
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Trajectory Tracking Control for Robotic Vehicles
Using Counterexample Guided Training of Neural Networks

Arthur Clavière,1 Souradeep Dutta,2 Sriram Sankaranarayanan2

1École Polytechnique and ISAE-SUPAERO, France
2University of Colorado Boulder, USA

Abstract

We investigate approaches to train neural networks for con-
trolling vehicles to follow a fixed reference trajectory ro-
bustly, while respecting limits on their velocities and acceler-
ations. Here robustness means that if a vehicle starts inside a
fixed region around the reference trajectory, it remains within
this region while moving along the reference from an initial
set to a target set. We consider the combination of two ideas in
this paper: (a) demonstrations of the correct control obtained
from a model-predictive controller (MPC) and (b) falsifica-
tion approaches that actively search for violations of the prop-
erty, given a current candidate. Thus, our approach creates an
initial training set using the MPC loop and builds a first can-
didate neural network controller. This controller is repeatedly
analyzed using falsification that searches for counterexam-
ple trajectories, and the resulting counterexamples are used
to create new training examples. This process proceeds iter-
atively until the falsifier no longer succeeds within a given
computational budget. We propose falsification approaches
using a combination of random sampling and gradient de-
scent to systematically search for violations. We evaluate our
combined approach on a variety of benchmarks that involve
controlling dynamical models of cars and quadrotor aircraft.

Introduction
We study how counterexamples generated from systematic
search can be used to retrain neural networks to control a ve-
hicle to follow a desired trajectory while maintaining limits
on the lateral deviation from the trajectory as well as keep-
ing the velocities and accelerations within fixed limits. The
target networks to be trained input the current estimates of
vehicle state, i.e, its position, pose, and velocities. The net-
work outputs a feedback value that determines the vehicle’s
acceleration. Although our approach focuses on a given sin-
gle robust trajectory, it can be readily integrated into a higher
level planner that is equipped with a library of trajectories
and their corresponding feedback laws discovered by our ap-
proach as motion primitives (Majumdar and Tedrake 2017;
Frazzoli, Dahleh, and Feron 2005).

One approach to infer such networks is through reinforce-
ment learning, wherein a Markov decision process (MDP)

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is defined with rewards for achieving a trajectory that sat-
isfies the specifications, and punishments (or negative re-
ward) for violations (Sutton and Barto 1998). A variety of
deep reinforcement learning approaches can then be used
to train these networks (Goodfellow, Bengio, and Courville
2016). However, a key disadvantage of this approach is the
need to convert properties into numerical rewards. For in-
stance, adding a reward of ∞ for property satisfaction and
−∞ for violations often results in very poor performance. In
this paper, we study an alternative approach based on coun-
terexample guided synthesis of control systems (Alur et al.
2013). At a high level, counterexample guided synthesis pro-
poses candidate solutions for the synthesis problems that are
then subject to formal verification using approaches such as
model checking (Baier and Katoen 2008). If the verification
succeeds, we provide a verified controller. Alternatively, if
it fails, the verifier describes a counterexample in terms of
initial states and inputs that cause the system to fail. Based
on this counterexample, we eliminate the current candidate
control law, as well as all other candidates that would be in-
validated by the same counterexample.

However, applying this approach to learning neu-
ral network controllers is quite challenging. For one,
counterexample-guided synthesis approaches are limited to
domains where verification tools can effectively prove cor-
rectness or discover violations. Furthermore, the ability to
eliminate candidates based on counterexamples is important.
Both problems are challenging for systems that combine
physical dynamics with feedback through neural network
controllers. In this paper, we propose partial solutions that
employ two ideas to enable counterexample-guided training:
(a) we propose falsification solvers that analyze a candidate
neural network controller in the closed loop to search for
concrete trajectories that violate the trajectory; (b) we use
constrained model-predictive control (MPC) to compute a
control strategy for the counterexample states discovered by
our falsifier to provide appropriate controls to be employed.

We demonstrate the application of our overall approach to
benchmark systems including steering ground vehicles and
quadrotor aircrafts. For each instance, we consider a vari-
ety of trajectories and show that our approach can infer net-
works that can robustly control for these trajectories while

680

satisfying bounds on the velocities and the control inputs.
We also compare our falsification search to random search
to demonstrate that a systematic falsifier can discover viola-
tions even when numerous random samples do not uncover
property violations. Our approach succeeds in 44 out of 50
instances tested, using tiny network topologies with fewer
than 3 layers and 10 neurons per layer to implement the feed-
back law.

