Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Model Recognition as Planning

Diego Aineto, Sergio Jiménez, Eva Onaindia

Miquel Ramirez

Departamento de Sistemas Informéticos y Computaciéon School of Computing and Information Systems

Universitat Politecnica de Valéncia.
Camino de Vera s/n. 46022 Valencia, Spain
{dieaigar,serjice,onaindia} @dsic.upv.es

Abstract

Given a partially observed plan execution, and a set of pos-
sible planning models (models that share the same state vari-
ables but different action schemata), model recognition is the
task of identifying the model that explains the observation.
The paper formalizes this task and introduces a novel method
that estimates the probability of a STRIPS model to produce
an observation of a plan execution. This method builds on top
of off-the-shelf classical planning algorithms and it is robust
to missing actions and intermediate states in the observation.
The effectiveness of the method is tested in three experiments,
each encoding a set of different STRIPS models and all us-
ing empty-action observations: (1) a classical string classifi-
cation task; (2) identification of the model that encodes a fail-
ure present in an observation; and (3) recognition of a robot
navigation policy.

Introduction

Addressing the task of recognizing the mission (plans and
goals) of a planning agent from a set of given observa-
tions has recently captured much attention. Rule-based sys-
tems, parsing, graph-covering or Bayesian nets have been
proposed for plan/goal recognition tasks (Sukthankar et al.
2014). Plan recognition as planning is the model-based
approach that leverages the action model of the observed
agent to compute its most likely goal and predict its future
actions (Ramirez and Geffner 2009; Ramirez and Geffner
2010). This paper presents the novel task of model recogni-
tion, where the target of the recognition is not a goal or a
plan but the model that shapes the behaviour of the observed
agent. Given a partially observed plan execution, and a set
of possible planning models, model recognition is the task
of identifying the model in the set with the highest probabil-
ity of producing the given observation. Model recognition
enables the identification of the agent’s behaviour without
need of being aware of the agent’s intention.

As an example, imagine you are given a set of models,
each one encoding a different navigation policy fora N x N
grid. Figure 1 shows an example of one such model, accord-
ing to which, the agent can only move right when it is at
an even row (g0 holds), and left when it is at an odd row
(¢q1 holds). Given the partially observed plan execution of

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13

The University of Melbourne
Melbourne, Victoria. Australia
miquel.ramirez@unimelb.edu.au

raction inc-x
:parameters

(2vl 2v2)

:precondition (and (xcoord ?vl) (next ?vl ?v2) (qg0)
:effect (and (not (xcoord ?vl)) (xcoord 2v2)))
(:action dec-x
:parameters (?vl ?v2)
:precondition (and (xcoord ?vl) (next ?v2 ?vl) (ql)
ceffect (and (not (xcoord ?vl)) (xcoord ?v2)))
(:action inc-y-even
:parameters (2vl ?v2)
:precondition (and (ycoord ?vl) (next ?vl ?v2) (gq0))
:effect (and (not (ycoord ?vl)) (ycoord ?v2
(not (g0)) (ql)))
(:action inc-y-odd
:parameters (?vl ?v2)
:precondition (and (ycoord ?vl) (next ?vl ?v2) (qgql)
reffect (and (not (ycoord ?vl)) (ycoord ?v2
(not (gl)) (g0)))
(raction dec-y-even
:parameters (?vl ?v2)
:precondition (and (ycoord ?vl) (next ?v2 ?vl1) (q0)
reffect (and (not (ycoord ?vl)) (ycoord ?v2
(not (g0)) (gl)))
(:action dec-y-odd
:parameters (?vl ?v2)
:precondition (and (ycoord ?vl) (next ?v2 ?v1) (ql)
:effect (and (not (ycoord ?vl)) (ycoord ?v2

(not (gl)) (g0)))

Figure 1: Example of an action schemata (given in PDDL)
for robot navigationina N x NV grid.

Figure 2, where variables g0 and ¢1 are unobserved, model
recognition aims to identify the navigation policy (model)
that better explains this observation.

Our proposal to tackle the task of model recognition is
to compute, for each model M in the set, a model M’
by editing M with the least needed amount of adjust-
ments that are required for M’ to explain the observation.
We apply an edit distance that determines the number of
insertions and deletions of preconditions and effects that
are required to transform M into M’. With this in mind,
model recognition resembles other tasks like model recon-
ciliation, which uses model editing to conform two PDDL
models, where one of them can be an annotated model or
an empty model, with respect to a fully observed optimal
plan computed with one of the two models (Chakraborti et
al. 2017; Sreedharan, Chakraborti, and Kambhampati 2018;
Chakraborti, Sreedharan, and Kambhampati 2018). Also,

the model drift (Bryce, Benton, and Boldt 2016) approach
estimates the error between a computational model, and a
ground-truth model which changes as the domain evolves,
as the normalized symmetric difference of the propositions
that appear in the preconditions and effects of both models.
In this case, plan observations are used to hypothesize vari-
ations of the model.

Unlike model reconciliation and model drift, our proposal
computes the model M’ from partial observations of plan
executions that contain no actions and incomplete — even
empty— intermediate states. Moreover, we leverage the two-
model edit distance to elaborate a probabilistic distribution
of a model M, which is used to posit the model recognition
task as a classification task with as many classes as input
models. This way, we account for the possibly different prior
probability of each model, a feature that cannot be consid-
ered with purely distance-based metrics.

