
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Learning Interpretable Models Expressed in Linear Temporal Logic

Alberto Camacho, Sheila A. McIlraith
Department of Computer Science, University of Toronto

Vector Institute
Toronto, Canada

{acamacho, sheila}@cs.toronto.edu

Abstract

We examine the problem of learning models that character-
ize the high-level behavior of a system based on observation
traces. Our aim is to develop models that are human inter-
pretable. To this end, we introduce the problem of learning
a Linear Temporal Logic (LTL) formula that parsimoniously
captures a given set of positive and negative example traces.
Our approach to learning LTL exploits a symbolic state repre-
sentation, searching through a space of labeled skeleton for-
mulae to construct an alternating automaton that models ob-
served behavior, from which the LTL can be read off. Con-
struction of interpretable behavior models is central to a di-
versity of applications related to planning and plan recogni-
tion. We showcase the relevance and significance of our work
in the context of behavior description and discrimination: i)
active learning of a human-interpretable behavior model that
describes observed examples obtained by interaction with an
oracle; ii) passive learning of a classifier that discriminates
individual agents, based on the human-interpretable signa-
ture way in which they perform particular tasks. Experiments
demonstrate the effectiveness of our symbolic model learning
approach in providing human-interpretable models and clas-
sifiers from reduced example sets.

1 Introduction
Constructing a model of system behavior from observation
traces, in a form that is understandable and meaningful to
a human, is central to human interpretability of complex
systems. Model learning can be used to learn temporally
extended (i.e., non-Markovian) patterns such as safety and
reachability rules, and other complex behaviors, and it can
be composed with other techniques such as imitation learn-
ing and inverse reinforcement learning of reward functions.
Acquired models can be exploited for verification of sys-
tem properties, plan recognition, behavior discrimination,
and for knowledge extraction and transfer.

We are motivated to learn human-interpretable models
from observation traces with a view to addressing two in-
teresting problems: (1) discriminatory and explainable plan
recognition – recognizing an agents plan from among a finite
set of options and explaining why a particular classification
was made relative to other options under consideration; and

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2) the related problem of recognizing an individual based
upon the way in which they perform a particular task, as
compared to others, and recounting the behavioral signature
that makes them unique.

Central to both of these problems, and to a diversity of
other problems, is the notion of learning a human inter-
pretable model from observation traces. As such the bulk of
this paper focuses on the challenging task of model learning,
and we return to specific application tasks in the last section
of the paper where we evaluate our model learning method.

The objective in model learning is to construct a model
that is consistent with a set of positive and negative exam-
ples. In this paper, examples are finite state traces. There ex-
ists a whole body of work on learning regular languages,
starting with the seminal work by Angluin (1987) on L∗ – an
algorithm that learns finite-state machines and, in particular,
deterministic finite-state automata (DFA). Further work on
learning other types of finite-state machines and automata
has been conducted (e.g., (Bollig et al. 2009; Giantamidis
and Tripakis 2016; Angluin, Eisenstat, and Fisman 2015;
Smetsers, Fiterau-Brostean, and Vaandrager 2018)). More
recently, there has been work on software program speci-
fication mining to capture temporal properties (e.g., (Gabel
and Su 2008; 2010)) using automata representations of reg-
ular expressions.

We are interested in learning human-interpretable models.
Unfortunately, the number of states and state transitions in
automata representations of regular languages is often too
large and complex to be understood by a human. We wish
to learn models in a high-level language that facilitates hu-
man interpretation and manipulation. To this end, we intro-
duce the problem of model learning of a Linear Temporal
Logic (LTL) formula. LTL has a natural syntax that many
find compelling. It was originally developed to specify prop-
erties of programs for verification (Pnueli 1977), and has
subsequently been used to specify properties for automated
synthesis of reactive systems, also known as LTL synthe-
sis (Pnueli and Rosner 1989).

Learning LTL patterns from log data has also been inves-
tigated in several software engineering contexts, largely to
discover temporal rules or to search for specific sequenc-
ing invariant patterns in software systems (e.g., (Lemieux,
Park, and Beschastnikh 2015)). In the context of AI plan-
ning, de la Rosa and McIlraith (2011) learn LTL models

621

with a restricted syntax. These models were used as domain
control knowledge to guide search in TLPlan (cf. (Bacchus
and Kabanza 2000)). Most recently Kasenberg and Scheutz
(2017) addressed the problem of LTL pattern mining of ob-
servation traces in service of interpretable apprenticeship
learning in MDPs. Their work shares high-level motivation
with our work, but differs with respect to how it is realized,
formulating the task as a multi-objective optimization prob-
lem and employing genetic programming to solve it. Also
related to our work is the work by Neider and Gavran (2018),
which learns LTL temporal properties (interpreted over infi-
nite traces) that are consistent with a given set of finite ob-
servation traces.