Related Work
Neural networks have been applied to control dynamical
systems using approaches such as deep reinforcement learn-
ing (Mnih et al. 2013; Lillicrap et al. 2015; Levine et al.
2015). However, deep reinforcement learning differs from
the approach presented here in many fundamental ways.
For one, our approach relies on a dynamical model of the
system whereas deep reinforcement learning does not nec-
essarily require such a model. Another key difference is
that our approach works with property specifications of
what a system must and must not do, whereas deep rein-
forcement learning operates using positive and negative re-
wards corresponding to states and actions. Using negative
rewards for violations and large positive rewards for prop-
erty satisfaction is problematic, whenever temporal proper-
ties are involved. In such situations, large negative/positive
rewards may be obtained for a tiny fraction of the over-
all state action pairs, whereas zero rewards are obtained
elsewhere wherein the status of the property is as yet un-
known. Attempts to circumvent this often require hand-
designed and problem specific rewards. Alternatively, pref-
erence learning approaches can be used (Wirth et al. 2017;
Sadigh et al. 2017). Model based reinforcement does not di-
rectly tackle the problem of “robust policies”, wherein the
behavior of a policy on a neighborhood of a given state is
also of concern. Also, in this work, we incorporate a counter-
example generator (falsification) explicitly in the learning
loop. This iteration is akin to a supervised learning setup,
wherein the teacher is obtained by a combining the coun-
terexample generator and the demonstrator in the form of a
model-predictive controller (MPC).

The use of MPC as an expert teacher to train a neural
network iteratively has been explored by approaches such
as DAGGER and PLATO. Both approaches share a broad
commonality with our approach, namely the use of an expert
teacher to help train a neural network. Furthermore, our ap-
proach follows the broad outline of the DAGGER strategy,
wherein we iteratively add to a training dataset by explor-
ing the current policy (Ross, Gordon, and Bagnell 2011).
Whereas, DAGGER mixes the expert demonstrator with the
current policy (i.e, flips a coin to choose between running the
expert or the current policy), our approach explores coun-
terexamples to properties obtained from the current policy.
Pereira et al present a recent adaptation of this idea to us-
ing MPCs in particular (Pereira et al. 2018). PLATO, on the
other hand focuses on learning how to control directly from
sensor/camera inputs to the system using an MPC as a super-
visor. A key difference is that PLATO adapts the MPC to bal-
ance making an optimal/safe control action against matching
the current policy (Kahn et al. 2017).

Deep neural networks used for classification tasks in
computer vision, has been shown to be fairly brittle when
it comes to adversarial inputs (Goodfellow, Bengio, and
Courville 2016). Similarly, adversarial inputs have been
shown for neural networks representing policies learned
through reinforcement learning approaches (Huang et al.
2017). The use of counterexamples can be seen as an adver-
sarial attack that continually challenges the neural network.
However, in combination with the MPC the adversary now
serves as a teacher who alternates between testing and in-
forming the learner.

The use of MPCs has been explored recently to train
control Lyapunov (potential) functions by Ravanbakhsh et
al (Ravanbakhsh and Sankaranarayanan 2017). Therein, the
authors use a counterexample guided learning loop driven
by a verifier that checks a candidate potential function. The
counterexamples found by this verifier are then updated
through demonstrations. Finally, the approach uses cuts to
refine the space of remaining candidates. Our work has sim-
ilarities in that it is counterexample driven as well. However,
our candidate space is given by the set of possible weights
of the network we wish to train. Also, we directly learn a
policy rather than a potential function.

The idea of using neural networks to directly mimic MPC
controllers has been studied (Piche et al. 2000; Psichogios
and Ungar 1991). In this work, we use counterexamples to
be sample efficient in the learning process. This is important
since MPC is well known to be expensive, in practice.

Finally, the area of verification of neural networks and
learning with guarantees has received considerable inter-
est, recently. Leofonte et al provide a survey of recent ad-
vances (Leofante et al. 2018). Approaches using ideas such
as barrier certificates (Tuncali et al. 2018), and reachability
analysis (Xiang and Johnson 2018; Dutta et al. 2018) have
been explored in the context of learning. One of the recent
approaches, in testing against system-level specifications for
control systems with machine learning components was pro-
posed in (Yaghoubi and Fainekos 2018). However, these ap-
proaches either focus on learning a network and a proof of
correctness at the same time, or decouple the learning pro-
cess from the verification process without feeding back into
the learning.

Problem Statement and Approach
In this section, we will discuss the problem statement and a
high level overview of the approach proposed for its solu-
tion. The inputs to our problem include a mathematical ve-
hicle model and a desired reference trajectory. The vehicle
model is given as an ordinary differential equation (ODE)

ẋ = f(x,u,w) ,

wherein x represents the state of the vehicle that includes
position, pose (orientation) and velocities. We will consider
different benchmark vehicle models that will include a sim-
ple car model as well as a model of a quadcopter u rep-
resents the control inputs that include throttle/brakes and
steering inputs to the vehicle; and w models external un-
controlled disturbances that affect the vehicle dynamics. We
will denote by X ⊆ Rn the set of possible vehicle states,

681

ODE
ẋ = f(x,u,w)

NEURAL NETWORK
u(jτc) = FN (x(jτc))

SAMPLE
HOLD

x(t)

x(jτc)

u(jτc)

w(t)

CLK

Figure 1: Block diagram of a neural feedback control sys-
tem.

ρ

I

T

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(xN , yN)

Figure 2: Illustration of the trajectory, initial set I and target
set T , the desired reference trajectoryC specified by the line
joining the waypoints and the safe set given by a cylinder S
of radius ρ around the curve C.

