theoretic fairness
such as state-action fairness had not been overlooked.

2 Fair Planning Problems

In this section we define planning domains, temporally ex-
tended goals, and isolate the two notions of fairness.

Planning Domains A nondeterministic planning domain
is a tuple (St, Act, so, Tr) where St is a finite set of szates,
so is an initial state, Act is a finite set of actions, and T'r C
St x Act x St is a transition relation. We will sometimes
write T'r in functional form, i.e., Tr(s,a) C St. We say
that the action a is applicable in state s if Tr (s, a) # (). We
assume, by adding a dummy action and state if needed, that
for every state there is an applicable action.
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For a finite set X let Dbn(X) denote the set of (probabil-
ity) distributions over X, i.e., functions d : X — [0, 1] such
that ) 5 d(x) = 1. An element x is in the support of d if
d(xz) > 0. A stochastic planning domain is a tuple (D, Pr)
where D = (St, Act, so, Tr) is the induced nondeterminis-
tic planning domain, and Pr, called the probabilistic transi-
tion function, is a partial function Pr : Stx Act — Dbn(St)
defined only for pairs (s, a) where a is applicable in s, sat-
isfying that the support of Pr(s,a) is equal to Tr(s,a).
Stochastic domains are variants of Markov Decision Pro-
cesses (MDPs). However, MDPs typically have Markovian
rewards, while stochastic planning problems may have goals
that depend on the history.

We will refer to both nondeterministic and stochastic
planning domains simply as domains. Unless otherwise
stated, domains are compactly represented, e.g., in variants
of the Planning Domain Description Language (PDDL), and
thus can usually be represented with a number of bits which
is polylogarithmic in the number of states and actions. In
particular, the states are encoded as assignments to Boolean
variables F called fluents, and thus: St = 27 . For symme-
try, also the actions are encoded as assignments to Boolean
variables A that are disjoint from F, and thus: Act = 24,
Although the literature also contains formalisms for com-
pactly representing stochastic domains (such as Probabilis-
tic PDDL), we will not be concerned with a detailed formal-
ization of probabilistic transition functions since it is known
(as we later discuss) that they essentially play no role in the
stochastic-fair planning problem (formally defined below).

Traces and Policies Let D be a domain. A trace 7 of D
is a finite or infinite sequence (so U ag)(sy U ay)--- over
the alphabet (St U Act) = 27YA where sy is the initial
state, and (s;_1,a;_1,s;) € Tr forall i with 1 < ¢ < |7],
where |7] € IN U {oo} is the length of 7. Note that for
explicitly represented domains we sometimes find it con-
venient to write 7 = (Sp,a0)(s1,a1)--. The sequence
Sps1 - -+ of states is called the path induced by 7. A tran-
sition (s, a, s') is enabled at position i of trace 7 if s; = s
and a; = a. The transition is then taken if s;y; = s'. A
policy is a function f : (St)™ — Act such that for every
u € (St)* the action f(u) is applicable in the last state of
u. Here (St)T is the set of finite non-empty sequences of
states. Note that policies are history dependent in this pa-
per. A trace 7 is generated by f, and simply called an f-
trace, if every finite prefix (soUag) - - - (s;Ua;) of 7 satisfies
f(sos1 -+ 8;) = a;. A finite-state policy is a policy that can
be represented as a finite-state input/output automaton that,
on reading v € (St)T as input, outputs the action f(u).
As usual, a stochastic domain D combined with a policy
f induces a (possibly infinite-state) Markov chain, denoted
(D, f), which gives rise to a probability distribution over the
set of infinite f-traces in D (Vardi 1985).

Example 1 The following domain will be used in coun-
terexamples. Let D = ({l,m,r},{a},l,Tr) be a domain
where T'r consist of the triples (I, a,m), (m,a,l),(m,a,r)
and (r,a,m). Note that there is only one policy avail-
able: always do the action a. Define the trace 7 as



((1,a)(m, a)(r,a)(m,a))*.> Note that this trace takes each
of the transitions (m, a, ) and (m, a, ) infinitely often.

Linear Temporal Logic Linear Temporal Logic (LTL) is a
formalism that was introduced into the verification literature
for describing computations of programs without the use of
explicit time stamps. The logic has since been used in plan-
ning as a language for specifying temporally extended goals
and for expressing search control, see, e.g., Fainekos, Kress-
Gazit, and Pappas (2005), Bacchus and Kabanza (2000).

The syntax of LTL consists of atoms AP and is closed
under the Boolean operations — and A and the temporal op-
erators () (read “next”) and ¢/ (read “until”):

Yu=p ||y Ao | OY [ 1l e

with p varying over the elements of AP.

We use the usual short-hands, e.g., false (= p A —p,
1 D P = —hy V hg, Ot := truel Y (read “eventually
1), and Oy := =C—) (read “always 10”).

Formulas of LTL are interpreted over infinite sequences
T = 77 --- over the alphabet 247, Define T, j E v in-
ductively on the structure of v, simultaneously for all time
points j > 0, as follows:

e 7,j Epifp e,
o T.jEUYI NyifT,j E; fori=1,2,
e T, i EOYifr,j+ 11,

o 7,j FE iU if T,k |= 1o for some k > 4, and 7,7 =
iy forall j <@ < k.