One last consideration is related to the use of an action
model learning approach with partial observability to induce
the model M’. While most approaches can learn from empty
or partially specified models (Yang, Wu, and Jiang 2007,
Amir and Chang 2008; Cresswell, McCluskey, and West
2013), model recognition requires the ability of editing a
possibly inconsistent model M so that the resulting model
M’ is consistent with a partial observation in which all or
many of the actions are probably missing. This poses the
problem of filling the gaps of the incomplete observation and
so it justifies using an approach to learning action models as
planning (Aineto, Jiménez, and Onaindia 2018). Otherwise,
in the case of full observability, our formalization might as
well use any model editing approach such as model recon-
ciliation or model drift.

We provide a formalization of model recognition that is
applicable to any planning model but we restrict our atten-
tion to STRIPS—compilable models. It is well-known that di-
verse automata representations like finite state controllers,
GOLOG programs or reactive policies can be encoded
as classical planning models (Baier, Fritz, and Mcllraith
2007; Bonet, Palacios, and Geffner 2010; Segovia-Aguas,
Jiménez, and Jonsson 2018; Segovia-Aguas, Celorrio, and
Jonsson 2019). As for the evaluation, the effectiveness of
our approach is tested in three experiments, each encoding
a set of different STRIPS models and all using empty-action
observations: (1) a proof-of-concept classification task; (2) a
simulation of a non-deterministic blocksworld under differ-
ent degrees of observability; and (3) a navigation task where
observations contain an unbounded number of unobservable
states.

Background
Classical planning with conditional effects

I is the set of fluents or state variables (propositional vari-
ables). A literal [is a valuation of a fluent f € F, i.e. ei-
ther [= forl = —f. Lis a set of literals that represents a
partial assignment of values to fluents, and L(F') is the set
of all literals sets on F', i.e. all partial assignments of values
to fluents. A state s is a full assignment of values to fluents.
We explicitly include negative literals —f in states and so

14

inc-y,

dec-y

R4 - inc-y,

dec-y

Figure 2: (Left) Robot navigating a 5 x 5 grid. (Right)
Automata to control that the robot only increments its x-
coordinate when ¢go holds (actions inc-y and dec-y up-
date the robot y-coordinate and switch the automata state).

|s| = |F| and the size of the state space is 27/,

A planning frame is a tuple & = (F, A), where F is a
set of fluents and A is a set of actions. An action a € A
is defined with preconditions, pre(a) € L(F'), and effects
eff(a) € L(F). The semantics of actions a € A is specified
with two functions: p(s, a) denotes whether action a is ap-
plicable in a state s and 6(s, a) denotes the successor state
that results of applying action a in a state s. Then, p(s, a)
holds iff pre(a) C s. And the result of applying a in s is
0(s,a) = {s\ —eff(a)) Ueff(a)}, with —eff(a) = {-l:1 €
eff(a)}.

A planning problem is defined as a tuple P =
(F, A, I,G), where I is the initial state in which all the flu-
ents of F' are assigned a value true/false and G is the goal
set. A plan 7 for P is an action sequence 7 = (a1, ..., an),
and || = n denotes its plan length. The execution of 7
in the initial state I of P induces a trajectory 7(m,P) =
(80,01, 81, ..,0n,Sy) such that s = I and, for each
1 < 4 < n, it holds p(si,l,ai) and s; = 9(51‘,1,(11‘). The
trajectory length of T(m, P) is given by the plan length of 7.
A trajectory 7(m, P) that solves P is one in which G C s,,.

An action a. € A with conditional effects is defined as a
set of preconditions pre(a.) € L(F') and a set of conditional
effects cond(a.). Each conditional effect C > E € cond(a.)
is composed of two sets of literals: C € L(F'), the con-
dition, and E € L(F), the effect. An action a. € A is
applicable in a state s if and only if pre(a.) C s, and the
triggered effects resulting from the action application are
the effects whose conditions hold in s: triggered(s,a.) =

UCDEGcond(ac),Cgs E.

The observation model

Given a planning problem P = (F, A, I,G), a plan 7 and
a trajectory 7(m, P), we define the observation of the tra-
Jjectory as an interleaved combination of actions and states
that represents the observation from the execution of 7 in P.
Formally, O(7) = (s§,a$, sy ...,a?,s2,), s = I, and:

m
e The observed actions are consistent with 7, which means
that (a$, ..., ay) is a sub-sequence of 7. Specifically, the
number of observed actions, [, can range from 0 (fully
unobservable action sequence) to || (fully observable ac-
tion sequence).

e The observed states (sg,s?,...,s2,) is a sequence of
possibly partially observable states, except for the initial

state sg, which is fully observable. A partially observable

state s¢ is one in which [s?| < |F|; i.e., a state in which
at least a fluent of F' is not observable. Note that this def-
inition also comprises the case |s¢| = 0, when the state
is fully unobservable. Whatever the sequence of observed
states of O(7) is, it must be consistent with the sequence
of states of 7(m, P). In practice, the number of observed
states, m, range from 1 (the initial state, at least), to | |+1,
and the observed intermediate states will comprise a num-
ber of fluents between [1, |F|].

We assume a bijective monotone mapping between ac-
tions/states of trajectories and observations (Ramirez and
Geffner 2009), thus also granting the inverse consistency
relationship (the trajectory is a superset of the observa-
tion). Therefore, transiting between two consecutive ob-
served states in O(7) may require the execution of more than
a single action (0(s?, (a1, ...,ax)) = s7,;, where k > 1 is
unknown but finite. In other words, having O(7) does not
imply knowing the actual length of 7.