U ⊆ Rm the set of possible control inputs and W ⊆ Rk the
set of possible disturbances.

Next, we describe the trajectory tracking specification.
Let (x0, y0, z0) describe the position of the vehicle in space.
Our goal is to steer the vehicle to follow a curve specified by
way points (x0, y0, z0), (x1, y1, z1), . . . , (xN , yN , zN), in a
robust manner. Note that in a planar version of the problem,
the z coordinate will be omitted. Let C be the curve formed
by connecting each waypoint to the next using a straight
line (alternatively, a low degree spline that passes through
the way points may be chosen). Our goal is to control the
vehicle so that starting from an initial set I containing the
initial point, the vehicle stays within a cylinder of radius ρ
around the curveC, denoted by the safe set S until it reaches
a target set T that contains the final way point (xN , yN , zN).
Mathematically, a cylinder of radius ρ is defined as
S :

⋃
(x,y,z)∈C Ballρ(x, y, z), wherein Ballρ(xc, yc, zc) :

{(x, y, z) | || ((xc − x), (yc − y), (zc − z)) ||2 ≤ ρ}.
The overall goal given the model and trajectory is to de-

sign a feedback function FN : X 7→ U that maps the current
state of the vehicle to an associated control input. Figure 1
shows the overall diagram of the control setup for the prob-
lem. The feedback function FN is periodically executed us-
ing a clock with time period of τc.

Approach
Figure 3 illustrates our overall approach to the problem. Our
approach begins with an initial training dataD0 that involves
pairs (xi,ui)

N0
i=1 of N0 states and corresponding control in-

puts generated by querying a model-predictive controller,
which is a computationally expensive but reliable approach
to solving the trajectory tracking problem. The overall ap-
proach iterates starting from data Di to produce data Di+1

DATA UPDATE
Initial Data
D0

MPC
DEMONSTRATOR

NN TRAINING
Dk

NNFALSIFIER

Fk

TRAJECTORY:
(
(xj , yj , zj)

N
j=1, I, T, ρ

)
No counterex.

Figure 3: A schematic illustration of the counterexample-
driven training approach.

as follows:
1. First we use standard backpropagation-based TRAINING

to build a feedforward neural network (NN) using the cur-
rent data set Di. This network Ni is the current candidate
controller that maps from a state x to a control u.

2. A FALSIFIER is used to systematically “attack” this con-
troller in order to find a set of counterexamples. Each
counterexample is a sequence of states starting from an
initial state wherein the feedback produced by the net-
work Ni leads to a violation.

3. The falsification result is used to perform a DATA UP-
DATE, wherein the MPC is queried to obtain new data.
This is blended in with existing samples to yield the data
Di+1 for the next round.

4. The procedure terminates successfully if the FALSIFIER
is unable to discover counterexamples after some fixed
number of trials, or in failure if some upper bound K on
the number of iterations is exceeded.
The rest of the paper describes each of the components in

turn starting from the model predictive controller (MPC) that
is used as a “teacher” or “demonstrator” to obtain training
data for our learning process.

Model Predictive Control
A receding horizon Model Predictive Controller (MPC) is
used to compute a feedback law given the current state of
the vehicle x0, and a time horizon kτc that “looks ahead” k
steps into the future, each step taking τc time. The output is
a sequence of control inputs u0,u1, . . . ,uk−1 wherein ui is
intended control for time iτc. Typically, the very first control
input in the sequence is applied to the vehicle. After time τc,
a new state measurement x1 is obtained and the computa-
tions are carried out afresh.

A MPC requires knowledge of the dynamics of the vehi-
cle f , which is time discretized using a Euler scheme as:

x(t+ τc) = x(t) + τcf(x(t),u(t)) .

Disturbance is not considered in this set up for simplicity.

682

actual state

final way point

target way point

Figure 4: Choice of a local target for the MPC.

MPC poses an optimization problem wherein the fu-
ture control inputs u0, . . . ,uk−1 are unknowns along with
the unknown future vehicle states: (x1,x2, . . . ,xk). Rather
than impose constraints, we will design a cost function
C(x0,x1, . . . ,xk,u0,u1, . . . ,uk−1) is used to evaluate the
quality of the control and the amount of control effort. Thus,
the overall MPC scheme solves the following optimization
problem :

min C(x0,x1, . . . ,xk,u0, . . . ,uk−1)
s.t. ~x1 = x0 + τcf(x0,u0)

...
~xk = xk−1 + τcf(~xk−1,uk−1)

(1)

MPC for Trajectory Tracking
We will now describe the use of MPC for trajectory track-
ing given waypoints (xi, yi, zi)

N
i=0. The MPC formulation

ignores the initial set I , target set T and safety set S. In-
stead, it simply focuses on steering the vehicle to stay as
close as possible to the curve C connecting the waypoints.
Although such an approach is not guaranteed to yield a con-
troller that satisfies the properties, we find that, in practice, a
cost function can be designed using trial and error to achieve
the desired robust trajectory tracking for chosen initial sets
I , target sets T and safe set S. Also note that designing an
MPC is not the final goal of our approach.