We also consider the variant LTL of LTL interpreted over
finite sequences. It has the same syntax and semantics as
LTL except that 7 is a finite sequence and that one defines
O as follows (cf. Bacchus and Kabanza (2000), Baier and
Mcllraith (2006), De Giacomo and Vardi (2013)): 7,5 =
Oyifj < |r|—1and 7,5+ 1 = 9 (recall that the last
position on 7 is |7| — 1 since the first one is 0).

If 9) is an LTL (resp. LTLy) formula and 7 is an infinite
(resp. finite) sequence over AP, we write 7 |= 1, and say
that 7 satisfies ¥, if 7,0 = 1.

We also make the following convention for interpreting
LTL; formulas over infinite traces: if 7 is infinite and v is
an LTL ; formula, then 7 = 1) means that some finite prefix
of 7 satisfies ¢). We remark that this existential quantifica-
tion is implicitly under the control of the agent determining
the policy, and is analogous to the use of an explicit “stop”
action, or to using partial policies, as done elsewhere.

In the context of a planning domain D, we take AP =
F U A (this is for convenience; some papers take AP = F).
Given a domain D and a policy f, we say that f enforces 1),
and write (D, f) |= Au, if every infinite f-trace satisfies ).

Planning Problems A goal G is a set of infinite traces of
D. A planning problem (D, G) consists of a domain D and
a goal G. Solving the planning problem is to decide, given
D (compactly represented) and G (suitably represented), if
there is a policy f such that every infinite f-trace satisfies
G (i.e., is in 3). In this paper, goals will typically be repre-
sented by LTL/LTL s formulas.

2For a finite string u, we write u® for the infinite string uu . . . .
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Fair Planning Problems We define the fair planning
problems mentioned in the introduction. A trace 7 is state-
action fair if every transition enabled in 7 infinitely often is
taken in 7 infinitely often. This is expressible in LTL:

N

(s,a,s")eTT

éD, tair = (OC(sAa) DOC(sAans)).

A policy f solves the state-action fair planning problem
(D, ), written (D, f) |= A% if every state-action fair
f-trace satisfies .

For a stochastic domain D, we write (D, f) = A=) to
mean that the probability that an f-trace satisfies 1 is equal
to 1, and we say that f almost surely enforces 1. It is known
that (D, f) = A=) does not depend on the probabilis-
tic transition function of D, but only on its induced nonde-
terministic domain; i.e., it only depends on the supports of
the distributions Pr(s, a), which are specified by the tran-
sition relation T'r of the induced nondeterministic domain
(cf. Vardi and Wolper (1986)). Hence, we can actually ex-
tend this probabilistic notion of enforcing also to nondeter-
ministic domains, as follows. For a nondeterministic domain
D, we write (D, f) = A=) to mean that (D', f) = A=y
where D’ is any stochastic domain whose induced nondeter-
ministic domain is D. Thus, for a domain D (nondetermin-
istic or stochastic), we say that f solves the stochastic-fair
planning problem (D, ) if (D, f) = A=),

Planning under either notion of fairness allows the agent
to ignore some traces: in the language-theoretic setting it
can ignore exactly the set of traces that are not state-action
fair, while in the stochastic setting it can ignore any set of
traces whose probability measure is zero. Since the set of
traces that are not state-action fair has probability 0 (Vardi
and Wolper 1986) and, furthermore, there are many natural
supersets of it that also have probability 0, stochastic fair-
ness allows the agent much more freedom with respect to the
traces it can ignore. This fact is at the heart of why stochastic
fairness is more well-behaved, and is used in the next section
where we clarify the distinction between the two notions of
fairness in the context of planning.

Connection with Planning for Reachability Goals The
classic goal in planning is reachability, typically represented
as a Boolean combination target of fluents, i.e., it can be
expressed by an LTL/LTL; formula $target. A policy en-
forcing Otarget is known as a strong solution, and a policy
enforcing Otarget assuming state-action fairness is known
as a strong cyclic solution (Cimatti et al. 2003).

Computational Complexity Planning problems have two
inputs: the domain (represented compactly) and the goal
(typically represented as a formula). Combined complexity
measures the complexity in terms of the size of both in-
puts. Goal complexity (resp. domain complexity) only mea-
sures the complexity in the size of the goal (resp. domain).
Formally, the goal complexity is in a complexity class C if
for every domain D, the complexity of the problem, that
takes as input a goal ¢ and decides if there is a solution
to the planning problem (D, 1)), is in C; the goal complex-
ity is hard for C if there is a domain D for which the above



problem is C-hard. Domain complexity is defined symmet-
rically. Such measures were first introduced in database the-
ory (Vardi 1982).

Automata-theoretic Approach to Planning A typical
approach for solving planning problems with temporally-
extended goals is to use an automata-theoretic approach.
Here we recall just enough for our needs in Sections 4 and 5.

