Generalized Lazy Search for Robot Motion Planning: Interleaving Search and Edge Evaluation via Event-Based Toggles

1 Introduction

We focus on the problem of finding the shortest path on a graph while minimizing total planning time. This is critical in applications such as robotic motion planning (LaValle 2006), where collision-free paths must be computed in real time. A typical search algorithm expands a wavefront from the start, evaluating edges discovered until it finds the shortest feasible path to the goal. The planning time then becomes the sum of the time spent in two phases – search effort and edge evaluation. While edge evaluation is generally more expensive in motion planning (Hauser 2015), the actual ratio of these times varies with problem instances and graph sizes. Our goal is to design a framework of algorithms that let us balance this trade-off.

Unfortunately, current shortest path algorithms do not provide a framework flexible enough to traverse the pareto curve between search effort and edge evaluation. On one end of the spectrum, A* and its variants (Hart, Nilsson, and Raphael 1968; Yoshizumi, Miura, and Ishida 2000; Korf 1985) evaluate edges as soon as they are discovered. Hence although A* is optimal in terms of search effort, it is at the cost of excessive edge evaluations. On the other hand, LazySP (Dellin and Srinivasa 2016) amongst other lazy search techniques (Bohlin and Kavraki 2000; Dellin and Srinivasa 2016) amongst other lazy search techniques (Bohlin and Kavraki 2000; Cohen, Phillips, and Likhachev 2014; Hauser 2015), expands the search wavefront all the way to the goal before evaluating edges. Hence LazySP is optimal in terms of edge evaluation but has to replan everytime an edge is invalidated.

In this work, we propose a framework for algorithmically toggling between search effort and edge evaluation. We are guaranteed to find the shortest path as long as the following holds true; the search tree must always be repaired to be consistent, and edge evaluation must be restricted to the shortest subpath in the tree. Our framework, Generalized Lazy Search (GLS), has two modules – Event and Selector (Fig. 1). The algorithm expands a lazy search tree without evaluating any edges till the Event is triggered. A Selector is then invoked to evaluate an edge on the shortest subpath in the lazily expanded search tree. We show that by choosing different Event and Selector pairs, we can recover several existing lazy search algorithms such as LazySP (Dellin...

What constitutes an optimal trade-off and can this be captured by GLS? Consider the ideal scenario, one with an omniscient oracle (Haghtalab et al. 2018) that knows ahead of time which edges are valid or invalid. In fact, the oracle can compute the minimal set of invalid edges I that must be invalidated to arrive at the shortest feasible path. How can we utilize such an oracle in GLS? A simple strategy is as follows; as the search wavefront expands from start to goal, the oracle monitors the new edges that are discovered and triggers an Event if it belongs to I. A Selector then evaluates that edge. This minimizes edge evaluation and curtails wasted search effort.

This insight extends to the more practical setting where we have priors on edge validity that are learned from experience. We derive Event and Selector that minimize the expected planning time. This produces behaviors similar to the omniscient oracle (Fig. 2); the search proceeds until the Event is triggered due to the appearance of low probability edges on the current subpath; the Selector then selects these edges to invalidate the subpath; and the process continues until the shortest feasible path is found.

We make the following contributions:

1. We propose a class of algorithms, GLS (Section 4), that minimize computational effort, defined as a function of both edge evaluation and vertex rewiring (Section 3).

2. We recover different lazy search algorithms as instantiations of GLS. We further prove that one such instantiation is edge optimal and causes fewer rewires than LazySP (Section 4, Theorem 4.3).

3. We derive instantiations of GLS that exploit the availability of edge priors to minimize expected computational effort (Section 5, Theorem 5.2).

4. We show that GLS informed with edge priors can outperform competitive baselines on a spectrum of planning domains (Section 6).

2 Related Work

Graphs lend powerful tractability to robotic motion planning (LaValle 2006). They can be explicit, i.e., constructed as part of a pre-processing stage (Kavraki et al. 1996; Karaman and Frazzoli 2011; Janson et al. 2015), or implicit, i.e., discovered incrementally during search (Likhachev, Gordon, and Thrun 2004; Gammell, Srinivasa, and Barfoot 2015; Salzman and Halperin 2015).