First, given the current vehicle position, it is important to
choose a corresponding waypoint as a local target for the
MPC. The choice is illustrated in Figure 4. Algorithm 1
shows the formal computations needed by the MPC to
choose a target way point by first computing the waypoint
whose position is closest to the current position of the vehi-
cle and using one that is p positions ahead in the sequence of
way points. We also compute a rough estimate of the num-
ber of lookahead steps N based on the current velocity and
distance from the chosen target waypoint.

The overall cost function is simply given by the distance
from the position achieved by the vehicle at time Nτ (N
steps into the future) and the desired way point for that time

Algorithm 1 Algorithm to systematically compute the target
way point and the time horizon, given the current state of the
system and the way points in the trajectory.

1: procedure PREPROCESSING(Current State x, Trajec-
tory T , Velocity v, time step δt)

2: indC ← findIndexClosestWayPoint (x)
3: indT ← indC + p
4: WayPoint← T [indT]
5: dist← calculateDistancePosition(x,WayPoint)
6: N← bdist/(v × δt)c
7: return WayPoint,N

chosen using Algorithm 1, plus a penalty term that penalizes
the magnitude of the control effort needed. The advantage
of choosing a waypoint p positions ahead lies in enhanced
stability since the closest waypoint itself will often be un-
achievable given the current vehicle state. As mentioned ear-
lier, MPC involves a nonlinear optimization problem that is
computationally expensive to solve in practice. However, it
serves in our framework as a demonstrator that yields a con-
trol input that can be applied at a given state to move the
vehicle towards a given trajectory.

Training Neural Network Controllers
We use a neural network as a function approximator to
mimic the control actions generated by an MPC controller.
We assume that we have the control action as a traning set
given by, Train = {(x0,u0), (x1,u1), . . . , (xn,un)}. The
difference between the function approximated by the neural
network, FN (x) and the set of point Train, can be expressed
as a simple squared loss function as,

L =

n∑
i=1

(FN (xi)− ui)
2

Thus, given the above loss function the aim is to tune the
weights W , and biases b, by repeated calculation of the gra-
dients ∇WL, and ∇bL, and updating the values to follow
the negative of the gradient. The process of taking gradients
for deep neural networks, can be accomplished by a tech-
nique known as the back-propagation. We used an off the
shelf gradient descent optimizer to train the neural networks
in this paper.

Counter Example Generation
In this section, we describe the systematic search for coun-
terexamples through falsification. We will first describe what
constitutes a counterexample and present a gradient descent
approach that searches for counterexamples starting from
randomly sampled initial points. Recall that we are given
an initial set I , target set T , waypoints (xj , yj , zj)

N
j=1 and

a corresponding safe set S. Let N be a neural network that
provides a feedback from state x of the vehicle to a control
input FN (x), wherein FN is the function described by the
network N .

Our goal is to find an initial state x0 such that the vehi-
cle position belongs to the set I , and the trajectory of the

683

S
I

T

Figure 5: Falsifying trajectory shown in black that exits the
safe set S and a falsifying trajectory in blue that remains
inside S but does not make progress towards the goal T .

closed loop system with the feedback provided by the net-
work N (A) reaches a state outside the safe set S before the
target T is reached, or alternatively, (B) the target T is not
reached after a sufficiently long timeout. Figure 5 depicts the
two scenarios. Note that (A) and (B) are qualitatively dif-
ferent classes of properties: whereas (A) concerns a safety
property asserting that the trajectory must remain inside S,
(B) concerns a liveness property stating that the target must
eventually be reached. Each property requires a qualitatively
different approach towards verification and counterexample
search. However, since we are working with vehicle mod-
els, we can unify both (A) and (B) into safety properties by
mandating that at any point (x, y, z) ∈ S the set of pos-
sible velocity vectors must not point “away” from the tar-
get way point chosen for (x, y, z) according to Algorithm 1.
This allows us to strengthen the set S which constrains the
possible positions of the vehicle to a set Ŝ that also imposes
the corresponding constraints on the velocities. As a result,
we will focus on finding a trajectory that exits the set Ŝ
which includes constraints on the positions as well as veloc-
ities of the vehicle. In summary, given sets I , T and Ŝ, we
see a (time discretized) counterexample trajectory x(t) for
t ∈ {0, τc, · · · ,Kτc} such that x(0) ∈ I and x(Kτc) 6∈ Ŝ.

The key question is to systematically search for a coun-
terexample trajectory, given a candidate neural network N .
A standard “go to” approach involves using randomized
search such as uniform random sampling, a “guided” Monte-
Carlo search or a metaheuristic search such as TABU or Ge-
netic algorithms. The advantage of such approaches include
their ability to treat the system under verification as a black-
box model. The complexity of neural networks makes this
quite desirable. However, these approaches do not utilize
properties such as the continuous sensitivity of the trajectory
to initial conditions even in the presence of neural network
feedback. In this paper, we will consider an approach that
attempts to find a counterexample through gradient descent.