A deterministic automaton is a tuple M = (X, Q, qo, 6,C)
where X is the input alphabet, () is a finite set of states,
qo € Q is the initial state, § : QQ x ¥ — @ is the transi-
tion function, and C is the acceptance condition (described
later). A (finite or infinite) input word u = wugu; - - - deter-
mines a run, i.e., the sequence gopq; - - - of states starting with
the initial states and respecting the transition function, i.e.,
0(qi—1,ui—1) = q; forall 1 < i < |u|. M accepts a word if
its run on it is accepting, i.e., satisfies the acceptance condi-
tion C. If M is to accept only finite words, then one typically
has C C @; and we say that a finite run satisfies C if its last
state is in C. Such an automaton is called a deterministic fi-
nite word automaton (DFW). If M is to accept only infinite
words, then there are a number choices for C. We will not be
concerned with the specific choice until Section 5.

The synchronous product of adomain D and a determinis-
tic automaton A over the input alphabet 27Y4 is a domain,
denoted D x A, whose states are pairs (d, g) where d is a
state of D and ¢ is a state of A, and that can transition from
state (d, q) to state (d’,q’) on action a if (d,a,d’) € Tr
and the automaton can go from ¢ reading d U a to ¢'. Intu-
itively, D x A simulates both D and A simultaneously. Such
products are used in algorithms for planning with LTL/LTL ¢
goals in Section 4 and Section 5. We remark that the prod-
uct is sometimes also compactly represented, although the
details depend on the context and will not concern us.

3 Stochastic Fairness # State-action Fairness

‘We now compare the two notions of fairness in the context of
planning. It turns out that they are equivalent for reachability
goals, but not for all LTL/LTL goals. The first fact is known,
e.g. Rintanen (2004), and is repeated here for completeness.

Proposition 1 Let D be a (nondeterministic or stochastic)
domain and let target be a Boolean combination of fluents.
The following are equivalent for every finite-state policy f:

1. (D, f) & A/ (Otarget), i.e., the target is reached on
state-action fair traces.

2. (D, f) = A=Y(Otarget), i.e., the target is reached with
probability 1.

Proof. Assume that (D, f) [ A% (Otarget). Ob-
serve that the set of state-action fair traces has probabil-
ity 1, cf. (Vardi and Wolper 1986), and thus, by definition,
(D, f) = A=1(Otarget). For the other direction, assume
by way of contradiction that 2. holds but 1. doesn’t, and pick
an infinite state-action fair f-trace 7 that does not satisfy
Otarget. Let M be the finite-state Markov chain induced by
D and f, viewed as a directed graph, and let 7 be the path
in M induced by 7. Since 7 is state-action fair, 7w reaches
a bottom strongly connected component C' of M, and vis-
its every state in C'. By the assumption that 7 £~ Otarget,
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7 contains no state in which target holds. Let p be some
(fixed) prefix of 7 that ends in a state in C', and consider the
set E of infinite f-traces whose induced paths have p as a
prefix. Observe that the probability of F is positive, and that
none of the traces in F satisfy Otarget, contradicting 2. m

We now turn to goals expressed as LTL/LTLy formulas.
Unfortunately, in this case the analogue of Proposition 1
does not hold. Indeed, only the forward direction holds.

Proposition 2 Let D be a domain, 1) an LTL/LTL formula,
and f a finite-state policy. If (D, f) | A% () then
(D, f) E A= ().

Proof. As in Proposition 1, simply use the fact that the set
of infinite state-action fair f-traces has probability 1. m

The converse of Proposition 2 does not hold:

Proposition 3 There is a domain D, a finite-state policy f,
and an LTL goal 1 such that (D, f) = A=Y (1), but for no
policy g does it hold that (D, g) = A*74r (1)),

Proof. Let D be the domain from Example 1. Let ¢ be the
LTL/LTL ¢ formula G(IA O O 1) (i.e., eventually [ and two
steps afterwards [ again). There is only one policy f avail-
able: it always chooses the action a. Observe that (D, f)
A=L(3), but that (D, f) = A*Tr(4) as witnessed by the
state-action fair trace 7 := ({l, a}{m, a}{r,a}{m,a})*. =

4 Analysis of Product-based Reductions for
Solving Fair Planning

A natural approach for solving a planning problem with a
temporally extended goal is to reduce it to solving a plan-
ning problem on a domain that simultaneously simulates the
original domain and a deterministic automaton for the goal
formula, and whose goal reflects the acceptance condition
of the automaton. We show that this reduction is correct for
handling stochastic fairness but not for state-action fairness.

The Product Reduction We begin by describing the re-
duction with no mention of fairness. Given a planning prob-
lem (D, 1)), take a deterministic automaton A, that recog-
nizes exactly the traces that satisfy ). Second, define the
domain D" = D x A, as the synchronous product of D and
Ay (see end of Section 2). Finally, define the planning prob-
lem (D', Acc) where Acc is a goal consisting of those traces
of D’ whose second component is an accepting run of A,.