Figure 2 illustrates a partial observation of a six-
state trajectory ({ (xcoord 0) (ycoord 0)}, { (xcoord
1) (ycoord 0)}, ..., {(xcoord 2) (ycoord 1) }>
This observation only contains fluents of the predicates
(xcoord ?v) and (ycoord ?v), and the value of the
remaining fluents, corresponding to predicates (next 2v1
?2v2), (q0) and (gl), is unobservable in the six states.

Model Recognition
The model recognition task is a tuple (P, M, O) where:
o P = (F,A[],I,G) is a planning problem where A[] is
a set of actions. For each a € A[-], the semantics of a is
unknown; i.e. the functions p and/or 0 of a are undefined.

o M = {My,..., My} is a set of k different planning
models for the actions in A[-]. A model M € M defines
the semantics of every action in A[-]. Planning models dif-
fer in the (p, 8) functions of the actions but they all use the
same set of state variables F'.

e O(7) is an observation of a trajectory 7 (7, P) produced
by the execution of an unknown plan 7 that solves the
planning problem P.

Model recognition can be understood as a classification
task where each class is represented by a different planning
model M € M, and the observed plan execution O(7) is the
single example to classify. The planning model associated to
each class acts as the corresponding class prototype and it
summarizes any observation of a plan execution that could
be synthesized with such model (i.e. the set of all the exam-
ples that belong to that class). We follow the naive Bayes
classifier to assign a model M € M to a given observation
O(7). The solution to the model recognition task is then the
subset of models in M that maximizes this expression.

argmaz pen P(O|M)P(M). (1

The P(M) probability expresses whether one model is
known to be a priori more likely than the others. When this
probability is not given as input, we can reasonable assume
that, a priori, all models are equiprobable. This is precisely

15

®

() O—©
Figure 3: Bayesian network representing that model M is
transformable into a model M’ that produces a trajectory

7(m, P) that (1) reaches the goals in P and (2) it is consistent
with O(7).

what distance-based model edits systems assume, that all the
input models are equiprobable, because this kind of prior
knowledge is not exploitable when using only distances as
classification metric. Consequently, a probability-based for-
mulation allows for a more general definition of a Model
Recognition framework.

Formulating the P(O| M) likelihood

The challenge of our formulation to the model recognition
task is the definition of P(O|M), the likelihood that ex-
presses the probability of observing O(7) when M is the
planning model.

Our approach to formulate the P(O|M) likelihood is to
assess the cost of transforming M into a model M’ that pro-
duces a trajectory 7(m, P) such that: (1) 7(m, P) reaches the
goals in P and (2) 7(m, P) is consistent with observation
O(7). Figure 3 shows the Bayesian network that embodies
this procedure. Regarding this network we have the follow-
ing formulation of the P(O|M) likelihood:

P(OIM) =YY" P(M|M)P(r|M')P(Or), (2)
M T

where 7 ranges over all the trajectories consistent with
O(7) that can be synthesized with a model M’ and M’
ranges over all the models that can be generated transform-
ing M.

The exact computation of P(O|M) with equation (2) is
intractable. For most planning problems the set of trajecto-
ries consistent with an arbitrary observation can easily be
huge, infinite in the case of planning problems without dead-
ends (Lesh and Etzioni 1995). Even worse, the number of
models M’ that can be generated rransforming a given clas-
sical planning model M explodes combinatorially with the
number of state variables. Instead, our approach is to esti-
mate P(O|M) using an edit distance defined for STRIPS
planning models. Edit distances are similarity metrics, tra-
ditionally computed over strings or graphs, which have been
proved successful for pattern recognition (Masek and Pater-
son 1980; Bunke 1997). In this work, we assess the cost of
transforming M into M’ computing edit distances between
STRIPS planning models.

Recognition of STRIPS planning models

Our formalization of a model recognition task is valid for
any planning model but our edit distance measure is exclu-
sively for STRIPS models and so we restrict our attention to
STRIPS—compilable planning models'. Thus, we focus on

'An edit distance for other planning models is also definable.

the recognition of M € M, where M is a set of STRIPS
planning models and M defines the semantics of the actions
through a set of STRIPS action schemata.

Well-defined STRIPS action schemata

STRIPS action schemata provide a compact representation
for specifying classical planning models. Figure 1 shows six
STRIPS action schemata that shape a particular kind of robot
navigation in N x N grids (no matter the grid size).

A STRIPS action schema ¢ is defined by a list of param-
eters pars(§), and three lists of predicates (namely pre(§),
del(§) and add(§)) that shape the kind of fluents that can
appear in the preconditions, negative effects and positive ef-
fects of the actions induced from that schema.

Definition 1 (Comparable STRIPS action schemata). Two
STRIPS schemata & and &' are comparable iff pars(§) =

pars(£), i.e, both share the same list of parameters®.

For instance, we claim that the six action schemata
of Figure 1 are comparable while, for example, the
stack (?vl, ?v2) and pickup (?v1) schemata from a four
operator blocksworld (Slaney and Thiébaux 2001) are not.
Last but not least, we say that two STRIPS models M
and M’ are comparable iff there exists a bijective function
M — M* that maps every action schema £ € M to a com-
parable schemata £’ € M’ and vice versa.