A* (Hart, Nilsson, and Raphael 1968) and its variants have enjoyed widespread success in finding the shortest path with an optimal number of vertex expansions. However, in domains where edge evaluations are expensive and dominate the planning time, a lazy approach is often employed (Bohlin and Kavraki 2000; Hauser 2015; Kim, Kwon, and Yoon 2018). In this approach, the graph is constructed without testing if edges are collision-free. Only a subset of edges are evaluated to save computation time. LazySP (Dellin and Srinivasa 2016) extends the graph up to the goal before checking edges. LiWA* (Cohen, Phillips, and Likhachev 2014) extends the graph a single step before evaluation. LRA* (Mandalika, Salzman, and Srinivasa 2018) trades off these approaches, allowing the search to proceed to an arbitrary lookahead. We generalize this further by introducing an event-based toggle.

Several works have explored the use of priors in search. FuzzyPRM (Nielsen and Kavraki 2000) evaluates paths that minimize the probability of collision. The Anytime Edge Evaluation (AEE*) framework (Narayanan and Likhachev 2017) uses an anytime strategy for edge evaluation informed by priors. POMP (Choudhury, Dellin, and Srinivasa 2016) defines surrogate objectives using priors to improve anytime planning. BISECT (Choudhury et al. 2017) and DIRECT (Choudhury, Srinivasa, and Scherer 2018) cast search as Bayesian active learning to derive edge evaluation. E-graphs (Phillips et al. 2012) uses priors in heuristics. We focus on using priors to find the shortest path while minimizing expected planning time.

Several alternate approaches speed up planning by creating efficient data structures (Bialkowski et al. 2016), modeling belief over the configuration space (Huh and Lee 2016), sampling vertices in promising regions (Bialkowski, Otte,
and Frazzoli 2013; Burns and Brock 2005) or using specialized hardware (Murray et al. 2016). Other approaches forego optimality and computing near-optimal paths (Salzman and Halperin 2016; Dobson and Bekris 2014). Our work also draws inspiration from approaches that interleave planning and execution, such as LRTA* (Korf 1990) and LSS-LRTA* (Koenig and Sun 2009).

3 Problem Formulation

Our goal is to design an algorithm that can solve the Single Source Shortest Path (SSSP) problem while minimizing computational effort. We begin with the SSSP problem. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a graph, where \mathcal{V} denotes the set of vertices and \mathcal{E} the set of edges. Given a pair of source and target vertices $(v_s, v_t) \in \mathcal{V}$, a path σ is represented as a sequence of vertices (v_1, v_2, \ldots, v_t) such that $v_1 = v_s, v_t = v_t, \forall i, (v_i, v_{i+1}) \in \mathcal{E}$. We define a world $\phi : \mathcal{E} \rightarrow \{0, 1\}$ as a mapping from edges to valid (1) or invalid (0). A path is said to be feasible if all edges are valid, i.e., $\forall e \in \sigma, \phi(e) = 1$. Let $w : \mathcal{E} \rightarrow \mathbb{R}^+$ be the length of an edge. The length of a path is the sum of edge costs, i.e., $w(\sigma) = \sum_{e \in \sigma} w(e)$. The objective of the SSSP problem is to find the shortest feasible path:

$$\min_{\sigma} w(\sigma) \quad \text{s.t.} \quad \forall e \in \sigma, \phi(e) = 1 \quad (1)$$

Given an SSSP, we define a shortest path algorithm Alg($\mathcal{G}, v_s, v_t, \phi$) that takes as input the graph \mathcal{G}, the source-target pair (v_s, v_t), and the underlying world ϕ. The algorithm typically solves the problem by building, verifying, and rewriring a shortest path tree from source to target.

Maintaining the search tree and verifying the shortest feasible path are primarily characterized by two atomic operations: edge evaluation and vertex rewriring.

Definition 3.1 (Edge Evaluation). The operation of querying the world $\phi(e)$ to check if an edge e is valid.

Definition 3.2 (Vertex Rewiring). The operation of finding and assigning a new parent for a vertex u when an invalid edge is discovered.