Analysis of the Reduction If this reduction is to be used
to give an exact algorithm for planning assuming state-
action fairness, it should be sound and complete, i.e., (D, 1)
is solvable assuming state-action fairness iff (D’, Acc) is
solvable assuming state-action fairness. The reduction is in-
deed complete because every state-action fair trace in the
product domain D’ projects to a state-action fair trace in D
(this follows immediately from the definition of state-action
fairness and of the synchronous product). On the other hand,
the reduction is not sound because there may be fair traces
in D that do not induce any fair trace in D’ (intuitively, this
is due to synchronization in D’ between the domain D and



the automaton A,;,). We formalise this in the following theo-
rem which actually shows that the reduction is not sound no
matter which deterministic automaton A, for 1 is used (we
mention that the ¢ in the Theorem can easily be represented
by a deterministic automaton with very simple acceptance
conditions, e.g., Biichi acceptance condition).

Theorem 1 There is a domain D, and an LTL/LTL; goal 1),
s.t.: a) there is no solution to the state-action fair planning
problem (D, ), but b) for every deterministic automaton
Ay accepting exactly the traces that satisfy 1, there is a
solution to the state-action fair planning problem (D', Acc),
where D' is the product of D and Ay, and Acc captures the
acceptance condition of Ay

Proof. Let D and 7 be the domain and trace from Ex-
ample 1. Recall that there is a single policy f (‘always
do a), and that 7 is an f-trace. Let ¢ be the formula
SIVOUINOQO-T)VOUIANDO OO O ). Note that all
traces of D, except 7, satisfy 1. Since 7 is state-action fair,
there is no solution to the state-action fair problem (D), 1)).
We claim that the policy f is a solution to {D’, Acc). For
this, it is enough to show that every state-action fair trace in
D’ induces in D a trace that satisfies 1), i.e., a trace other
than 7. Let 7/ be a trace in D’ that induces 7. To see that 7/
is not state-action fair, let (m, s) be a state that appears in
7/ infinitely often after a state of the form (I, 7). Note that
(m, s) never appears as a source of a transition to a state of
the form (I, 7). Indeed, since [ occurs on 7 exactly every four
steps, the source of such a transition is only reached three
steps after reading an [; and while reading 7, A, is always
in a different state than s three steps after reading an [ (so not
to confuse occurrences of —! four steps after an [ with ones
two steps after it). Thus, the transition ((m, s),a, (l,q)) is
enabled infinitely often but never taken. L]

Note, however, that if one uses stochastic fairness instead
of state-action fairness then the reduction above is sound
and complete. This is because stochastic-fairness is pre-
served by taking a product with deterministic automata, a
fact which is used in the automata theoretic approach to ver-
ification (Vardi 1985; Courcoubetis and Yannakakis 1995;
Bianco and de Alfaro 1995; Bollig and Leucker 2004).

Theorem 2 Let (D,v) be a planning problem, and let
(D', Acc) be a planning problem obtained from it by the
product reduction. There is a policy solving (D, ) assum-
ing stochastic fairness iff there is a policy solving (D', Acc)
assuming stochastic fairness.

Proof. [Sketch] Turn D’ into a stochastic domain by
defining the probability Prp:((s,q),a)(s’,q") to equal
Prp(s,a)(s’) if (¢,s Ua,q’) is a transition of the automa-
ton, and 0 otherwise. There is a natural bijection between
traces ' +— m (resp. sets of traces X' — X, resp. poli-
cies f' — f) in D’ and those in D, i.e., projection onto
the domain component. Moreover, the probability in D’ that
an f’-trace is in X’ is equal to the probability in D that an
f-trace is in X (this follows from the fact that this prop-
erty is true on cones, and thus on all measurable sets). Thus
(D, Prp) = A= (%) iff (D', Prp/) = A=Y (Acc). ]
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Unfortunately, this product-based reduction, has been
incorrectly used for state-action fairness, e.g., Patrizi,
Lipovetzky, and Geffner (2013)[Theorem 3], De Giacomo
and Rubin (2018)[Theorem 4] and Camacho and Mcll-
raith (2019)[Theorem 2]. Our analysis shows this reduc-
tion is correct for stochastic fairness but not for state-action
fairness, so these theorems hold only if stochastic fairness
(rather than state-action fairness) is assumed.

One may conjecture that some confusion in the proofs
and algorithms for state-action fair planning in the literature
arise from the mistaken intuition that state-action fairness al-
ways behaves like stochastic fairness, which, as we show, it
does not in the presence of even simple LTL/LTL; formulas
(that are not reachability formulas).

5 Algorithm for State-action Fair Planning

As discussed in Section 4, previous literature does not pro-
vide correct algorithms for state-action fair planning for
temporally extended goals. In this section we provide a cor-
rect algorithm, using a sound and complete reduction to the
problem of solving Rabin games (defined below), and obtain
the following theorem:

Theorem 3 The combined (and thus goal) complexity of
solving planning with LTL/LTL y goals assuming state-action
fairness is in 2EXPTIME, and the domain complexity is in
INEXPTIME (in the size of a compactly represented domain).

