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Abstract

We describe use of Monte Carlo simulation to optimize
schedule parameters for execution and rescheduling robust-
ness in the face of execution uncertainties. We search in the
activity input parameter space where a) the onboard sched-
uler is a one shot non-backtracking scheduler and b) the ac-
tivity input priority determines the order in which activities
are considered for placement in the schedule. We show that
simulation driven search for activity parameters outperforms
static priority assignment. Our approach can be viewed as
using simulation feedback to determine problem specific
heuristics e.g. Squeaky Wheel Optimization. These tech-
niques are currently baselined for use in the ground oper-
ations of NASA’s next planetary rover, the Mars 2020 rover.

Introduction

Embedded schedulers often must perform within very lim-
ited computational resources. We describe an approach for
automatically deriving problem specific control knowledge
for a one-shot (non-backtracking) scheduler. In this appli-
cation, the onboard scheduler allows the rover to take ad-
vantage of run-time variations (e.g., execution durations) by
rescheduling. Because the general structure of the schedule
is known a priori on the ground before uplink, we use both
analysis of the schedule dependencies and simulation feed-
back to derive problem specific control knowledge to im-
prove the onboard scheduler performance.

We study this problem in the context of setting activ-
ity parameters—specifically activity priorities and preferred
times—as part of the ground operations process for a sched-
uler (Rabideau and Benowitz 2017) designed to run on-
board NASA’s next planetary rover, the Mars 2020 (M2020)
rover (Jet Propulsion Laboratory 2018). This scheduler is
extremely computationally limited; even without backtrack-
ing a single scheduling run is estimated to take up to 60 sec-
onds, making ground analysis to improve scheduler perfor-
mance critical. Also, during operations onboard the rover,
the scheduler will be re invoked in response to execution
feedback - causing rescheduling approximately 15 times per
sol. Thus, any ground analysis must take into account ex-
ecution uncertainty and multiple scheduler re-invocations.
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For our problem, aside from the activity parameters, the on-
board scheduler is treated as a “black box”; we can only set
input activity parameters.

Since the scheduler does not backtrack across activity
placements, both the order in which it considers activi-
ties and each activity’s preferred start time heavily influ-
ence the resulting schedule quality. We therefore search the
space of both a) activity priorities (which determine the or-
der in which the scheduler considers activities) and b) pre-
ferred start times (which influence the start times for activ-
ity placement). At each step in the search, a Monte Carlo
simulation is conducted to assess the likelihood of each
activity being executed. Using an approach analogous to
Squeaky Wheel Optimization (Joslin and Clements 1999),
these Monte Carlo runs are automatically analyzed and pro-
vide feedback into activity priority and preferred time ad-
justment, affecting both the initial schedule generation and
rescheduling. This search in the activity parameter space
continues until all requested activities are expected to be
included or a resource bound is exceeded. We call this ap-
proach Parameter Search and we present empirical results
that show that Parameter Search outperforms several static
priority assignment algorithms (those that do not use Monte
Carlo feedback) including manual expert derived priority
setting.

The remainder of the paper is organized as follows. First
we describe our formulation of the scheduling problem, met-
rics for schedule quality, and the onboard scheduling algo-
rithm. Second, we describe several static approaches to pri-
ority assignment as well as our Parameter Search approach
that leverages Monte Carlo simulation feedback. Third, we
describe empirical results demonstrating the efficacy of Pa-
rameter Search over static algorithms by evaluating on con-
strained variations of sol types, the best available anticipated
operations plans for the M2020 planetary rover mission. Fi-
nally, we describe related and future work and conclusions.

Problem Definition

Rabideau and Benowitz 2017 define the M2020 scheduling
problem as follows; the scheduler is given

e alist of activities
Ai(p1,di, Ry, eq,dv, T, 11, Dy) . ..
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e where p; is the scheduling priority of activity A;,
e d; is the nominal, or predicted, duration of A;,
e R, isthe set of unit resources R;, ... R;  that A; will use,

e ¢; and dv; are the rates at which the consumable resources
energy and data volume respectively are consumed by A;,

e I'; is the set of non-depletable resources (e.g. sequence
engines available, peak power) I';, ... T';, that A; will use,

e T; is a set of start time windows [T} Ty preserreds
T’i [Tz Tz Tz for Al 1, and

e D;is asetof activity dependency constraints for A; where
A, — A, means A, must execute successfully before A,
starts.

l.start?