The algorithm returns three terms, i.e., $\sigma^*, E_{\text{eval}}, \mathcal{V}_{\text{rwr}} = \text{Alg}(\mathcal{G}, v_s, v_t, \phi)$. Here, σ^* is the shortest feasible path, E_{eval} is the set of edges evaluated during the search, and \mathcal{V}_{rwr} is the multiset of vertices rewriring. Alg ensures the following certificate:

1. Returned path σ^* is verified to be feasible, i.e., $\forall e \in \sigma^*, e \in E_{\text{eval}}, \phi(e) = 1$

2. All paths shorter than σ^* are verified to be infeasible, i.e., $\forall \sigma_1, w(\sigma_1) \leq w(\sigma^*), \exists e \in \sigma_1, e \in E_{\text{eval}}, \phi(e) = 0$

We now define the computational cost (planning time), of solving the SSSP problem as a function of \mathcal{V}_{rwr} and E_{eval}. Let c_e be the average cost of evaluating an edge, and c_r be the average cost of rewriring a vertex. We approximate the total planning time as a linear combination:

$$C(E_{\text{eval}}, \mathcal{V}_{\text{rwr}}) = c_e |E_{\text{eval}}| + c_r |\mathcal{V}_{\text{rwr}}| \quad (2)$$

Algorithm 1: Generalized Lazy Search

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>:Graph G, source v_s, target v_t, world ϕ</td>
<td>Alg(G, v_s, v_t, ϕ)</td>
<td>$\sigma^*, E_{\text{eval}}, \mathcal{V}_{\text{rwr}}$</td>
</tr>
</tbody>
</table>

1. $E_{\text{eval}} \leftarrow \emptyset$, $\mathcal{V}_{\text{rwr}} \leftarrow \emptyset$
2. $T_{\text{lazy}} \leftarrow \{v_s\}$ \quad \triangleright Initialize
3. repeat
4. $T_{\text{lazy}} \leftarrow \text{ExtendTree}(T_{\text{lazy}})$ \quad \triangleright Add \mathcal{V}_{rwr}
5. $\sigma_{\text{sub}} \leftarrow \text{GetShortestPathToLeaf}(T_{\text{lazy}})$
6. $\text{EvaluateEdge}(\text{Selector, } \sigma_{\text{sub}})$ \quad \triangleright Add E_{eval}
7. until shortest feasible path found s.t. $\forall e \in \sigma^*, \phi(e) = 1$;

Our motivation for defining the cost will become clearer in the following section, where we propose a general framework for Alg. This framework lets us explicitly reason about the terms E_{eval} and \mathcal{V}_{rwr} in order to balance them.

4 Generalized Lazy Search

We propose a framework, Generalized Lazy Search (GLS), to solve the problem defined in Section 3. The general concept idea is to toggle between lazily searching to a horizon and evaluating edges along the current estimated shortest path. This toggle must be chosen appropriately to balance the competing computational costs of edge evaluation and vertex rewriring.

4.1 The Algorithm

Algorithm 1 describes the GLS framework for the shortest path algorithm Alg(G, v_s, v_t, ϕ) referred to in Section 3. This framework requires two functions: Event and Selector.

To solve the SSSP problem, we maintain a shortest path search tree over G. We assume that every call to ϕ, which populates E_{eval}, is expensive. Therefore, we initially assume that all edges in G are valid and maintain this search tree lazily. Our algorithm initializes the search tree T_{lazy} rooted at v_s (Line 1). It begins by iteratively extending T_{lazy} into G (Line 4). The search is guided with an admissible heuristic $h(v, v_t)$.

The procedure ExtendTree additionally takes as input a function Event. Extending T_{lazy} triggers the Event by definition. The algorithm, at this point, discontinues the extension of T_{lazy} and switches to validate the already constructed search tree. Therefore, the Event acts as a toggle between lazy search and edge evaluation.

Definition 4.1 (Event). A function that defines the toggle between extending the lazy search tree and validating it.

To solve the SSSP problem and validate T_{lazy}, the algorithm picks the path, σ_{sub}, to a leaf vertex with the lowest estimated total cost to reach the goal (Line 5). It then evaluates an edge along σ_{sub} to validate the search tree (Line 6). In addition to σ_{sub}, the procedure EvaluateEdge also takes as input a function Selector. The Selector acts on σ_{sub}, and returns an edge belonging to it that the algorithm evaluates.