The main approach to solving such a problem is to use, ex-
plicitly or implicitly, an automata theoretic approach. How-
ever, as we now remark, naive applications of this approach
yield a 3EXPTIME domain complexity (which we lower to
INEXPTIME), a 3SEXPTIME combined complexity (which we
lower to 2EXPTIME), and a 2EXPTIME goal complexity.

Remark 1 Solving the state-action fair planning problem
(D, ) where v is an LTL/LTL formula is equivalent to
solving the planning problem (D, ¢p fair O ) where
@D, fair 18 an LTL formula (given in Section 2) express-
ing state-action fairness in the domain D; for more on this
equivalence see Aminof et al. (2019a). However, the size of
@D, fair is exponential in the size of D (when compactly
represented). i.e., this reduces the problem to solving plan-
ning for an LTL goal of size exponential in the size of D
and linear in the size of 1. In turn, there are algorithms
that solve planning with LTL goals (no fairness assump-
tions) that run in 1EXPTIME in the size of the domain and
2EXPTIME in the size of the goal (Aminof et al. 2019a;
Camacho, Bienvenu, and Mcllraith 2019). Putting this to-
gether results in an algorithm for state-action fair planning
problems that runs in 3EXPTIME in the size of the domain D
and 2EXPTIME in the size of the original formula ).

The main insight in Theorem 3 is that one should use Ra-
bin conditions. A Rabin condition over a set X is a set R of
pairs of the form (I, F') with I, F C X. The pairs are called
Rabin pairs. An infinite sequence 7 over the alphabet X sat-
isfies the Rabin condition R if there is a pair (I, F) € X
such that some x € [ appears infinitely often in 7 and no



x € F appears infinitely often in 7.> We chose the Rabin
condition, instead of some other condition, since it can cap-
ture very general properties, including LTL/LTL; it is triv-
ially closed under union; and it can naturally express that a
trace is not state-action fair. Below we use Rabin conditions
in two ways: as acceptance conditions (for automata) and as
winning conditions (in games).

Rabin Automata A Deterministic Rabin Word (DRW) au-
tomaton M = (3, Q, qo, 9, R) has as its acceptance condi-
tion R a Rabin condition over Q. Its size is the number of its
states and its index is the number of pairs in k.

Theorem 4 [cf. Vardi (1995)] Given an LTL/LTL formula
1 one can build a DRW My, accepting exactly the infinite
traces satisfying 1.* The size (resp. index) of My, is at most
doubly (resp. singly) exponentially larger than the size of 1.

Lemma 1 Given a domain D one can build a DRW
MDp unfair that accepts exactly the infinite traces of D that
are not state-action fair. Moreover, the size and index of
Mp unfair is at most singly exponentially larger than size
of D (compactly represented).

Proof. Intuitively, the states of the DRW stores the last state-
action pair of D, the transition function ensures that only
valid transitions of the domain are taken (otherwise the au-
tomaton goes to a fail state f), and the Rabin pairs ensure
that the trace of D is unfair. Formally, given domain D =
(St, Act, sg, T'r), define the DRW (X, Q, qo, 6, R) with al-
phabet ¥ = St x Act; states Q = St x Act U {qo, f}; and
the transition function defined by §(qo, (s0,a)) = (so,a)
if a is applicable in sg, by 0((s,a),(s',a’)) = (s',a’) if
(s,a,s") € T'r and @’ is applicable in s’, and by 6(¢,0) = f
in all other cases; and the Rabin condition R containing all

pairs ({(s,a)}, {(s',a')}) s.t. (s',a") = 0((s,a),(s',a")). m

Lemma 2 Given DRW My, My one can build a DRW M,
denoted My N Mo, that accepts the words accepted by M,
or M. The size of M is the product of the sizes of the M;s,
and the index of M is the sum of the indices of the M;s.

Proof. Let M; = (%,Qi,¢,0;,R;), and define M =
(Ele X Q27(Q17q2)75I7R/) where 5/((31782)70) =
(61(s1,0),02(s2,0)), and R consists of all pairs of the form
(Q1 xI,Q1 x F)for (I,F) € Ry and all pairs of the form
(IXQQ,FXQQ)fOI’(I,F)ERl. u

Rabin Games The other use for the Rabin condition is
to give winning conditions in games. A Rabin game is an
explicitly represented planning problem whose goal is ex-
pressed as a Rabin condition R over the set of states.

Theorem 5 (Buhrke, Lescow, and Vige 1996; Emerson and

Jutla 1988)

1. There is an algorithm that solves Rabin games in time
O(d'nm) where d is the number of Rabin pairs, n is the
number of states, and m is the number of transitions.

2. In addition, solving Rabin games is NP-complete.
3The reader might find it helpful to read the Rabin condition in

LTL notation: \/ ; e L A 2DOF.