1end I... kstart® T ik_preferred? k,end]

We model execution uncertainty as variation in activity
durations. The specific probabilistic model used is based on
M2020 knowledge and described in our Empirical Analysis.
We do not explicitly change other activity resources such as
energy and data volume since they are generally modeled
as rates and changing activity durations implicitly changes
energy and data volume as well.

Scheduler Design The M2020 onboard scheduler is a
non-backtracking scheduler that considers activities in
priority-first order and never removes or moves an activity
after it is placed during a single scheduler run. It does not
search except when considering valid intervals for a single
activity placement . Due to the greedy, non-backtracking na-
ture of the onboard scheduler, both the order in which activ-
ities are scheduled and an activity’s preferred start time can
greatly impact the quality of the schedule.

Goal The goal of the scheduler is to schedule and execute
all activities while respecting individual and plan-wide con-
straints. The goal of Parameter Search is to derive an input
plan on the ground such that the scheduler will best be able
to achieve its goal. We must derive the input plan in a time-
sensitive manner to satisfy daily mission time constraints.

Evaluating a Schedule

The utility of a particular input parameter assignment is
based on a) how many activities were successfully executed,
and b) how well the activities were executed.

How well activities were executed is defined by a utility
function that prefers leaving more energy for the next sol’s
plan (handover state of charge). As the most important as-
pect is still whether or not an activity is executed, the utility
function follows an ordering of:

Sezec(Ai) > SSOC(A) (1)

where A is the set of all activities, Scyec(A4;) is the utility
if A; was successfully executed, and Ssoc(A) is the value
of the plan’s handover state of charge (SOC).

It Ty

k_start

kpreferrea 18 DO specified by the user then it is set to

T;
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Figure 1: Preheat duration varies depending on an activity’s
scheduled start time. The Mastcam activity requires less pre-
heat as the sol grows warmer near the middle of the day.

Schedule
3

Handover State of Charge

The state of charge at the handover of every plan, is equiv-
alent to the SOC that the next input plan will begin with. A
higher SOC increases the utility of the plan. Where an ac-
tivity is scheduled in a plan can affect how much preheating
is needed for the activity (Figure 1), thereby affecting the
amount of energy that is needed. Thus, in addition to being
an overall indicator, the handover SOC acts as an indicator
of how well each activity is scheduled.

Static Algorithms for Activity Priority
Assignment

Several static algorithms were developed to set activity pri-
orities based on various activity ordering criteria. > Unlike
Parameter Search, these algorithms do not consider Monte
Carlo simulations of plan execution where activities may
end early or late while determining priorities. These static
algorithms will be compared to Parameter Search to gain
a better understanding of how well Parameter Search per-
forms. Activities which must begin at a particular time (e.g.
data downlink) are always given the highest priority and thus
are not affected by the static algorithms described.

The following three algorithms are used to initialize ac-
tivity priorities:

e Random Assignment Each activity is given a random pri-
ority.

e Latest Start Time Activities with earlier latest start times
are given higher priority.

e Human Expert Each activity is assigned a priority based
on the start time of the activity in a schedule constructed
by a human expert. The activity with the earliest start time
in this schedule has the highest priority.

The following two methods are applied to activity priori-
ties after they have been initialized by one of the static algo-
rithms:

o Tie Breaker If activities have the same priority, the activ-
ity with the earliest latest allowed start time is higher pri-
ority. If they also have the same latest allowed start time
then the longer activity has the higher priority. If all of
these attributes are equal then the higher priority activ-
ity is chosen lexicographically based on each activity’s
unique identifier.

e Dependencies In the priority-first scheduling scheme, if
A, — A, then A, must be considered for scheduling

The focus of the static algorithms was priority setting; modi-
fying other schedule parameters is an area of future work.



before A,; otherwise, A, will never be scheduled. We en-
sure that A, always has a higher priority than A, through
a simple recursive sort 3.