The gradient descent approach to finding a potential fal-
sification relies on the following key steps: (a) identifying a
“critical point” and a direction for falsification; (b) “back-
propagating” from a chosen point and gradient direction;
(c) choosing a step size and (d) terminating the falsification
search.

xj

∆xj

∆x0

Figure 6: The critical point xj and the desired direction ∆xj
are chosen based on the closest approach to the boundary of
Ŝ. We backpropagate the desired change direction ∆xj at
time t = jτc to a direction for the initial state ∆x0 at time
t = 0.

IDENTIFYING A CRITICAL POINT
Let xj : x(jτc) for j ∈ {0, . . . ,K} be a current sampled
trajectory starting from x0 ∈ I . Furthermore, we will as-
sume that the current trajectory is not a counterexample: i.e,
xj ∈ Ŝ for all j ∈ [0,K] with xK ∈ T . The goal is to iden-
tify a time t∗ = jτc such that the corresponding state xj is
“closest” to violating the safe set Ŝ. We will call xj a crit-
ical point. Furthermore, we will identify a critical direction
∆xj such that xj + λ∆xj 6∈ Ŝ for some λ ≥ 0. In other
words, moving from the critical point along this direction
yields a state that falls outside Ŝ. The process is illustrated
in Figure 6.

Identifying a critical point requires us to compute the dis-
tance of a trajectory state xj to the boundary of the set Ŝ.
This is performed in our approach as the minimum of two
distances: (a) the distance between the position denoted by
xj to the boundary of the set S and (b) distance between
the velocity denoted by xj to the boundary of the set of
admissible velocities in Ŝ. Since S is chosen as a cylin-
der of distance ρ from a curve joining the way points, we
simply calculate the distance of xj to the curve C, which
is in turn computed by calculating the distance to each line
segment joining successive way points. Subtracting this dis-
tance from the overall cylinder radius ρ yields the distance
to the boundary of the safe region S. The direction to the
boundary is also given by inverting the perpendicular join-
ing the position xj to the curve C.

BACKPROPAGATING THE GRADIENT
Having chosen a critical point xj at time t = jτc and a direc-
tion ∆xj , our goal is to “backpropagate” this direction back
to the initial set to obtain a direction ∆x0. We obtain ∆x0

by solving the equation involving the Jacobian J :
dxj

dx0
:

J∆x0 = ∆xj .

However, the equation need not always have a solution. One
alternative is to solve it in a least square sense to find a di-
rection ∆x0 that results in a new trajectory which at time
jτc approaches closest to xj + ∆xj . Another alternative is
to choose ∆x0 as a gradient of a cost function defined over
states x encountered at time t = jτc:

c(x) : −(∆xj)
T (x− xj)

684

The function is simply the dot product between the change
direction x − xj caused by moving the initial state to x0 +

∆x0 and the desired direction ∆xj . We compute dc(x)
dx0

as

dc(x)

dx0
= −(∆xj)

T dx

dx0
|x=xj ,

which in turn yields a gradient descent direction :

∆x0 = −dc(x)

dx0
= (∆xj)

T dxj
dx0

.

Given such a direction, we update

x0 := x0 + δ
∆x0

||∆x0||
δ > 0

wherein δ is a chosen step size. There are many standard
approaches to choosing δ such as the Armijo step sizing
rule (Luenberger 1977). Note that if the new initial state
x0 6∈ I , we will need to reduce δ to ensure that x0 ∈ I
or use a projection operator that projects a step outside the
initial set I back into the initial set. Assuming I is given as
a box, our implementation projects a point x0 6∈ I back to
the set I by thresholding each dimension x0,i that goes out
of bounds back to the upper or lower limit.

We will now go over the computation of dxj

dx0
. Let us use

the notation Kj to denote the matrix dxj

dx0
. Using the chain

rule, we have the following recursive formulation of Kj+1

in terms of Kj :

Kj+1 =
dxj+1

dxj

dxj

dx0

=
d(xj+τcf(xj ,uj))

dxj
Kj

=
(
I + τc

(
∂f(xj ,uj)

∂xj
+

∂f(xj ,uj)
∂uj

duj

dxj

))
Kj

Note that ∂f(xj ,uj)
∂xj

and ∂f(xj ,uj)
∂uj

are calculated knowing
the functional form of the dynamics of the vehicle. However,
the derivative duj

dxj
is of interest since the function relation-

ship uj = FN (xj) is governed by the neural network N .
Thus, we now need to compute the derivative of the output
of the neural network N in terms of its input. However, do-
ing so simply requires an application of chain rule layer by
layer starting from the output layer all the way back to the
input layer. Assuming that the activation functions used in
the networkN are differentiable, this calculation is straight-
forward. Note that K0 = dx0

dx0
= I .