Definition 4.2 (Selector). A function that defines the strategy to select an edge along a subpath to evaluate.
Edge evaluation is followed by the extension of T_{lazy} until the Event is triggered again. If the edge were invalid, the subtree emanating from the edge has to be rewired. We can do this efficiently using the mechanics of LPA* (Koenig, Likhachev, and Furcy 2004).

This process of interleaving search with edge evaluation continues until the algorithm terminates with the shortest feasible path from source to goal, if one exists. While the algorithm is guaranteed to return the shortest path, the framework permits the design of Event and Selector to reduce the total computation cost of solving the SSSP problem.

Algorithm 2: Candidate Event Definitions

1. $v \leftarrow$ leaf vertex in T_{lazy} with least estimated cost to v_t

2. **Function** ShortestPath()
   ```
   if $v = v_t$ then
     return true;
   end
   ```

3. **Function** ConstantDepth(depth α)
   ```
   $\sigma_{\text{sub}} \leftarrow$ path from $v_s$ to $v$
   $\alpha_v \leftarrow$ number of unevaluated edges in $\sigma_{\text{sub}}$
   if $\alpha_v = \alpha$ or $v = v_t$ then
     return true;
   end
   ```

4. **Function** HeuristicProgress
   ```
   $h_{\min} \leftarrow \min_{(u', v') \in \mathcal{E}_{\text{eval}}} h(v', v_t)$
   if $h(v, v_t) < h_{\min}$ or $v = v_t$ then
     return true;
   end
   ```

5. **Function** SubpathExistence(probability δ)
   ```
   $\sigma_{\text{sub}} \leftarrow$ path from $v_s$ to $v$
   $p \leftarrow \prod_{\epsilon \in \sigma} p(\epsilon)$
   if $p \leq \delta$ or $v = v_t$ then
     return true;
   end
   ```

Algorithm 3: Candidate Selector Definitions

1. **Function** Forward()
   ```
   return \{first unevaluated edge closest to $v_s$\};
   ```

2. **Function** Alternate()
   ```
   if Iteration Number is Odd then
     return \{first unevaluated edge closest to $v_s$\};
   end
   ```

3. **Function** FailFast()
   ```
   return $\{\arg\min_{e \in \sigma_{\text{sub}}} p(e)\}$;
   ```

4.2 Role of Event and Selector

Since the lazy search paradigm operates based on the concept of optimism under uncertainty, the search tree is extended assuming edges are collision free. However, extending the search tree beyond edges that are in collision can waste computational effort. The Event acts as a toggle to halt a search deemed wasteful. The Selector aims to quickly invalidate the path. Fig. 2 illustrates the ideal behavior of such an algorithm. Interestingly, the framework can also capture existing lazy search algorithms as different combinations of events and selectors, as shown in Table 1.

Event

When triggered, events must ensure that the shortest subpath σ_{sub} in T_{lazy} has at least one unevaluated edge (Theorem 4.1). Algorithm 2 defines some candidate events.

ShortestPath (SP) is triggered when a shortest path to v_t has been determined during the lazy extension of T_{lazy}. Therefore, in every iteration, this Event presents the Selector with the candidate shortest path from v_s to v_t on \mathcal{G}. Note that ShortestPath exhibits algorithmic behavior similar to LazySP and LazyPRM.

ConstantDepth (CD) is triggered when the procedure ExtendTree chooses to extend a leaf vertex $v \in T_{\text{lazy}}$ such that the subpath from v_s to v has exactly α number of unevaluated edges. Therefore, in every iteration, this Event presents the Selector with σ_{sub} that is characterized by a constant number of unevaluated edges.

HeuristicProgress (HP) is triggered whenever the search expands a vertex whose heuristic value is lower than any vertex whose incident edge has been evaluated. It does so by recording the minimum heuristic value of a vertex with a parent that has been evaluated, i.e., $h_{\text{min}} \leftarrow \min_{(u', v') \in \mathcal{E}_{\text{eval}}} h(v', v_t)$. The event is triggered whenever ExtendTree chooses to extend a leaf vertex $v \in T_{\text{lazy}}$ with a heuristic value smaller than h_{min}.

Selector

Selectors must ensure that they select at least one unevaluated edge (Theorem 4.1). Algorithm 3 defines some candidate selectors.