Parameter Search

To determine a set of parameters that will allow the sched-
uler to generate a schedule better than the static algorithms,
we attempt to search the parameter space in an approach
similar to Squeaky Wheel Optimization (SWO) as described
in Joslin and Clements 1999. Squeaky Wheel Optimization
usually involves a constructor, an analyzer, and a priori-
tizer. The constructor generates a schedule, the analyzer de-
termines problem areas and assigns “blame” to certain ele-
ments in the schedule, and the prioritizer modifies the order
in which the elements are considered. This process repeats
until a satisfactory result is reached or allotted time runs out.
However, there are two main differences between our algo-
rithm and traditional SWO. First, we do not just consider the
ordering of activities but also other parameters such as pre-
ferred time. Thus, our “prioritizer” should be described as
a “parametizer” instead. Second, our scheduling problem is
intrinsically tied to execution; analyzing the initial schedule
generated by itself is not satisfactory. Our approach (Figure
2) builds upon the usual SWO approach by incorporating a
simulation of execution and Monte Carlo to build an execu-
tion sensitive result. We call our approach Parameter Search
as it searches the activity parameter space using Monte Carlo
simulation feedback to find a good set of priorities, unlike
the static algorithms.

Solution Blame
Constructor
Execution Simulation

Prioritizer

Activity Parameters

Figure 2: SWO accounting for execution.

Constructor

Typically, the constructor generates a schedule as the so-
lution, which is then fed into the analyzer. However, our
scheduling problem must be taken in context with execu-
tion. Activities may finish early or late, affecting how many
and which activities can be scheduled. In order to take this
into account, we generate the final schedule following a
(lightweight) simulation of the entire plan execution. This
is simulated by letting activities finish early or late by a
variable amount based on a probabilistic model of plan exe-
cution; however, the probabilistic model may promote mis-
leading results if only sampled once.

Our constructor runs a Monte Carlo and simulates multi-
ple plan executions, passing on all of the executed plans as
the solution to the analyzer. Each column in Figure 3 is a
different simulation of execution and each row represents a

3Runtime is trivial due to a limited number of input activities.
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Figure 3: Monte Carlo simulation of multiple plan execu-
tions.

reinvocation of the scheduler. The Monte Carlo simulation
consists of multiple execution traces, each with different ac-
tivity duration variants. The score is aggregated across all
execution traces, and is fed to the analyzer.

Runtime Analysis

Traditionally, the runtime of SWO is O(S - (C + A + P)),
where S = total_search_steps, C = constructor, A =
analyzer, and P = prioritizer. The constructor is typ-
ically a greedy algorithm (Joslin and Clements 1999); as
such, O(C) is relatively small and on the order of O(N)
where N is the number of activities. The runtimes of the an-
alyzer and prioritizer are usually comparable to that of the
constructor. However, Parameter Search’s constructor is a
Monte Carlo of multiple scheduler re-invocations.

In Parameter Search, C = M - s - R - ¢ where M is the
number of Monte Carlos per step, s is the runtime of the
scheduler, R is the number of scheduler re-invocations per
execution simulation, and ¢ is a constant cost of simulat-
ing execution. It is possible to minimize the effects of M
by parallelizing the Monte Carlos, but this is realistically
limited by cost. Since the onboard scheduler’s average case
complexity is © (7' N?) (Rabideau and Benowitz 2017) 4, the
constructor’s runtime dominates the analyzer and prioritizer
(parametizer in our case). The resulting runtime is

oS- C) 2)

The constructor’s significantly increased runtime poses
a notable challenge as our constructor can take minutes to
generate a solution, in comparison to the seconds or mil-
liseconds a traditional constructor would take. This limits
the number of steps that Parameter Search can take before
running out of time.

Analyzer

The analyzer (Algorithm 1) takes the solution and assigns
blame to problem areas. The objective is to execute all ac-
tivities, thus all activities that are not executed are blamed.
Since the solution is composed of multiple schedules, there
may be multiple Monte Carlo runs where activities fail to be

*T is the number of timelines required by the scheduler.



Algorithm 1 Monte Carlo Analyzer

Input:
A(p): List of activities with priorities
S: List of all final schedules after simulating execution
Output:
U List of all unscheduled activities
score: Score (objective function)
: for each S; € S do
U«UU{VacAlad¢S:}
score < score + get_score(.S;)
end for

bl

executed. For simplicity, we generally assign equal blame to
any activity that was not executed in any of the simulations.
However, further on we describe an approach that adjusts the
blame factor according to how many times an activity failed
to schedule and execute.

Parametizer

There are three basic heuristics for changing activity priori-
ties. Constant Step increases the priorities of all blamed ac-
tivities by a static amount z. Stochastic Step increases the
priorities of all blamed activities by a random amount be-
tween 1 and N. This helps avoid local maxima. Max Step
promotes any blamed activity to the highest scheduling pri-
ority. Each of these heuristics restarts to a random priority
set if a cycle is detected.