OVERALL ALGORITHM
The key pitfall of gradient descent lies in the possibility
of getting stuck in a local optimum wherein further gradi-
ent steps will make virtually no progress towards finding
a counter example. Therefore, we mix the gradient descent
steps with random search as follows: (a) choose a random
starting state and perform up to nmax steps of gradient de-
scent; (b) if a violation is obtained then append it to the list;
(c) reinitialize to a new starting state x0 after nmax gradi-
ent descent steps. Algorithm 2 summarizes the overall ap-
proach. Note that N , in Algorithm 2 is some upper bound
on the number of random restarts.

Algorithm 2 Hybrid Gradient and Stochastic Descent
1: function FALSIFICATIONSEARCH
2: x0← randomStateInInitialRegion()
3: n← 0
4: for k ∈ [1, N] do
5: (trajectory, violation)← simulateSystem(x0)
6: if (not violation) and n < nmax then
7: x0← gradientDescent(trajectory, δ)
8: n← n+ 1
9: else

10: if violation then
11: append x0 to counterexample list.
12: x0 ← randomStateInInitialRegion()
13: n← 0

Data Update

We briefly discuss the process of using counterexample
traces to generate training data. Each counterexample trace
is generated as a series of states x

(i)
0 , . . . ,x

(i)
j . Clearly, the

output of the current candidate neural network needs to be
altered so as to avoid obtaining these counterexamples in
the next iteration. To do so, we query the MPC on the states
visited in the counterexample, choosing states x

(i)
j and the

control uj,i computed by the MPC whenever uj,i is suffi-
ciently far away from the output computed by the network
N . Furthermore, since the dynamics vary continuously with
respect to the state and control, and the neural network feed-
back is continuous as well, sampling states close to those of
the falsifying trajectory also yield falsifications.

As a result, at the kth iteration the falsifying trajectories
yield new data Fk that must be combined with the training
dataDk−1 used in the previous iteration to yield the training
data Dk. Since Fk focuses on counterexamples, training the
network on just Fk introduces a bias wherein the network is
likely to overfit to the current falsifications without retaining
correct behaviors. Therefore, we accumulate the datasets at
each iteration. First, we control the size of the new data Fk
by subsampling so that we have precisely Nf samples. We
simply take the union of the newly obtained data Fk to the
previously available data Dk−1 to obtain Dk.

Experimental Results

We evaluate our approach on two benchmark models: a non-
linear dynamical model of a car that includes lateral dynam-
ics and a quadrotor model.

Benchmark 1: Car Model

We use a standard “bicycle” model taken from (Manceur
and Menhour 2013), as the model of our vehicle model, the
equations of which are given below. Here, x1 and x2 are the
coordinates (position), x3 and x4, are the heading angle and
velocity respectively.

685

Table 1: Comparison of various counterexample generation
schemes over neural network candidates sampled during
the training process. Legend : #C: number counterexam-
ple traces found, T: time taken for search in seconds. G-
Search:gradient descent search with uniform samples (Al-
gorithm 2, S-Search: uniform samples without gradient de-
scent, and D-Search: exhaustive search over discrete grid.

Autonomous Car
G-Search S-Search D-Search

ID #C T #C T #C T
1 61 42 0 36 0 34
2 22 45 0 34 0 34
3 8 44 0 34 0 33
4 42 39 6 34 0 34
5 38 40 0 33 0 33
6 36 42 0 33 5 33
7 20 56 0 44 0 44
8 34 50 6 42 0 43
9 19 53 0 43 1 43

10 5 55 24 44 1 44
11 0 56 2 44 1 44
12 54 49 44 40 5 43
13 39 49 0 44 1 44

Quadrotor
G-Search S-Search D-Search

ID #C T #C T #C T
1 22 126 0 129 - -
2 39 115 0 131 - -
3 26 123 0 131 - -
4 45 117 0 131 - -
5 44 113 0 130 - -
6 47 111 0 129 - -
7 15 128 0 130 - -
8 35 116 0 128 - -
9 24 124 0 128 - -

10 7 131 0 129 - -

β = tan−1(lr
lr+lf

× tan(u2))

ẋ1 = x4 × cos(x3 + β)
ẋ2 = x4 × sin(x3 + β)
ẋ3 = x4

lr
× sin(β), ẋ4 = u1

(2)

The parameter values are taken to be m = 2278kg and
Fd = 228N . The control inputs u1 and u2 model the accel-
eration, and steering angle, respectively.

Benchmark 2 : Quadrotor Model

The quadrotor model is taken from (Luis and Ny 2016).
Its state variables include the position (x, y, z) in an iner-
tial frame, velocities (ẋ, ẏ, ż), attitude (φ, θ, ψ), and attitude
rates (φ̇, θ̇, ψ̇). The system has four control inputs: the thrust
u1 and the roll, pitch and yaw torques: u2, u3 and u4. The

Figure 7: Sample trajectories shown during the training
phase for the Quadrotor (top) and Car model (bottom). The
region shaded in blue refers to the safety envelope of the tra-
jectory, and the green trajectories satisfy the specification.
Counterexamples are shown in red. The arrows pointing out
show the desired directions for falsifications.

dynamics are described by an ODE:

ẍ = θu1

m

ÿ = −φu1

m

z̈ = θu1

m − g
φ̈ = u2

Ix

θ̈ = u3

Iy

ψ̈ = u4

Iz

(3)

The parameters corresponding the above equation are m =
3.3×10−2kg, Ix = 1.395×10−5kgm2, Iy = 1.436×10−5,
Iz = 2.173× 10−5kgm2.