*Recall that we define that an infinite trace satisfies an LTL
formula v if some prefix of it satisfies .
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Algorithm for Theorem 3 Given a state-action fair plan-
ning problem (D, ), reduce it to the problem of solving
the Rabin game G = (Ar, Acc) constructed as follows.
The arena Ar is defined as the synchronous product of the
domain D = (St, Act, sg, Tr) explicitly represented, and
the DRW M = Mp unfair V My. The Rabin winning
condition Acc is induced by the Rabin acceptance condi-
tion R of M, i.e., Acc consists of all pairs of the form
(St x I,St x F) for (I,F) € R. To see that this reduc-
tion is sound and complete, note that a policy f solves the
state-action fair planning problem (D, v) iff every f-trace in
D is accepted by the DRW M iff every trace in G generated
by the strategy that maps (s, qo)(s1,q1) - -+ (Sn, qn) to the
action f(spsy - - - $,,) satisfies the Rabin condition Acc. The
first iff is due to Theorem 4 and the fact that a trace is ac-
cepted by M means that if it were fair then it would satisfy
1, and the second iff follows from the definition of Rabin
condition and of the synchronous product. For the complex-
ity analysis, consider the constructed Rabin game, and apply
Theorem 5: n is polynomial in |St| and doubly-exponential
in |¢|; d is polynomial in |St| and exponential in |¢)|; and
m is polynomial in |St| and |Act|, and doubly-exponential
in [¢)]. Recall that |St| and |Act| are at most exponential in
the size of D compactly represented. Thus, the stated com-
bined complexity follows from part 1 of Theorem 5, and the
domain complexity from part 2 of Theorem 5.

6 Lower Bounds for State-action Fair
Planning

For domain complexity, we note that existing results show
the problem is 1EXPTIME-hard. This leaves open whether
the domain complexity can be lowered from INEXPTIME to
1EXPTIME. For the goal (and thus combined) complexity we
show that we can match the 2EXPTIME upper bound.

Domain Complexity It is not hard to get a 1EXPTIME
lower bound for the domain complexity assuming state-
action fairness by reducing from the problem of stochastic-
fair planning with reachability goals, which is 1EXPTIME-
complete (Littman 1997; Rintanen 2004). Indeed, introduce
a fresh fluent p and fix the goal Op. Then, for a stochastic-
fair planning problem with domain D and reachability goal
Otarget, build a new domain D), from D by adding the flu-
ent p and a new action with precondition target and post-
condition p. Then the stochastic-fair problem (D, Gtarget)
has a solution iff the stochastic-fair problem (D), p) has
a solution. Moreover, the latter holds iff it has a finite state
solution. By Proposition 1, this is equivalent to the fact that
the state-action fair problem (D,,, Op) has a solution.

Goal Complexity We give a general technique to prove
2EXPTIME-hardness for goal complexities. Our proof is in-
spired by the 2EXPTIME-hardness of a closely related prob-
lem, i.e., if every policy almost surely enforces the LTL
goal (Courcoubetis and Yannakakis 1995). That proof, and
ours, is based on a reduction from the halting problem for
EXPSPACE Turing-machines, which is 2EXPTIME-complete.

Theorem 6 The goal complexity (and therefore also com-
bined complexity) of planning for LTL/LTLy goals assuming



either (1) no fairness, (2) stochastic fairness, or (3) state-
action fairness is 2EXPTIME-hard.

Proof. We prove the no fairness case, and then show how
to handle fairness. We provide a polynomial-time construc-
tion that, given an alternating EXPSPACE Turing machine M
and an input word x, produces a probabilistic domain D (ex-
plicitly represented) and an LTL formula &, s.t. M accepts
z ifft 3f.(D, f) E A®P. To handle the goal complexity, the
domain D will be fixed (i.e., independent of M and x).

An alternating Turing machine is a tuple (Q,%,A,
4o, qa, qr) Where @ is the set of states partitioned into (3
and Qv (called the existential and universal modes), ¥ is the
tape alphabet, A C (¥ x Q)% x {L, R, N} is the transi-
tion relation, go € ( is the initial state, and ¢,, g € @ are
the accepting and rejecting states. A configuration is a string
matching the regular expression ¥* - (X x Q) - X*; it is initial
(resp. accepting, rejecting) if the state is qo (resp. qq, ¢-)- A
computation of M is a sequence of configurations, starting
in an initial configuration, respecting the transition relation,
and ending in an accepting or rejecting state. W.l.o.g, we as-
sume that the existential and universal modes of M strictly
alternate, with the existential going first.

Say M runs in space 2°(*1) for some polynomial p(-).
Le., a configuration of M running on x has length < 2P(=)
Let n := p(|z|). The domain D is constructed to allow the
agent and the environment to generate strings of the form

o (#-To-# -Cr-9" Ky) - (# -To-# - Cy-#"-
) (#T-#-Cj#"-K;)-#-L-L-L--- wherethe C;s
are arbitrary strings over {0 1,%,$}, the T;s and K;s are
arbitrary strings over {0, 1}. The environment is responsible
for generating the K;s (for all ) and the 7T;s (for even 17),
and the agent generates everything else. Intuitively, the C;s
encode configurations of M, the T;s encode transitions of
M, and the K;s encode a position/index k € [1,2"] on the
tape that the environment wants to check. Finally, L holds
in a sink of the domain that the agent can go to when it is
done. Note that this allows the agent to never go to the sink,
but such traces will be rejected by the goal formula.