Constant Step performs poorly due to cycles, eventually
devolving to random walk. Although Max Step is often too
coarse in its search and Stochastic Step too random to re-
liably converge in the limited steps available, Max Step
and Stochastic Step still perform well in empirical analysis.
However, these heuristics are quite naive and leave room for
improvement. Specifically, these heuristics do not attempt to
analyze the structure of the plan, do not fully utilize the mul-
tiple re-invocations of the scheduler (focusing instead solely
on the final executed schedule), ignore preferred time as an
adjustable input parameter, and do not utilize information
from past iterations. The following heuristics attempt to ad-
dress those shortcomings.

Intersect The Max Step heuristic does not analyze the
plan when setting activity priorities, instead setting any
blamed activity with the highest priority. As a result, it often
results in a higher priority than necessary and causes other
lower priority activities to fail to be scheduled. The Intersect
heuristic attempts to promote a blamed activity’s priority to
its optimal position by analyzing each activity’s execution
time constraints and unit resources.

Most of the time, the reason an activity cannot be sched-
uled within its execution time constraints is due to either
a) insufficient consumable resources (e.g. energy) or b) unit
resource claims being blocked by higher priority activities.
The order in which activities are scheduled is unlikely to fix
any issues caused by consumable resources. However the
order in which activities are scheduled will affect where ac-
tivities are scheduled (and unit resource usage) and guide
activities towards their optimal priority.
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Priority of each blamed activity A; is derived as follows:

p; = max(p;, max p;j) +1

K= {j|A; € AN intersect(T;,Tj) &)

A {RiNR;} # 0}

where T is the set of start time windows for each activ-
ity and R is the set of unit resources for each activity. By
promoting a blamed activity above only the activities that a)
share a unit resource and b) intersect with its execution time
constraints, the intersect heuristic can utilize knowledge of
activity interactions to adjust its priority towards its optimal
priority setting.

Intermediate Schedules The scheduler is re-invoked mul-
tiple times throughout execution and generates multiple in-
termediate schedules along with the final executed schedule.
It is possible for an activity to be executed successfully even
though it was not successfully scheduled in all of the in-
termediate plans. This could occur if activities finish early
allowing the scheduler to reschedule with more time and en-
ergy available, thus scheduling and executing activities that
could not fit using the original, conservative durations. Even
if an activity executes, being absent from one or more inter-
mediate schedules is an indication that the activity is at risk
of not executing compared to an activity that was scheduled
in all intermediate schedules. Thus, the Intermediate Sched-
ules heuristic takes into account whether or not each activity
appeared in all intermediate schedules, not just if it executed.
An activity’s scheduling priority is adjusted as follows:

o If an activity was executed but not scheduled in any inter-
mediate schedule, then its priority is increased by w; - s.

e If an activity failed to execute then its priority is incre-
mented by ws - e.

where s is the number of times the activity failed to sched-
ule, e is the number of times the activity failed to execute,
and w; and wq are derived constant weights. We derived w,
and wo through trial and error testing and we recognize that
there may be other heuristics that prove more effective.

Lastly, since ensuring that an activity is executed is sig-
nificantly more important than ensuring that an activity is
scheduled, a final sort enforces that any activity that failed
to execute has a higher priority than any activity not sched-
uled in an intermediate schedule, but successfully executed.

Preferred Time One of the primary goals of manipulating
the order in which activities are considered for scheduling is
affecting each activity’s scheduled start time. Changing an
activity’s preferred time is another avenue towards changing
an activity’s scheduled start time. In fact, for any determinis-
tic schedule (durations do not change) where a solution (all
activities are scheduled) exists, it is clear that if the preferred
times of each activity were set to their scheduled start time
in the solution, all activities would be able to be scheduled
regardless of their scheduling order. Despite that, the reason
we cannot solely look at preferred time is that a) the com-
binatorics of all possible start times is significantly higher
than that of all possible scheduling orders and b) execution
can present situations where scheduling order is important.



Another possible way of guiding where an activity should
be scheduled is by changing its start time window. Given
that a) start time windows can only be shrunk, not grown 3
and b) the goal is to schedule all activities, not as many as
possible, we can prove that manipulating an activity’s pre-
ferred time will result in no worse than manipulating start
time windows. To prove this, let A;; = A;. We can manipu-
late activity A;/’s start time window by:

—x:x>0
+y:y>0

k can be any arbitrary start time window k£ € T/ since
every start time window is disjoint and a preferred time can
be specified for any start time window.