Let U be the set of predicates that shape the propositional
state variables F'. The set of elements that can appear in
pre(§), del(§) and add(€) of the STRIPS action schema &
is given by FOL interpretations of W over the parameters
pars(§). We denote this set of FOL interpretations as Zy ¢.
For any of the six action schemata of Figure 1, the Zy
set contains the same ten elements, Zg ¢ ={xcoord (v1),
xcoord(ve), ycoord(vi), ycoord(wvz2), gO(),
gl (), next(vi,v1), next (vi,v2), next (vsa,v1),
next (ve,v2)) }.

Although any element of Zy ¢ can a priori appear in the
pre(£), del(€) and add(€) of schema &, the space of possible
STRIPS schemata is constrained by a set C that includes:

e Syntactic constraints. STRIPS constraints require
del(&) C pre(§), del(§) N add(§) = O and
pre(§) N add(¢) = 0. Considering exclusively these
syntactic constraints, the size of the space of possible
STRIPS schemata is given by 22%/Tv.cl. For every ac-
tion schema in the navigation model of Figure 1 then
22x10 — 1048, 576.

e Domain-specific constraints. One can introduce domain-
specific knowledge to constrain further the space of
possible schemata. For instance, in a robot naviga-
tion model like the one in Figure 1, g0 () and gl ()
are exclusive so they cannot hold at the same time in
a pre(§)/del(§)/add(€) list. Further, next (vi,v:1) and
next (ve, v2) Will not appear in any of these lists because

’In STRIPS models, pars(¢) = pars(¢') implies the number
of parameters must be the same. For other planning models that
allow object typing, the equality implies that parameters share the
same type.

16

the next predicate codes the successor function for nat-
ural numbers. These domain-specific constraints reduce
further the size of the space of possible action schemata
to 227 = 16,384 (for every schema in the navigation
model of Figure 1).

Definition 2 (Well-defined STRIPS action schemata). Given
a set of predicates U, a list of action parameters pars(§),
and set of FOL constraints C, ¢ is a well-defined STRIPS
action schema iff its three lists pre(§) C Ly, del(€) C
Ly ¢ and add(§) C Ty ¢ only contain elements in Ty ¢ and
they satisfy all the constraints in C.

We say a planning model M is well-defined if all its
STRIPS action schemata are well-defined.

Edit distances for STRIPS planning models

First, we define the two edit operations on a schema & that
belongs to a STRIPS model M € M:

e Deletion. Given £ € M, an element from any of the lists

pre(&)/del(€)ladd(§) is removed such that the result is a
well-defined STRIPS action schema.

o Insertion. Given £ € M, an element in Zy ¢ is added to
any of the lists pre(&)/del(§)/add(€) such that the result
is a well-defined action schema.

We can now formalize an edit distance that quantifies how
similar two given STRIPS models are. The distance is sym-
metric and meets the metric axioms provided that the two
edit operations, deletion and insertion, have the same posi-
tive cost.

Definition 3 (Edit distance). Let M and M’ be two compa-
rable and well-defined STRIPS planning models within the
same set of predicates V. The edit distance (M, M’) is
the minimum number of edit operations that is required to
transform M into M’

Since Zy ¢ is a bounded set, the maximum number of ed-
its that can be introduced to an action schema is bounded
as well. The maximum edit distance of a STRIPS model
M built with predicates W is §(M, *) = 3. v 3 X [Z ¢
(note that if we consider the set of syntactic constraints then
BM, %) = Y eepa 2 % [Tw.e)).

An observation of the execution of a plan generated with
M further constraints the space of possible action schemata
of M. The semantic knowledge included in the observations
introduce a third type of constraints, that we will call ob-
servation constraints, and that can be added to the set C. In
addition, observation constraints allow us to define an edit
distance to elicit the value of P(O|M). It can be argued that
the shorter this distance the better the given model explains
the given observation.

Definition 4 (Observation edit distance). Given a planning
problem P, an observation O(T) of the execution of a plan
that solves P and a STRIPS planning model M (all defined
within the same set of predicates V). The observation edit
distance, °(M, O), is the minimal edit distance from M
to any comparable and well-defined model M’ s.t. M’ pro-
duces a trajectory T(m, P) that reaches the goals in P and

is consistent with O(7);

0°(M,0) min _§(M, M)
'—=0O

VY M

0°(M, O) can also be defined through the editing that the
observation O(1) requires to fit M. This implies defining
edit operations that modify the observation O(7) instead
of the model M (Yang, Wu, and Jiang 2007; Sohrabi, Ri-
abov, and Udrea 2016). Our definition of observation edit
distance is more practical since the size of Zy ¢ is usually
much smaller than F' (the number of variables in the action
schemata should normally be lower than the number of ob-
jects in a planning problem).

Definition 5 (Closest consistent models). Given a model
M, the set M™ of the closest consistent models is the set
of models M’ that: (1) produce a trajectory 7(m, P) that
reaches the goals in P and is consistent with O(7) and (2)
their edit distance to M is minimal;

M* = arg min §(M, M)
VM O

Approximating the P(O| M) likelihood

Now we are ready to formulate an informative estimate of
the P(O|.M) likelihood for the particular case where models
M are specified with STRIPS action schemata.

Full observability of the executed plan. The full observ-
ability of the executed plan is a too strong assumption for
model recognition but it allows us to understand how to build
a reasonable estimate of P(O|M) for the general case.