First, we study the effectiveness of our counterexample
generation against two other strategies. The gradient-based
search described in Algo 2 is run for 250 iterations and com-
pared against 250 initial states sampled uniformly at random
and an exhaustive search over a grid. Table 1, presents the
results of this comparison over a series of neural network
candidates obtained during runs of the overall iterative learn-
ing scheme. Note that for the car model (Benchmark 1), the
number of subdivisions is Nsubd = 4 × 4 × 4 × 4. How-
ever, discretizing the quadrotor model in a similar manner

686

Table 2: Trajectory Tracking, Legend : R refers to the maximum curvature of the trajectory,Na lists number of neurons for
each layer of the network with the list size providing the number of hidden layers, Rt refers to the number of iterations of the
learning loop in Fig. 3. † denotes that the learning process did not terminate after 25iterations.

Autonomous Car
ID R Na Rt

S1

0.037 [6, 8] 3
0.044 [7, 3, 3] 7
0.013 [6] 1
0.037 [9, 8, 6] 3
0.016 [8, 3, 3] 2

S2

0.042 [5, 4] 3
0.043 [3, 6, 3] †
0.008 [3] 4
0.06 [3, 8, 10] †
0.024 [9, 3] 1

S3

0.06 [8] 17
0.017 [3, 5] †
0.057 [3, 5, 10] 21
0.021 [3, 3, 7] †
0.043 [9, 7] 2

S4

0.052 [4] †
0.025 [9, 6] 2
0.043 [6, 3] 1
0.009 [10] 1
0.036 [7, 10] 2

S5

0.050 [3, 9] 12
0.011 [10] 3
0.043 [8, 5, 9] 2
0.022 [3, 7, 5] 3
0.033 [5, 10] 1

Quadrotor
ID R Na Rt

S1

0.13 [18] 2
0.21 [16, 11, 10, 20] 2
0.46 [13, 16] 5
0.45 [12, 19] 4
0.15 [10, 15, 20] 2

S2

0.75 [18, 18] 1
0.39 [15, 17, 11] 2
0.28 [15, 10, 13] 2
0.23 [10, 18, 13] 3
0.03 [12, 20, 19] 2

S3

0.20 [13, 18, 19] 2
0.25 [12, 13] 4
0.38 [13, 11, 15, 13] 5
0.13 [14, 18, 20, 20] 2
0.17 [19] 2

S4

0.44 [17, 18] 3
0.33 [15, 15, 12, 17] 2
0.28 [10, 16, 13] 4
0.07 [20] 2
1.52 [20, 16, 17, 13] †

S5

0.17 [13, 12, 12] 2
0.25 [15] 2
0.34 [16, 10, 12] 2
0.11 [20] 4
0.10 [12, 15, 19] 2

would yield upwards of 224 cells and is thus not feasible.
We note that our approach finds the the largest number of
counterexamples for a majority of the evaluation instances.
Furthermore, for all the ten instances of the quadrotor bench-
mark, uniform random search fails to find any falsifications,
whereas gradient descent search discovers a considerable
number of counterexamples. This demonstrates that gradi-
ent descent search combined with uniform samples over ini-
tial states can provide an effective approach for discovering
counterexamples.

Next, we evaluate whether our approach can successfully
learn a neural network model that meets our termination cri-
terion: the falsification search does not find any counterex-
amples within a fixed number of iterations. For each of the
benchmarks, we picked 5 sets of initial and final sets within
the state space of the system. Next, for each initial/final set,
we generated 5 reference trajectories at random recording
the maximum curvature. This process yields 25 instances,
in all, for each benchmark. We applied our approach on
each instance and report the number of iterations if our ap-
proach was ultimately successful in learning a network, and
the time taken. The structure of the network used was cho-
sen randomly within a given range, lacking any insights into
the ideal network topology, currently. The results are shown
in Table 2. We initialized the training data with 100 and

200 samples for the quadrotor and car models, respectively.
Each iteration added 50 and 100 counterexample samples,
respectively for the quadrotor and car models. We note that
learning concludes successfully in 20 out of 25 instances for
the car model and 24 out of 25 instances, for the quadrotor
model. For the majority of instances, the process converged
rapidly within 5 iterations with just 4 out of 44 successful
instances requiring more than 5 iterations. Figure 7 shows
some of the sample trajectories obtained during the training
along with counterexamples. Our experimental results did
not further adjust the number of iterations or the choice of a
neural network topology for the failing cases. This investiga-
tion will be completed and reported in an extended version
of this paper.