There are two situations.

N pu— ;!
Ykend *k.end

or T}

k_start

“

il
Yk_start

1. A; cannot be scheduled in the window. This is the worst
result; therefore A; cannot be worse than A;/.

2. A, can be scheduled in the window.

Let schedulable(A;:, x) at any start time 2z € X

= Vzx Aischeduled,start =z, if Tikfpreferred =7

Therefore, A; can achieve the same results as A;; by ma-
nipulating Aik,prcfcrmd'

The only way shrinking an activity’s start time window
would be better than manipulating preferred time would be
if we were to give up on one activity in order to schedule
another. However, our goal is to schedule all activities so we
do not consider that situation.

If an activity cannot be scheduled then there does not
exist a preferred time that would allow it to be scheduled
since preferred time is a soft constraint. Thus changing the
preferred time of blamed activities, B, would be fruitless.
Instead, the preferred times of non-blamed activities are
shifted through two approaches, described as follows:

1. Start Time Window For each start time window in each
non-blamed activity, determine a range, 7, that does not
intersect with the start time windows of any blamed ac-
tivities. If no such range exists, use the existing start time
window. Then, stochastically change the preferred time
to the earliest, latest, midpoint, or random time within 7.
This heuristic utilizes the same principles as the Intersect
heuristic to prevent the activity from blocking any blamed
activity. The stochastic nature prevents it from getting
stuck in local maxima and cycles.

2. Past Start Time It is rarely the case that a blamed activity
A;, fails in all iterations of input parameters and Monte
Carlos. Instead, A; will schedule with some set of input
parameters, but cause another activity to fail to sched-
ule instead. The times where A; was successfully sched-
uled signify potential regions where A; could be sched-
uled again. Using preferred time, we can shift other ac-
tivities’ (that share unit resources and intersect start time
windows) preferred times away from times where activ-
ity A; was successfully scheduled, potentially giving it

3growing the window enables solutions that are not a subset of
the original solution set

505

room to be scheduled in a future iteration. If the blamed
activity A; has not been successfully scheduled yet, then
the algorithm behaves the same as the Start Time Window
preferred time approach.

Portfolio Each of the aforementioned heuristics attempts
to analyze a different part of the plan structure. Thus, cer-
tain heuristics may prove more effective for certain types of
schedules, activities, and constraints. For example, the Inter-
sect heuristic might prove effective when the start time win-
dows are small and when unit resources are shared rarely,
but would eventually devolve into Max Step if every activity
shared the same unit resources and start time windows.

Past knowledge indicates that there are potentially a
wide variety of plan types to consider. Not only that, but
since operations knowledge is based on Mars missions (e.g.
MSL, MER) without an onboard scheduler, we cannot be
sure how different Mars 2020 plans will be structured in
the future. Thus, we must be robust to multiple possibili-
ties. A portfolio scheduler is a common technique that al-
lows a scheduler to remain robust to a variety of situa-
tions by leveraging the strengths of each individual heuristic
and widening the search scope (Gomes and Selman 2001;
Huberman, Lukose, and Hogg 1997).

Portfolio in Parameter Search stochastically chooses a Pa-
rameter Search heuristic at each step of the search. The prob-
abilities are currently equally weighted, but can be adjusted.
The goal is that, while each heuristic may outperform the
portfolio approach for certain input schedule structures, the
variety the portfolio provides will allow it to outperform
any individual heuristic over multiple schedule types. Note
that it is possible to derive an improved portfolio probability
distribution (Xu et al. 2008; Engelhardt and Chien 2001a;
2001b). We discuss this further in the Future Works section.

Empirical Analysis

In order to evaluate how well our approaches are able to
generate a set of input parameters that result in an optimal
schedule, each approach is applied to various sets of input
constraints and compared against each other as well as var-
ious static algorithms. Parameter Search is initialized with
the latest start static algorithm as its runtime is trivial and it
performs the best among the static algorithms.