Under the assumption of full observability, there is only
a single possible trajectory 7* (7, P) consistent with the in-
put observation so P(O|7*) = 1. Further, there is also a
single model that can exactly produce that trajectory (other-
wise models are identical, at least, in the actions relevant to
the observed trajectory so they can be considered the same
model).

Provided that there is a single possible trajectory and a
single possible model consistent with the input observation,
ie. M* = {M*} then, the probabilities of expression (2)
are not added up and expression (1) simplifies to:

argmaz pepr P(M*|M)P(M). 3)

Note that the term P(7|M*) is taken out of the maximiza-
tion because it is independent of the input model M € M.

Partial observability of the executed plan. In a similar
way, an approximation to P(O|.M) can be built for the gen-
eral case, where the executed plan is partially observed. We
add the following two assumptions to deal with this general
case:

1. Similarly as the rationality principle (Dennett 1983) ap-
plied to agents acting rationally, we assume that agents
will perform the least needed amount of adjustments to
its model needed to explain the observation.

2. A model can only produce one trajectory consistent with
the given observation O and any such trajectory is equally
likely. As future work we plan to relax this assumption by
weighting the edit distance against the trajectory length.

17

These assumptions mean that the sum in equation (2) is
dominated by its largest term, so other terms in the sum are
not added up. The largest term corresponds here to the clos-
est consistent model M*. Note that the more complete the
observation of the plan execution is the more accurate our
estimate becomes, because the space of possible trajectories
becomes more constrained by the observation.

Under assumption (2), both P(O|r) and P(7|M’) are
constant and can be taken out of the equation so we have
that equation (1) simplifies once again to equation (3) with
M* being any model in M*.

The P(M*| M) probability distribution. P (M’| M) in-
dicates the probability of transforming a classical planning
model M into a model M’ by exclusively using the two edir
operations previously defined, deletion and insertion.

We are modeling the editing of a STRIPS planning model
as a Bernoulli process in which there is a sequence of N
independent events representing /N binary decisions (the N
possible applications of the edition operations) such that for
every of these events P(X = T) = pand P(X =1) =
1 — p. Using a Bernoulli process implies that editions are
uniformly random and independent (Devroye, Gyorfi, and
Lugosi 2013).

With this regard, and considering that STRIPS models
M € M can be encoded with a propositional representation
of fixed length N, we formulate the P(M’| M) probability
distribution mapping the distance §(M, M’) according to
equation:

P(M'|M) = p(1 —p)N ¢ 4)

where d = §(M, M’), and p < 0.5 since we consider that
the cost of applying an edit operation is higher than not ap-
plying it. This means that the lower the value of d, the closer
amodel M’ is to the original model M and so the more likely
itis. Note also that all models at a same distance d will be as-
signed the same P(M'| M) by this equation, which means
that this probability only depends on the two given models
and is ”’blind” to the observation.

The P(M*| M) probability is then given by equation (4),
and computing the distance from M to the closest con-
sistents models M* is given by the observation distance,

d = 5°(M,0).

Model Recognition as planning

This section shows that §°(M, ©O), and hence an approxima-
tion to P(O|M), can be computed with a compilation-to-
planning approach as the one proposed in (Aineto, Jiménez,
and Onaindia 2018) (AJO approach hereafter) for learn-
ing STRIPS models. The AJO approach receives as input
an empty model M, which only contains the headers of
the action schemata formed of £ = (name(§),pars()),
and an observation of a plan execution O(7T) (extensible
to a set of observations), and it returns a model M’ with
specification of preconditions and effects of each action
schema included in M such that the validation of O(7) =
(s8,a9,s9...,af,5%,) following M’ is successful; i.e., it
holds p(s;—1,a;) for every observed action of O(r) and
s; = 0(s;—1,a;) for every observed state of O(7).

Essentially, the task (M, O) of the AJO approach can
be used for editing the empty action schemata of M in-
troducing preconditions and effects until O is validated
with the resulting model. We leverage the same idea
to compute §°(M,O) with the exception that now our
M is not empty but M = {&,...,&,}, where & =
(name(&;), pars(&), pre(&i), add(&;), del (&), 1 < i <
m.
Editing the action schemata of M in the AJO approach is
addressed converting the task into a classical planning prob-
lem, which is later solved with a planner. The intuition be-
hind this compilation is that a solution plan to the problem is
a sequence of: (a) edit actions on the schemata of M to build
M’ and (b) validate actions that apply M’ in O(7). The
adaptation of this compilation scheme for solving 6°(M, O)
results in a planning problem P’ = (F', A’ I', G') whose
objective is to determine the preconditions and effects that
need to be added or deleted to the action schemata of M
so as to satisfy O. The accomplishment of this task requires
therefore a propositional encoding of the components of the
action schemata:

e [’ contains the necessary fluents to represent the pre, add
and del of the action schemata. It is a set of editable flu-
ents of the type {pre_e {,del e £, add e &}yeer, . such
that e € Zy ¢ is a single element from the set of FOL in-
terpretations of predicates ¥ over the corresponding pa-
rameters pars(§). Additionally, F’ also contains fluents to
encode the observation constraints; that is, fluents to iter-
ate through the [observed actions and m observed states
of O(7).

e A’ comprises two types of actions with conditional ef-
fects:

— actions for editing £ € M that follow the syntactic
constraints for well-defined STRIPS action schemata.
Hence, A’ contains actions for inserting and removing
a precondition pre_e_¢, a positive effect add_e_¢ or a
negative effect del_e_€ in €.