Given σ_{sub}, **Forward** (F) evaluates the first unevaluated edge on σ_{sub} that is closest to v_s. Given a forward search, this constitutes one of the most natural Selectors available. **Alternate** (A) toggles between evaluating the first unevaluated edge closest to v_s and v_t in every iteration. This approach is motivated by bi-directional search algorithms. Both Selectors were first used in (Dellin and Srinivasa 2016).

Table 1: Equivalence of GLS and to existing lazy algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Event</th>
<th>Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>LazyPRM (2000)</td>
<td>ConstantDepth (∞)</td>
<td>Any</td>
</tr>
<tr>
<td>LazySP (2016)</td>
<td>ConstantDepth (∞)</td>
<td>Any</td>
</tr>
<tr>
<td>LRA* (2014)</td>
<td>ConstantDepth (1)</td>
<td>Forward</td>
</tr>
<tr>
<td>LRA* (2018)</td>
<td>ConstantDepth (α)</td>
<td>Forward</td>
</tr>
</tbody>
</table>

4.3 Analysis

For any choice of Event and Selector, GLS is complete and correct.
Theorem 4.1 (Completeness). Let Event be a function that on halting ensures there is at least one unevaluated edge on the current shortest path or that the goal is reached. Let Selector be a function that evaluates at least one unevaluated edge (if it exists). GLS implemented using ExtendTree(Event) and EvaluateEdges(Selector) on a finite graph G is complete.

Theorem 4.2 (Correctness). If the heuristic \(h(v, v_i) \) is admissible, then GLS terminates with the shortest feasible path.

LazySP with the Forward selector was proved to be edge optimal\(^2\) in the class of all shortest path algorithms that use a Forward selector (Mandalika, Salzman, and Srinivasa 2018). We now show that GLS lets us derive another algorithm that is also edge-optimal but reduces number of vertex rewires.

Theorem 4.3 (Edge Optimality). GLS evaluates the same number of edges \(\mathcal{E}_{\text{eval}} \) as LazySP, i.e., is edge optimal, while having a smaller number of vertex rewires \(\mathcal{V}_{\text{rwr}} \) under the following setting:
1. Heuristic: Distance on the unevaluated graph \(h_G(v, v_i) \)
2. Event: HeuristicProgress
3. Selector: Forward

Corollary 4.1. There is a graph \(G \) for which the number of vertex rewires \(\mathcal{V}_{\text{rwr}} \) for LazySP over GLS is linear over logarithmic.

See (Mandalika et al. 2019) for details and formal proofs.

5 Leveraging Edge Priors in GLS

The GLS framework is powerful because one can optimize Event and Selector to minimize computational costs while still retaining guarantees. Here, we show its expressive power in a scenario where we have additional side information, such as priors on the validity of edges. Such information can be collected from datasets of prior experience or generated from approximations of the world representation.

5.1 Modified Problem Formulation

We assume that the validity of each edge is an independent Bernoulli random variable. We are given a vector of probabilities \(p \in [0, 1]^{\mathcal{E}} \), such that \(P(\phi(e) = 1) = p(e) \), i.e., for each edge \(e \), we have access to \(p(e) \), which defines the probability of the edge being valid in the current world \(\phi \).

We allow the shortest path algorithm \(\text{Alg}(G, v_s, v_t, \phi, p) \) to leverage knowledge of edge probabilities \(p \) to minimize the expected computation cost as follows:

\[
\min_{\phi \sim p} \mathbb{E}_{\phi \sim p} \left[C(\mathcal{E}_{\text{eval}}, \mathcal{V}_{\text{rwr}}) \right] \\
\text{s.t. } \mathcal{E}_{\text{eval}}, \mathcal{V}_{\text{rwr}} = \text{Alg}(G, v_s, v_t, \phi, p)
\]

5.2 Event and Selector Design

Event. The Event restricts lazy search from proceeding beyond a point when the search is likely to be ineffective, i.e., to a point that potentially increases the amount of rewires \(\mathcal{V}_{\text{rwr}} \). One such case is when the current shortest subpath is likely to be in collision, i.e., the probability of being valid drops below a threshold \(\delta \). We describe this event, SubpathExistence (SE), in Algorithm 2. We show that we can bound the performance of this event.