We use Copilot to construct a schedule and simu-
late plan execution. Copilot includes the M2020 surrogate
scheduler—a Linux workstation environment implementa-
tion of the same algorithm as the M2020 onboard scheduler
(Rabideau and Benowitz 2017). The surrogate scheduler is
expected to produce the same schedules as the operational
scheduler, but runs much faster in a workstation environ-
ment. Copilot is expected to assist in validating the flight
scheduler implementation and also in ground operations for
the mission.

The plan inputs are derived from sol types—the current
best available data on expected M2020 rover operations (Jet
Propulsion Laboratory 2018). Each sol type contains be-
tween 20 and 40 activities. Data from the Mars Science Lab-
oratory (MSL) Mission (Jet Propulsion Laboratory 2017;
Gaines et al. 2016) indicates that activities were conserva-



tive and completed approximately 30% early. There is a de-
sire by the M2020 mission to operate with less margin to
increase productivity. We use normal distributions to deter-
mine the activity execution durations; the mean is 90% of
the given duration and the standard deviation is based on the
percent of activities expected to run late (values falling to the
right of the given duration in the normal distribution). This
value is set to 10% by default, but is varied to further con-
strain our plans. Activity durations are independent of each
other, and 10 Monte Carlo simulations are run per step of
Parameter Search.

While the sol types are accurate representations of plan
intents (e.g. drilling vs imaging), there has been strong con-
cern about how accurate the individualized constraints are
in relation to actual M2020 operations since past rover op-
erations knowledge (MSL, MER) was without an onboard
scheduler. As a result, the accuracy of the assumptions
would be higher for the types of input activities (plan in-
tent), but lower for the specific input constraints (science
preferred time, start time windows). Thus, we must be ro-
bust to a variety of constraint possibilities. To simulate those
possibilities, we take the existing sol types, constrain them,
and then analyze the effectiveness of our algorithms on the
constrained plans. They are constrained as follows:

1. Shrink Start Time Windows Each activity’s earliest start
time is increased by the same amount its latest start time is
decreased. Start time windows are constrained from 10%
to 50% in multiples of 10%.

2. Vary Incoming SOC Incoming SOC (energy) is decreased
from 100% to 60% of the maximum SOC in multiples of
10%.

3. Actual Duration Variation Currently, our actual activity
durations are based on a probabilistic distribution. In-
creasing the portion of the distribution that falls to the
right of the given, conservative duration will increase both
the number of activities that finish late and by how much
they finish late. The distribution is varied such that 0% to
40% of activities finish late in multiples of 10%.

It may not be possible to execute all activities in every
variation due to plan constraints. However, it is difficult to
determine a more accurate upper bound as that would re-
quire a tractable, optimal scheduler. As such, we compare
against a perfect score that assumes all activities given can
be executed.

Results

In all of the sol type variations, Parameter Search outper-
forms the static algorithms. This can be seen in both the
overall results (Figure 4d) and across the individual varia-
tions (Figures 4a, 4b, 4c). The differences are statistically
significant (p < 0.01) for every Parameter Search approach
against every static algorithm.

In individual plan variations, the portfolio approach does
not statistically outperform and sometimes under-performs
certain Parameter Search heuristics. This is to be expected
as each heuristic has its specific strengths, making it special-
ized but not versatile. In Figure 4a, the three priority setting
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Method Mean Std.Dev t df Sig. (2-tailed)
Max Step 0.087 0.997 2.816 1049.000 0.005
Stochastic 0.072 0.835 2.807 1049.000 0.005
IntermediateSchedules  0.335  1.577 6.884 1049.000 0.000
Intersect 0.118 1.027 3.725 1049.000 0.000
Start WindowPreferred 0.067 0.821 2.631 1049.000 0.009
Past StartPreferred 0.081 0.846 3.098 1049.000 0.002

Table 1: 1 sample t-test of the difference from the portfolio
approach. Lower means are closer to the portfolio approach.

heuristics—Max Step, Stochastic, and Intersect—perform
better than the preferred time approaches. This is because
the tighter start time windows limit the adjustment of pre-
ferred times, thereby limiting their effectiveness as well.
Figure 4b shows a similar trend; the Max Step and Stochas-
tic heuristics even outperform the portfolio approach as the
incoming SOC is decreased. In theory, the preferred time
heuristics could have performed well in energy constrained
schedules by targeting regions where less preheat is neces-
sary, but this was not implemented in the current approach.
This will be developed and tested in a future implementa-
tion. In contrast, Figure 4c shows both preferred time ap-
proaches as the top performers after the portfolio approach.
As variance increases, there will be situations where an ac-
tivity finishes late and forces the execution system to handle
the next back-to-back activity. The existing execution sys-
tem is based on fixed start times and allows limited delays
of activity start times (Chi et al. 2018). Delays cannot al-
ways be handled and may result in an inconsistent schedule
and unscheduled activities. If the two activity durations are
similar, changing their relative priorities will not be effective
as the activities will remain back-to-back and the likelihood
that either activity finishes late would be equal given their
equal probabilistic distribution. However, if preferred times
were set to prevent back-to-back activities, we can avoid the
need to rely on the execution system.