— actions for applying the new action schemata of the
edited model M’ and validating the observed states of
O(7). Particularly, the apply actions check the precon-
ditions and produce the effects defined by the editable
fluents.

e I’ encodes the editable fluents pre_e £, del_e { and
add_e_£ that hold in the action schemata of M.

e (& contains the necessary fluents to check that all the ob-
served actions and states of O(7) are generated correctly
following the edited model M’.

We now show an example of a solution plan to a plan-
ning problem P’ that results from compiling a specific
task (M, Q). Consider that M is the model of Figure 1
except that the schema inc-x is defined without pre-
conditions and its positive/negative effects are swapped
with respect to Figure 1. And consider an observation
that only contains the initial and final state of Fig-
ure 2; i.e., O(T) = <88,sfn> = <{(xcoord 0) (ycoord
O)},{(xcoord 2) (ycoord l)}). The plan found by a
planner to P’ is shown in figure 4. The first seven steps

18

insert_pre_xcoord.vl_.inc-x) 07 : (validate.0)

01 insert_pre.next.vl.v2.inc-x) 08 : (apply-inc-x 0 1)
02 : (insert_pre_g0.inc-x) 09 : (apply-inc-x 1 2)

)
delete_add-xcoord-vl.inc—-x)
insert_del_xcoord-vl_inc-x) 12 :
insert_add-xcoord-v2_inc-x)

apply-inc-y-even 0 1)
apply-dec-x 3 2)

(
(
o
03 : (delete-del_xcoord.v2.inc-x
(
(
(validate.l)

(
(
(
10 : (apply-inc-x 2 3)
o
(
(

Figure 4: A plan for (M, Q) where M is a modification
of the model of Figure 1 and O a partial observation from
Figure 2.

are the edit actions to fix the schema inc-x; step 07 is
a validate action that sets the robot in the initial state
s§ = ({(xcoord 0) (ycoord 0)}); step 08 applies the
action (inc-x 0 1) and moves the robot one cell to the
right to position (1,0); steps 09-11 also move the robot
one cell to the right; step 11 applies an action that in-
creases coordinate ¢ from a position in an even row number,
thus moving robot to row 1; step 12 moves the robot one
cell to the left and, finally, action (validate_1) checks
the robot position is consistent with the final state s{, =
({ (xcoord 2) (ycoord 1)}).

The value of the observation distance §°(M, ©) is given
by the number of edit operations (insertions and deletions)
required by M to be validated in the input observation. In
the case of the above example, the distance equals 7.

Evaluation

In this section, we evaluate the empirical performance of our
approach® in three different applications of model recogni-
tion. We will assume in the three experiments that O(7) con-
tains an empty sequence of observed actions and so we will
only work with the available observed states.

For each experiment, we define a set M of different plan-
ning models that share the same state variables but up-
date the variables using different action schemata. For every
M € M, we generated the same number of partial observa-
tions of plan trajectories (O(7)) with such a model. Finally,
we applied our model recognition as planning approach to
identify the model, among the models in M, which was ac-
tually used for generating a given O(7) observation. We as-
sume equiprobable prior probabilities in all the experiments;
ie., P(M) = ﬁ for every M € M.

In order to provide a better explanation of the experiments
below, we introduce a particular class of O(7) observations.
This new class allows us to distinguish between observable
state variables, whose value may be read from sensors, and
hidden or latent state variables that cannot be observed.

Definition 6 (®-observation). Given a subset of fluents ® C
F we say that O(1) is a ®-observation of the execution of w
on P iff, for every 1 <1 < m, each observed state s only
contains fluents in ®.

Hence the value of the variables in ® C F' is observable
while the value of the variables in F' \ ® is unobservable.

Reproducibility. All experiments were run in an Intel
Core 15 3.10GHz x 4 16GB of RAM and the classical plan-

3 Available at https://github.com/anonsub/model-recognition.

Figure 5: A 4-symbol and 5-state regular automata for rec-
ognizing the (abed)™ language (¢4 is the acceptor state).

ner we used to solve the instances that result from the com-
pilation was MADAGASCAR (Rintanen 2014) because of its
ability to deal with classical planning problems with dead-
ends (Lopez, Celorrio, and Olaya 2015). Other planners,
such as FastDownward were also tested but provided worse
experimental results. We set up a timeout of 1000s for the
computation of 6°(M, @), at which point it is assigned the
maximum distance.

Recognition of regular automata

The first experiment, which doubles as a proof of con-
cept, exploits model recognition as planning for a classi-
cal string classification problem. In this experiment, the sys-
tem receives (1) the string to classify (the O(7) observation)
and (2) a set M of different planning models, where each
M € M represents a different class; i.e. a different regular
automata that accepts strings that belong to the class.