Theorem 5.1. For any Selector, the expected planning time of SubpathExistence (SE) can be upper bounded as:

\[
K \left(c_e \frac{1}{(1 - \delta)} + c_r \frac{b \log(\delta)}{\log(p_{\text{max}})} \right)
\]

where \(K \) is the number of shortest-paths that are infeasible, \(b \) is the maximum branching factor, and \(p_{\text{max}} \) is the maximum value of an edge prior.

Low values of \(\delta \) result in lower edge evaluations but more edge rewiring, and vice-versa.

Corollary 5.1. There exists a critical threshold \(\delta \in (0, 1) \) that upper bounds the expected computational cost.

Selector. The Selector invalidates as many subpaths as quickly as possible, which restricts the size of \(\mathcal{E}_{\text{eval}} \). One strategy for doing so is to invalidate the current subpath as

Figure 3: Samples and the prior for the TwoWall dataset.

Figure 4: The mean planning times for the 9 algorithms on 4 of the \(\mathbb{R}^2 \) datasets. Top: Square and TwoWall. Bottom: Forest and Maze. In all except the Forest dataset, SubpathExistence with FailFast performs best.
quickly as possible. We describe a selector, FailFast (FF), in Algorithm 3 that evaluates the edge on the subpath with the highest probability of being in collision. We show that this selector is the optimal strategy to invalidate a subpath.

Theorem 5.2. Given a path σ, FailFast minimizes the expected number of edges from σ that must be evaluated to invalidate σ.

See (Mandalika et al. 2019) for details and formal proofs.

5.3 Hypotheses

Based on our theoretical analysis and insight, we state three hypotheses that we intend to test:

<table>
<thead>
<tr>
<th>Piano Movers’</th>
<th>GLS</th>
<th>LazySP</th>
<th>LRA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Planning Time</td>
<td>0.595</td>
<td>0.877</td>
<td>0.742</td>
</tr>
<tr>
<td>Edge Evaluation Time</td>
<td>0.129</td>
<td>0.035</td>
<td>0.248</td>
</tr>
<tr>
<td>Vertex Rewire Time</td>
<td>0.466</td>
<td>0.842</td>
<td>0.494</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERB Task 1</th>
<th>GLS</th>
<th>LazySP</th>
<th>LRA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Planning Time</td>
<td>1.235</td>
<td>1.618</td>
<td>2.069</td>
</tr>
<tr>
<td>Edge Evaluation Time</td>
<td>0.423</td>
<td>0.388</td>
<td>1.422</td>
</tr>
<tr>
<td>Vertex Rewire Time</td>
<td>0.813</td>
<td>1.230</td>
<td>0.647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HERB Task 2</th>
<th>GLS</th>
<th>LazySP</th>
<th>LRA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Planning Time</td>
<td>1.737</td>
<td>2.100</td>
<td>2.999</td>
</tr>
<tr>
<td>Edge Evaluation Time</td>
<td>0.448</td>
<td>0.362</td>
<td>1.967</td>
</tr>
<tr>
<td>Vertex Rewire Time</td>
<td>1.292</td>
<td>1.738</td>
<td>1.032</td>
</tr>
</tbody>
</table>

H1. For any selector, the event SubpathExistence requires less planning time compared to ShortestPath and Constant-Depth.

This follows from Theorem 5.1, which upper bounds the planning time for SubpathExistence. ShortestPath corresponds to $\delta = 0$ and can increase planning time. Constant-
Figure 7: (a) Pareto curve obtained by varying δ in SUBPATHEXISTENCE (b) Planning times as the size of the graph in TwoWall is increased. (c) Planning time as the density of obstacles in Forest is increased (d) Planning time in \mathbb{R}^7 problem.

Figure 8: (a) Edge priors: darker edges have higher prior. (d) Solution path on the graph. Second and Third columns visualize the search and evaluation by LazySP(top) and GLS(SUBPATHEXISTENCE) (bottom). (b) and (e): subtree of vertices rewired in the first iteration (12,495 and 1235 resp. at termination). (c) and (f): edges evaluated at termination (63 and 171 resp.).