For each sol type variation, it would be better for the port-
folio to focus on the type of approach best suited for the
variation type. Training the portfolio to adjust its probability
distribution based on plan structure analysis would help the
portfolio overcome this shortcoming. Despite that, in Figure
4d it can be seen that the portfolio approach performs better
overall than any individual algorithm, showcasing its versa-
tility across a wider range of problem sets. A difference of
0.05 mandatory activities is noteworthy because that trans-
lates to an average of 1 mandatory activity per 20 Sols; for
comparison, MSL dropped an average of 1 activity every 90
sols (Gaines et al. 2016). In addition, the differences are sta-
tistically significant (p < 0.01) as shown in Table 1.

While the portfolio approach performs the best, a concern
is that the use of multiple heuristics may result in a slower
convergence on the solution. However, in Figure 5, we can
see that the portfolio based approach converges to its solu-
tion in a number of steps comparable to the other heuristics.
The time spent on each Parameter Search approach is ap-
proximately equal. Each approach only considers one child
for its next iteration, and the constructor, which is the same
for every approach, dominates the parametizer and analyzer
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Figure 4: Difference from the perfect activity score vs. each method per sol type variation. Static algorithms are green and
hatched and Parameter Search heuristics are blue and not hatched. Lower values (Shorter bars) indicate less activities dropped
and is better. One point equals one activity. Methods from left to right are Latest Start, Random Priority, Human Expert,
Intermediate Schedules, Intersect, Max Step, Stochastic, Past Start Preferred, Start Window Preferred, and Portfolio.

Difference from Perfect Score vs Steps

e Latest Start
Random Priority
Human Expert
Intermediate
Schedules
Intersect

Max Step
Stochastic

Past Start
preferred

Start Window
Preferred

—— Portfolio

Difference from Perfect Score

0.0 25 7.5 10.0

Step Count

125

Figure 5: Difference from the perfect activity score vs. num-
ber of steps. Lower values are better. Portfolio is black.

as described in Equation (2).

Figure 6 shows how Parameter Search improves upon
handover SOC. Despite being a secondary score, the han-
dover SOC score is improved upon by Parameter Search
alongside the number of activities scheduled. This is likely
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due to Parameter Search improving the structure of the plan
in ways such as shifting activities to regions where less pre-
heat is necessary or reducing unnecessary rover awake time.
Figure 6 also provides additional evidence that the portfolio
approach outperforms individual heuristics.

The Intermediate Schedules heuristic consistently under-
performs the other heuristics. This is mainly because this
heuristic effectively uses a different utility function; one
where being scheduled is important, not just being executed.
However, to compare all of the methods equally, we used
Equation 1 as our utility function where only successful ex-
ecution matters. Therefore, the strengths of the Intermediate
Schedules heuristic were not highlighted in our analysis.

Related Work

Parameter Search is inspired by Squeaky Wheel Optimiza-
tion (SWO). Typically, SWO uses a constructor, analyzer,
and prioritizer for the next iteration of schedule generation
(Joslin and Clements 1999). Parameter Search differs in that
the intent is not to generate a good schedule but rather to set
parameters that perform well in execution and rescheduling.
Therefore the Parameter Search constructor must use the
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to the right is better.

scheduler through multiple runs of execution (where each
run of execution incurs multiple scheduler invocations) to
assess parameter assignment performance.

Portfolio algorithms (Gomes and Selman 2001; Leyton-
Brown et al. 2003) have proven their effectiveness when
dealing with a variety of problem sets. These works differ
in their focus on runtime improvement since each individual
algorithm is able to solve the problem (or prove no solu-
tion exists). Our heuristics and algorithms may not be able
to solve the problems individually (e.g. some problems can-
not be solved with just priority setting and require preferred
time manipulation) and thus the focus is on the overall utility
improvement from running a portfolio.