Conclusion
In conclusion, we present a counterexample driven learning
scheme that uses counterexample generation in conjunction
with a MPC to successfully train neural networks for track-
ing reference trajectories robustly. We tested our approach
against car and quadrotor models. Our evaluation focused on
evaluating the impact of the gradident-based counterexam-
ple search strategy and the overall applicability with promis-
ing results. However, further work is needed to empirically
study the impact of neural network topology on the suc-

687

cess of the learning. Using formal verification approaches
to prove guarantees on the final result is yet another avenue
of future work.
Acknowledgments: This work was supported in part by the
Air Force Research Laboratory (AFRL) and by the US NSF
under Award # 1646556.

References
Alur, R.; Bodik, R.; Juniwal, G.; Martin, M. M. K.;
Raghothaman, M.; Seshia, S. A.; Singh, R.; Solar-Lezama,
A.; Torlak, E.; and Udupa, A. 2013. Syntax-guided syn-
thesis. In 2013 Formal Methods in Computer-Aided Design,
1–8.
Baier, C., and Katoen, J.-P. 2008. Principles of Model
Checking. MIT Press.
Dutta, S.; Jha, S.; Sankaranarayanan, S.; and Tiwari, A.
2018. Learning and verification of feedback control systems
using feedforward neural networks. IFAC-PapersOnLine
51(16):151 – 156. 6th IFAC Conference on Analysis and
Design of Hybrid Systems ADHS 2018.
Frazzoli, E.; Dahleh, M. A.; and Feron, E. 2005. Maneuver-
based motion planning for nonlinear systems with symme-
tries. IEEE Transactions on Robotics 21(6):1077–1091.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.
Huang, S. H.; Papernot, N.; Goodfellow, I. J.; Duan, Y.; and
Abbeel, P. 2017. Adversarial attacks on neural network
policies. CoRR abs/1702.02284.
Kahn, G.; Zhang, T.; Levine, S.; and Abbeel, P. 2017. Plato:
Policy learning using adaptive trajectory optimization. In
2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), 3342–3349.
Leofante, F.; Narodytska, N.; Pulina, L.; and Tacchella, A.
2018. Automated verification of neural networks: Advances,
challenges and perspectives. CoRR abs/1805.09938.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2015.
End-to-end training of deep visuomotor policies. CoRR
abs/1504.00702.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez,
T.; Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Con-
tinuous control with deep reinforcement learning. CoRR
abs/1509.02971.
Luenberger, D. G. 1977. Linear and Non-Linear Program-
ming. Addison-Wesley.
Luis, C., and Ny, J. L. 2016. Design of a trajectory tracking
controller for a nanoquadcopter. CoRR abs/1608.05786.
Majumdar, A., and Tedrake, R. 2017. Funnel libraries for
real-time robust feedback motion planning. The Interna-
tional Journal of Robotics Research 36(8):947–982.
Manceur, M., and Menhour, L. 2013. Higher order sliding
mode controller for driving steering vehicle wheels: Track-
ing trajectory problem. In 52nd IEEE Conference on Deci-
sion and Control, 3073–3078.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.

Playing atari with deep reinforcement learning. CoRR
abs/1312.5602.
Pereira, M.; Fan, D. D.; An, G. N.; and Theodorou, E. 2018.
Mpc-inspired neural network policies for sequential deci-
sion making. CoRR abs/1802.05803.
Piche, S.; Sayyar-Rodsari, B.; Johnson, D.; and Gerules, M.
2000. Nonlinear model predictive control using neural net-
works. IEEE Control Systems Magazine 20(3):53–62.
Psichogios, D. C., and Ungar, L. H. 1991. Direct and in-
direct model based control using artificial neural networks.
Industrial & Engineering Chemistry Research 30(12):2564–
2573.
Ravanbakhsh, H., and Sankaranarayanan, S. 2017. Learning
lyapunov (potential) functions from counterexamples and
demonstrations. CoRR abs/1705.09619.
Ross, S.; Gordon, G. J.; and Bagnell, D. 2011. A reduction
of imitation learning and structured prediction to no-regret
online learning. In AISTATS, volume 15 of JMLR Proceed-
ings, 627–635. JMLR.org.
Sadigh, D.; Dragan, A. D.; Sastry, S.; and Seshia, S. A. 2017.
Active preference-based learning of reward functions. In
Robotics: Science and Systems.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. Cambridge, MA, USA: MIT Press, 1st
edition.
Tuncali, C. E.; Kapinski, J.; Ito, H.; and Deshmukh, J. V.
2018. Reasoning about safety of learning-enabled compo-
nents in autonomous cyber-physical systems. In Proceed-
ings of the 55th Annual Design Automation Conference,
DAC ’18, 30:1–30:6. New York, NY, USA: ACM.
Wirth, C.; Akrour, R.; Neumann, G.; and Fürnkranz, J. 2017.
A survey of preference-based reinforcement learning meth-
ods. Journal of Machine Learning Research 18(136):1–46.
Xiang, W., and Johnson, T. T. 2018. Reachability analysis
and safety verification for neural network control systems.
CoRR abs/1805.09944.
Yaghoubi, S., and Fainekos, G. 2018. Gray-box adversarial
testing for control systems with machine learning compo-
nent. CoRR abs/1812.11958.

688