We now define the LTL; goal ® := ® gy, O P 44. Intu-
itively, & will enforce that as long as the environment en-
codes its parts correctly (i.e., ® gy, holds), then so does the
agent, and the accepting state is reached (i.e., ® 4, holds).
The formula ® 4, := Peopy A <I>t,d(fn A Penar A Pyee, and
Peno = Ppum N BF2en, where @ oy says that each C;
encodes a conﬁguratlon with Cy encoding the initial con-
figuration; @949 (resp. ®£27) says that each T; with i odd
(resp. even) encodes a transition of M; ®,,,,,,, says that each
K; encodes a number in [1,2"]; and ®,.. says that an ac-
cepting configuration is reached; ®.p,; (think of it as a
“challenge”) says that the K; position of the configuration
C; is the result of applying T; to C;_1. Recall that the envi-
ronment generates the K;s and the transitions at even posi-
tions (which are the transitions from the universal mode).
Thus, an agent policy f that enforces ® 4, has to satisfy
D phq for every possible value of K; and T3, for all i, i.e.,
regardless of which position of C; is checked against C;_1,
and which transition is taken. Intuitively, this ensures that for
every 4, the configuration Cj is indeed the result of applying
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T; to C;_1, and that the accepting state is reached regardless
of the transitions chosen from the universal mode.

Choose an m € N to encode all members of ) and X X @
as binary strings of length exactly m. Let SYM denote a set
of binary strings of length m that encode either a tape letter
[ or a tape letter/state pair (1, q). Let bin(7) denote the binary
string of length n whose numeric value is 7. The possible
configurations of M are encoded by the strings of the form
%-bin(0)-$-SYM-%-bin(1)-$-SYM - - - %-bin(2"—1)-$-SYM
which have exactly one symbol encoding a tape letter/state
pair (I, q). The reason for the bin(i)s is that they allow the
formula to check if an encoding of one configuration can be
reached in one step of M from an encoding of another. We
call the substring % - bin(7) - $ - w the ith block, where ¢ is
the block number and w is the block symbol. One can write
an LTLy formula conf, of size linear in n and the size of
M , that enforces this structure. Indeed, using a standard en-
coding of the binary counter on n-bit strings, the formula
says that exactly one symbol encodes a tape letter/state pair,
and all the other symbols encode just tape letters. It also
says that bin(0) = 0", bin(2"™ — 1) = 1", and for every
j < n, the jth bit in a block is flipped in the next block
iff all bits strictly lower in this block are 1s. Thus, the for-
mula @, can be defined as init A O(# D (Oconf)
where init is a formula that encodes the initial configura-
tion (which can be hardcoded by a polynomial sized formula
by explicitly specifying the first || blocks, and that the rest
of the blocks in the configuration contain the encoding of the
blank tape symbol). Writing linearly sized LTL; formulas
Podd @ﬁ;’j};, D um» and D, poses no particular problem.

It remains to show how to build the formula ®.,,;.
It will be the conjunction of two formulas ®., , and
@2, . The first handles the first challenge, and the
second handles all the rest. We now show how to
build the second (the first is similar). Define @2, ,
as: OA [(cha A cury Anx, Anxnx, Atry) D img,|
where the conjunction is over tuples (z,y, z,t,y’) such that
applying the transition ¢ to the triple of tape contents xyz
(including a possible state) results in the tape content 3" of
the middle cell (e.g., for t = (q,l,¢,l',R), if z = (I,q)
then ' = (y,¢'), if x = [ then ¢y = y, etc.). Intuitively,
cha expresses that we are currently at the start of a block of
a configuration, say C;, whose number is one less than the
challenge number encoded by K;; the formula cur, ex-
presses that the symbol in the current block is x; the formula
nx, expresses that the symbol in the next block is y; the for-
mula nxnx, expresses that the symbol in the block after that
is z; the formula t r; says that 7}, encodes the transition ¢;
and the formula img,, says that the block whose number is
encoded by K11 in the configuration C; 1 is y'.

We use the following shorthand that can scan the string
for patterns: define ¢1 7 ¢ = (=¢1)U(P1 A O2) and
01T 2 := 01T (91T " d2). Intuitively, ¢y T 2 means ¢y
holds one step after the ith occurrence of ¢ .