Generating schedules that are robust to execution run time
variations (Leon, Wu, and Storer 1994) is a mature area of
work. However, the topic usually revolves around develop-
ing a scheduler that can generate robust schedules. In our
case, the scheduler is a) a fixed ”black box” that we have
no control over and b) robust to execution run time varia-
tions mainly through rescheduling. As a result, rather than
developing a scheduler itself, we are developing a method-
ology that is able to generate a set of parameters for a fixed
scheduler that enables it to be robust to rescheduling due to
runtime variations.

Other approaches (Drummond, Bresina, and Swanson
1994; Washington, Golden, and Bresina 2000) use branch-
ing to increase robustness - these differ from our work that
adjusts parameters and allows rescheduling. (Saint-Guillain
2019) utilizes a measure probability and robustness rather
than a Monte Carlo to account for execution uncertainty.

A number of other spacecraft (Muscettola et al. 1998;
Pell et al. 1997; Chien et al. 2005; 2016) and rover (Woods
et al. 2009; Gregory et al. 2002) autonomy systems have in-
cluded planning, but these differ in that we are deriving con-
trol information specific to scheduling for a limited context
- e.g. one rover sol temporal schedule.

Other approaches that utilize repeated sampling to search
the solution space include: a) Monte Carlo Tree Search
which builds a search tree according to random samples
(Browne et al. 2012), b) Hindsight Optimization which
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generates scenarios to be solved by a deterministic solver
(Chong, Givan, and Chang 2000), and c) Reinforcement
Learning which translates differing actions and their change
to environmental state (Kaelbling, Littman, and Moore
1996). These differ in that they search each node in the tree,
while we search leaf nodes only.

Future Work

As described in Equation (2), the constructor dominates the
runtime of the algorithm. While it is theoretically possible
to parallelize all of the Monte Carlos, realistically this is
limited by cost. Therefore, decreasing the number of Monte
Carlos required would decrease overall runtime. One reason
a Monte Carlo requires so many evaluations is because it
repeatedly samples the mean and only rarely samples edge
cases. An alternative sampling method to consider is Impor-
tance Sampling. Importance sampling chooses samples from
a distribution which applies higher weight to the important
regions (Rubinstein and Kroese 2016). It then accounts for
overweighting the important regions by considering the like-
lihood of the importance distribution to the normal distri-
bution. By using importance sampling (or other sampling
methods) we can achieve the same accuracy as a Monte
Carlo with fewer samples, allowing the spare runtime to be
put into more steps of the algorithm or even branching.

Our current portfolio approach is incredibly naive, choos-
ing the heuristic for each step stochastically without analy-
sis. There are multiple ways to improve on this. One sim-
ple way is to run all child paths in parallel for a fixed
number of steps and backtrack to the best performing one
(Gomes and Selman 2001). However, this requires paral-
lel computing which is already limited by the Monte Car-
los. Another approach is to randomly restart after the cur-
rent algorithm slows in its improvement of the utility func-
tion. This would shorten the search depth, but can be supris-
ingly effective (Gomes and Selman 2001). Lastly, we can
apply learning to adjust the portfolio probability distri-
bution based on plan structure analysis (Xu et al. 2008;
Engelhardt and Chien 2001a; 2001b).

The M2020 Onboard Scheduler must deal with two tiers
of activities: mandatory and optional. In this paper we fo-
cused only on and assumed that all activities are mandatory
activities. Optional activities add another layer of challenge
as 1) not all optional activities must be scheduled and 2)
they may need to adhere to certain constraints (e.g. han-
dover minimum SOC) that mandatory activities can ignore.
Mixed-Criticality Schedulers deal with systems where there
are two or more levels of criticality (Burns and Davis 2013)
and may be an area of future work.

Other approaches or tools such as paramILS (Hutter et al.
2009) and potential theoretical guarantees are also topics of
future interest.

Conclusion

Deriving parameters for a limited embedded scheduler is
challenging due to the need to optimize for rescheduling
and uncertain execution. To account for execution, Param-
eter Search adjusts parameters based on feedback from sim-



ulated execution and rescheduling using Monte Carlo sim-
ulations. We derive a range of potential sol type variations
based on best available planetary rover operations knowl-
edge and data, and present an empirical evaluation showing
Parameter Search outperforms static parameter assignment
methods including manual expert derived priorities.
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