6 Experiments

Algorithm Details. We implemented 3 Events and 3 Selectors described in Algorithms 2 and 3 to get a total of 9 algorithms. To analyze the trade-offs, we test on a diverse set of \mathbb{R}^2 datasets. We then finalize on 3 algorithms: LazySP (SHORTESTPATH, FAILFAST), LRA* (CONSTANTDEPTH, FAILFAST) and GLS (SUBPATHEXISTENCE, FAILFAST). We evaluate these on a Piano Movers’ problem in $SE(2)$ and manipulation problems in \mathbb{R}^7 using HERB (Srinivasa et al. 2009), a mobile robot with 7DoF arms. 3

Analysis on \mathbb{R}^2 datasets. We use 5 datasets of \mathbb{R}^2 problems from (Choudhury et al. 2017). Each dataset corresponds to different parametric distribution of obstacles from which we sample 1000 worlds. A graph of 2000 vertices is sampled using a low dispersion sampler (Halton 1964) with an optimal connection radius (Janson et al. 2015). Priors are computed

3Code is publicly available as an OMPL Planner at: https://github.com/personalrobotics/gls
We found partial evidence to support H2 - FailFast has the lowest planning time for ShortestPath and SubpathExistence. However, the exception was ConstantDepth for the Forest dataset - we attribute this to an artifact of the event dataset combination. Fig. 6 shows a comparison of Forward and FailFast (for ShortestPath event) - FailFast quickly eliminates paths by checking the weakest link (supporting Theorem 5.2).

We found strong evidence to support H3. Fig. 7b shows that as graphs get larger, planning times of ShortestPath grows at a faster rate than SubpathExistence. Fig. 7c shows that as the density of obstacles increase, the planning times of ShortestPath grows linearly while SubpathExistence eventually saturates.

Analysis on SE(2) problems and \mathbb{R}^7 problems. We consider the Piano Movers’ problem in SE(2) from the Apartment scenario in OMPL (Şucan, Moll, and Kavraki 2012). For the \mathbb{R}^7 environment, we consider two manipulation tasks with a 7-DoF Arm (Srinivasa et al. 2009) in a cluttered kitchen environment. We used graphs of 8000 vertices and 30,000 vertices for the SE(2) and \mathbb{R}^7 problems respectively (Mandalika et al. 2019).

In Table 2 we see that GLS(SubpathExistence, FailFast) outperforms the other algorithms in planning time on all three problems. Additionally, Fig. 7d shows a breakdown of the planning time for each of the three events on HERB Task 2. GLS significantly lowers rewiring time while having a minimal increase in evaluation time.

Figures 8, 9 compare the performance of LazySP and GLS with FailFast selector. They illustrate the savings of GLS on the Piano Movers’ problem (Fig. 8) and on a simplified manipulation scene (Fig. 9). In both cases, LazySP has to rewire a large search tree everytime a path is found to be in collision. GLS, on the other hand, halts the search as soon as it enters a region of low probability, eliminates the paths and hence drastically minimizes rewiring time at the cost of few additional edge evaluations over LazySP.

7 Discussion

We presented a general framework for lazy search (GLS). The staple framework interleaves two phases, search and evaluation. In the search phase, it extends a lazy shortest-path tree forward without evaluating any edges until an Event is triggered. It then switches to evaluation phase. It finds the shortest subpath to a leaf node of the tree and invokes a Selector to evaluate an edge on it. Careful choice of Event and Selector allows the balance of search effort with edge evaluation to minimize overall planning time.

The framework, quite expressive, lets us capture a range of lazy search algorithms (Table 1). While it draws inspiration from prior work interleaving search and evaluation, such as LRA* (Mandalika, Salzman, and Srinivasa 2018), the key difference lies in our definition of the Event, which makes the algorithm adaptive. This lets us derive new algorithms that are edge optimal while saving on search effort (Theorem 4.3).

In future work, we plan to examine more sophisticated Selector policies (Choudhury, Srinivasa, and Scherer 2018).
that exploit correlations amongst edges to minimize evaluation cost. We also plan to extend GLS to an anytime paradigm; this would let us use heuristics that exploit edge priors to guide the search through regions of high probability (Nielsen and Kavraki 2000), for significant speed-ups. Finally, we plan to explore problems where multiple lazy estimates of weight functions are available, e.g., in kinodynamic planning, where different relaxations of the boundary value problem can be obtained. We believe GLS can interleave search efficiently over multiple resolutions of approximation.

References