Formally, define cha as:

i€[0,n) be{0, 1}



Define cur, as: $7'(A,.g<;cm O'0i) Where biby -« - by,
encodes the symbol z, and define nx, and nxnx,
similarly. Define tr; as: #J'(\;<icm O'ti) where
tita---t; encodes the symbol ¢. Define img,, as:

#/\71 [(matCh o On /\i:0§i<m Oly;)u #H:|
Y1Y5 -~ Y,, encodes the symbol y’, and match is
Nico.n) Noc0,13 (O = #"' 71 O b). Intuitively, it
says that in the next configuration, if a block number equals
the challenge number, then the block symbol should be y'.
This completes the definition of ®, and the proof for the
case of no fairness. For the fairness cases note that: a) if M
accepts x then, already with no fairness assumptions, there
is a solution, and b) if M rejects x, then for every policy f,
the environment can, within a finite number of steps, prevent
any hope of satisfying the goal: either by exposing that the
agent is cheating in the simulation, or by reaching a reject-
ing configuration. Since every finite f-trace can be extended
to a fair infinite f-trace, the policy f is not a solution to the
state-action fair planning problem, nor to the stochastic fair
planning problem since the set of infinite f-traces that ex-
tend this finite f-trace has positive probability. =

where

Note that some of the results in Theorem 6 are known:
goal complexity with no fairness and LTL goals (Camacho,
Bienvenu, and Mcllraith 2019; Aminof et al. 2019a) and
LTL goals (De Giacomo and Rubin 2018). The combined
complexity in the stochastic fairness case for LTL goals is
implicit in Courcoubetis and Yannakakis (1995). The case of
state-action fairness, goal-complexity, LTL ; goals was stated
in De Giacomo and Rubin (2018), but unfortunately with
an incorrect proof.’> Overall, our technique gives a uniform
proof yielding tight lower bounds for combined and goal
complexity for LTL/LTL; with both kinds of fairness and no
fairness, thus providing multiple missing lower-bounds.

7 Related Work and Discussion

Related Work in Verification We have discussed how the
distinction between stochastic and state-action fairness is so
far missing from the planning/Al literature. On the other
hand, as we now discuss, this distinction is present in the
verification literature. Early work in verification was mo-
tivated by the problem of providing formal methods (such
as proof systems or model-checking algorithms) to reason
about probabilistic concurrent systems. As such, some ef-
fort was made to abstract probabilities and capture stochas-
tic fairness by language-theoretic properties. In fact, sophis-
ticated forms of language-theoretic fairness were introduced
to do this (Pnueli and Zuck 1993; Baier and Kwiatkowska
1998), since simple language-theoretic notions (similar to
state-action fairness) were known not to capture stochastic
fairness (Pnueli 1983).

Language-theoretic notions of fairness were explored
in Aminof, Ball, and Kupferman (2004) where it was also

SThat proof assumes that if f solves a state-action fair problem
with LTL; goal, then an f-trace visits every state of the domain at
most once (before the goal is satisfied). Although true for memo-
ryless strategies, which suffice for reachability goals, it is not true
for finite-state strategies that are required for general LTL goals.
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noticed that product constructions may not preserve certain
fairness notions (closely related to state-action fairness). A
comprehensive study of fairness in reactive systems is pro-
vided in V6lzer and Varacca (2012) where fairness is charac-
terized language theoretically, game theoretically, topologi-
cally, and probabilistically. Fairness is used in verification
of concurrent systems in order to prove liveness properties,
i.e., that something good eventually happens. The limita-
tions of fairness for proving liveness properties, as well as
ways they may be overcome, are analysed in van Glabbeek
and Hofner (2019).

The verification literature on probabilistic concurrent pro-
grams typically considers policies as schedulers. In partic-
ular, the central decision problem there is different to the
planning problem: it asks whether every (rather than some)
policy f almost surely enforces the temporally extended
goal (Vardi 1985; Pnueli and Zuck 1993; Bianco and de Al-
faro 1995; Courcoubetis and Yannakakis 1995). Logics for
expressing game-theoretic properties of multi-agent stochas-
tic systems have been studied, e.g., in Aminof et al. (2019b).

Discussion Planning in nondeterministic domains for
LTL/LTL goals, with and without fairness, is attracting a
lot of interest lately (Camacho et al. 2017; De Giacomo
and Rubin 2018; Camacho, Bienvenu, and Mcllraith 2019;
Camacho and Mcllraith 2019; Aminof et al. 2019a; Pa-
trizi, Lipovetzky, and Geffner 2013; Camacho et al. 2017;
De Giacomo and Rubin 2018; Brafman, De Giacomo, and
Patrizi 2018). We now have a quite complete picture of the
computational complexities, see Table 1.

no f. stoch. f. | state-action f.
Combined | 2EXP-c | 2EXP-c | 2EXP-C
Goal 2EXP-C | 2EXP-c | 2EXP-C
Domain 1EXP-c | 1EXP-c | NEXP/1EXP-h

Table 1: Planning in (compactly represented) nondetermin-
istic domains for LTL/LTLf goals.

In this table only one upper bound is not matched by the
corresponding lower bound, namely the domain complexity
of planning for LTL/LTL ; goals under state-action fairness.

Note that there is no difference in the complexities be-
tween LTL and LTL; goals. However, in spite of the com-
plexities being the same we do have well behaved algorithms
for LTL; goals with no fairness and with stochastic fairness,
although not for LTL goals. Unfortunately, algorithms for au-
tomata over infinite traces are not as easy to implement as
for finite traces (Fogarty et al. 2013). Regarding state-action
fairness, for the moment it is not clear that even for LTL
goals we can avoid the difficulties of handling LTL: our al-
gorithm (Section 5) indeed requires automata over infinite
traces.
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