Figure 5 illustrates a 4-symbol and 5-state regular au-
tomata for recognizing the (abcd)™ language. The input
alphabet is ¥ = {a,b,c,d}, and the machine states are
Q@ = {40.q1,492,q3,94}, where g4 is the only acceptor
state. For instance, executing the planning model that en-
codes the regular automata of Figure 5 with the input string
abcdabed produces the following 8-action plan ({(a,qo) —
@), (b, 1) = q2). (¢, q2) = g3). ({d, g3) — qa). ((a,q4) —
q1), ((b,q1) = g2), ({c, @2) — g3), ((d,q3) — qa)-

In this experiment, M comprises five planning models,
each representing a different 5-state and 4-symbol regular
automata. The five regular languages defined by these au-
tomata are the following:

e L1:a™(ble)d(dd)*a

L£2: bd(abd)*cd*ct

L3: d*c(ac)*db*ac*b™

L4: (cc)Tbd(abd)*

L5: (d|a)a(ba)*ctd(de*d)*

For each regular language, we generated 20 random
strings, O(7) observations, which lengths range from 20 to
30 symbols, thus generating a total of 100 strings. More pre-
cisely, O(7) are observations in which the applied transi-
tions (actions) are unobservable and the fluents of the au-
tomata internal state are also unobservable. Consequently,
O(7) are ®-observations where the problem states are only
represented with the fluents that specify the string to classify.

Table 1 shows the confusion matrix resulting from classi-
fying the 100 strings with our method. In this matrix, rows
represent the actual class and columns represent the class
predicted by our model recognition as planning approach.

19

| L1 | £2| L3 £a | 5
L1]120] 0 0 0 0
L2 0 |20 0 0 0
L3 0 0 [20 | O 0
L4 0 0 0|20 O
L5 0 0 0 0 | 20

Table 1: Confusion matrix for regular automata recognition.

Despite using a suboptimal classical planner, we can ob-
serve that the class for all the 100 input strings was correctly
recognized, which proves the feasibility of our method for
classification tasks. The outstanding results reveal that our
approach is very suitable for the classification of generative
planning models that are more restrictive than STRIPS mod-
els, as it is the case of regular automata.

Recognizing failures in a non-deterministic
blocksworld

With this second experiment we aim to validate the two as-
sumptions underlying our approximation of the P(O|M)
likelihood: (1) that agents adjust their model rationally so
P(O|M) is dominated by the closest consistent model that
explains the observation O(7) and (2) that this model can
only produce a single trajectory consistent with O(7). Our
assumptions are more correct with higher observability and
become tautological when the trajectory is fully observed
O(r) =71).

The input observations O(7) come from a non-
deterministic blocksworld in which some of the executed ac-
tions may have failed. We considered failures of three kinds:

e the execution of a stack action fails and causes no effect
e the execution of unstack fails and causes no effect
e unstack fails and drops the block on the table

M comprises three different 4-schema blocksworld mod-
els, each one extended with an additional action schema that
encodes one of the three above failures. This means that fail-
ures are identified by finding the model that better explains
the input observation.

The validation of the assumptions is done by measuring
the accuracy of our approach across different degrees of ob-
servability. The accuracy metric is defined as the number of
correct predictions over all predictions made, and the degree
of observability indicates the probability of observing a flu-
ent in an intermediate state of O(7). In this experiment, we
also assume that the length of the trajectory is known. More
precisely, at least one fluent of every state of O(7) is ob-
served and the length of the plan trajectory is thus fixed by
the observation. This allows us to produce a controlled ex-
periment in which the number of possible trajectories able
to explain an observation is bounded.

Figure 6 shows the accuracy of our approach when identi-
fying failures over 30 different observations across different
degrees of observability. The positive trend seen in the fig-
ure proves that the more complete the observations are, the
more accurate our estimation becomes.

Accuracy in failure identification

0 I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Degree of observability

Figure 6: Accuracy for the recognition of failures in a non-
deterministic blocksworld.

Recognition of navigation policies

The novel aspect of this experiment is that, unlike the previ-
ous experiment, we do not guarantee that the observed states
contain at least one fluent. This means that some intermedi-
ate states of O(7) may be missing (no fluents are observed)
and, consequently, more than a single action may be required
to reach an observed state from another one.

The planning models of M represent different navigation
models for N x N grids. In particular, we adopt a clas-
sical navigation model with actions up, down, right,
left (to move one cell in each of these four directions)
and extend it to define 8 different navigation policies with
respect to these additional state variables { (q0), (gl),
(min ?v), (max 2v)}. An example of a navigation pol-
icy is shown in Figure 1. This policy allows to move right
when gg holds while it allows to move left when ¢; holds,
producing a zigzag pattern when visiting all the cells of
N x N grids.

Another interesting aspect of this experiment is that all
navigation policies are at a maximum distance of four edi-
tions from the base classical navigation model that can move
the robot in any direction at any given state. Thus, for any
given model and observation, a maximum of four editions
are needed for the input model to explain the observation.
This aspect heavily constrains the discriminating power of
P(O| M), which along with the low degree of observability
of the states, gives rise to a meaningful benchmark for model
recognition as planning.

On the other hand, we generated observations from 8 dif-
ferent trajectories, one for each of the 8 previous planning
models. The trajectories depict paths followed by a naviga-
tion policy to solve the planning problem of visiting all cells
ina b x 5 grid. As in the previous experiments, observations
contain no actions and here, for each observed state, only the
values of the fluents encoding the x and y coordinates of the
agent are known; i.e. ® comprises all the fluents instantiated
with predicates (xcoord ?v) and (ycoord ?v).

Figure 7 shows the classification accuracy achieved by
our approach with respect to a range of degrees of observ-

20

Accuracy in navigation policy recognition

04 | 1

03 |- 1

02 | 1

0.1 | —

0 I I I I
0 20 40 60 80 100

Degree of observability

Figure 7: Classification accuracy for the recognition of nav-
igation models.

ability, from 0% to 100% with 10% increments. In this ex-
periment we included the 0% case which corresponds to
observations where only the initial and final states are ob-
served. The figure shows that for 0% observability we were
unable to unmistakably identify the navigation policies, but
from 10% of observability onwards, we start to correctly
classify half of the observations. Accuracy stabilizes after
40% observability in the range 0.875 to 1 which means that
at most only one out of the 8 observations was not correctly
classified.

Conclusions and Related work

This paper formalizes the task of model recognition and
introduces a novel method that estimates the probability
of a STRIPS model to explain a partial observation of a
plan execution. Our model recognition as planning approach
builds on top of off-the-shelf classical planning algorithms
and it is robust to missing actions and incomplete or miss-
ing intermediate states in the observation. Once the plan-
ning model of the observed agent is recognized, the model-
based machinery for automated planning becomes fully
applicable for other recognition tasks like goal recogni-
tion (Ramirez and Geffner 2010; Ramirez 2012), goal recog-
nition design (Keren, Gal, and Karpas 2014) or counter-
planning (Pozanco et al. 2018), which require beforehand
a model of the observed agent.

We show the effectiveness of our approach in three ex-
periments that encode a set of different models. The first
experiment is a proof-of-concept classification task that rec-
ognizes the regular automata of a given string. The second
experiment, where the number of trajectories explaining the
observation is bounded, shows that a more accurate model
prediction is achieved with more complete observations. The
robustness of the approach is shown in the third experiment
where actions and intermediates states are unobservable. A
significant lesson from the experiments is that our approach
allows us to predict behaviours that are not ruled by a goal-
driven deliberative planning model; e.g., models of fixed
programs or finite state machines (regular automata).

Acknowledgments

This work is supported by the Spanish MINECO project
TIN2017-88476-C2-1-R. D. Aineto is partially supported by
the FPU16/03184 and S. Jiménez by the RYC15/18009. M.
Ramirez research is partially funded by DST Group Joint &
Operations Analysis Division.

References

Aineto, D.; Jiménez, S.; and Onaindia, E. 2018. Learning
STRIPS action models with classical planning. In Interna-
tional Conference on Automated Planning and Scheduling,
(ICAPS-18), 399-407.

Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349-402.

Baier, J. A.; Fritz, C.; and Mcllraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art
planners. In International Conference on Automated Plan-
ning and Scheduling, (ICAPS-07), 26-33.

Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic
derivation of finite-state machines for behavior control. In
National Conference on Artificial Intelligence, (AAAI-10).

Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
evolving domain models. In International Joint Conference
on Artificial Intelligence, (IJCAI-2016), 3053—-3059.

Bunke, H. 1997. On a relation between graph edit distance
and maximum common subgraph. Pattern Recognition Let-
ters 18(8):689-694.

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In International
Joint Conference on Artificial Intelligence, (IJCAI-17), 156—
163.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2018.
Human-aware planning revisited: A tale of three models. In
IJCAI-ECAI XAI/ICAPS XAIP Workshops.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review 28(02):195-213.

Dennett, D. C. 1983. Intentional systems in ethology: The
”Plangossian paradigm” defended. Behavioral and Brain
Sciences 6(3):343-355.

Devroye, L.; Gyorfi, L.; and Lugosi, G. 2013. A proba-
bilistic theory of pattern recognition, volume 31. Springer
Science & Business Media.

Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In International Conference on Automated Planning
and Scheduling, (ICAPS-14), 154-162.

Lesh, N., and Etzioni, O. 1995. A sound and fast goal rec-
ognizer. In International Joint Conference on Artificial In-

telligence, (IJCAI-95), volume 95, 1704-1710.

Lépez, C. L.; Celorrio, S. J.; and Olaya, A. G. 2015. The
deterministic part of the seventh international planning com-
petition. Artificial Intelligence 223:82-119.

21

Masek, W. J., and Paterson, M. 1980. A faster algo-
rithm computing string edit distances. J. Comput. Syst. Sci.
20(1):18-31.

Pozanco, A.; E.-Martin, Y.; Ferndndez, S.; and Borrajo, D.
2018. Counterplanning using goal recognition and land-

marks. In International Joint Conference on Artificial In-
telligence, (IJCAI-18), 4808-4814.

Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In International Joint conference on Artifical In-
telligence, (IJCAI-09), 1778-1783. AAAI Press.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In National
Conference on Artificial Intelligence, (AAAI-10).

Ramirez, M. 2012. Plan recognition as planning. Ph.D.
Dissertation, Universitat Pompeu Fabra.

Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In International Planning Competition, (IPC-2014).

Segovia-Aguas, J.; Celorrio, S. J.; and Jonsson, A. 2019.
Computing programs for generalized planning using a clas-
sical planner. Artificial Intelligence.

Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2018.
Computing hierarchical finite state controllers with classi-
cal planning. Journal of Artificial Intelligence Research
62:755-7917.

Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119-153.

Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In International Joint Confer-
ence on Artificial Intelligence, (IJCAI-16), 3258-3264.

Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling model uncertainty and multiplicity in explanations
via model reconciliation. In International Conference on
Automated Planning and Scheduling, (ICAPS-18), 518-526.
Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.;
and Bui, H. 2014. Plan, Activity, and Intent Recognition:
Theory and Practice. Morgan Kaufmann.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-

els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence 171(2-3):107-143.