In this paper we use LTL interpreted over finite traces,
commonly referred to as LTL f , to characterize families of
observation traces. LTL f has been used in AI planning to
specify temporally extended goals (e.g. (Bacchus and Ka-
banza 2000; Baier and McIlraith 2006; Camacho et al.
2017b)) and preferences (e.g., (Edelkamp 2006; Baier, Bac-
chus, and McIlraith 2009; Coles and Coles 2011; Bienvenu,
Fritz, and McIlraith 2011)). Likewise, LTL f serves as speci-
fication language for so-called LTL f synthesis (e.g. (De Gia-
como and Vardi 2015; Zhu et al. 2017; Camacho et al. 2018)
and LTL f synthesis with environment assumptions (Cama-
cho, Bienvenu, and McIlraith 2018). Learning LTL f mod-
els has immediate applications to learning specifications for
LTL f synthesis, planning and inverse reinforcement learn-
ing. We revisit other potential applications in Section 7.

We study two learning paradigms: passive learning of
LTL f , where the objective is to learn a formula that is con-
sistent with a given set of positive and negative examples;
and active learning of LTL f , where the objective is to learn a
formula by interacting with an oracle. We identify potential
uses of LTL f model learning, and evaluate the advantages of
our methods relative to alternative approaches.

In addition to producing a highly interpretable solution,
we show that LTL f learning can be conducted with exponen-
tially fewer examples than is required to learn DFA, both
theoretically and in practice. This property positions our sys-
tem well for few-shot learning – i.e., learning models that
generalize from a reduced set of examples.

Finally, we conducted experiments in behavior classifi-
cation, where passive LTL f model learning can be used to
obtain behavior classifiers. We obtained an accuracy that is
comparable to state-of-the-art deep learning approaches to
time series classification. Our system learned orders of mag-
nitude faster, and produced interpretable models.

2 Preliminaries: Linear Temporal Logic
LTL is a modal logic typically used to express temporally ex-
tended constraints over state trajectories (Pnueli 1977). The
syntax of LTL for a finite set of propositions p ∈ AP includes
the standard logic connectives (∧,∨,¬), true and false sym-
bols, and temporal operators next (X) and until (U).

ϕ := false | true | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | Xϕ | ϕ1 Uϕ2

Operators release (R), eventually (F), and always (G)
are commonly used, and can be defined as: ϕ1 Rϕ2 :=
¬(¬ϕ1 U¬ϕ2), Fϕ := true Uϕ, and Gϕ := ¬(true U¬ϕ).

Typically, the truth of an LTL formula ϕ is interpreted over
infinite traces of propositional states – that is, sequences of
elements in 2AP. An infinite trace w = σ0σ1 · · · satisfies ϕ
when w, 0 |= ϕ, also written as w |= ϕ. Intuitively, w, i |= ψ
denotes that the suffix of w from σi satisfies ψ. Formally:

w, i |= p iff p ∈ AP and σi |= p
w, i |= ¬α iff w, i 6|= α

w, i |= α ∧ β iff w, i |= α and w, i |= β

w, i |= Xα iff w, i + 1 |= α

w, i |= αU β iff w, k |= β for some i ≤ k < ∞
and w, j |= α for all i ≤ j < k

Different fragments and semantics of LTL have been stud-
ied. In this paper we are concerned with LTL interpreted over
finite traces w = σ0 · · ·σn−1 (e.g. (Baier and McIlraith 2006;
De Giacomo and Vardi 2013)), also refered to as finite LTL,
and more recently as LTL f . The semantics of an LTL f for-
mula ϕ is similar to the semantics of LTL, but differs in the
interpretations of the X and U operators as shown below:

w, i |= Xα iff i + 1 < n and w, i + 1 |= α

w, i |= αU β iff w, k |= β for some i ≤ k < n
and w, j |= α for all i ≤ j < k

Notably, the semantics of LTL f has to account for the end
of the trace, detected when w, i |= ¬X true. Operator weak
next (N) defined by Nα ≡ ¬X true ∨ Xα, is used to de-
note that α needs to hold in the next step if it exists (e.g.
(De Giacomo and Vardi 2013)). In LTL, operator weak next
is equivalent to operator next, and ¬Xα ≡ X¬α. In LTL f ,
¬Xα ≡ N¬α is not equivalent to X¬α.
Definition 1. The size of an LTL f formula ϕ is the number
of temporal operators, logical connectives, and literals in ϕ.

In this paper, we assume LTL f formulae are expressed in
negation normal form (NNF), unless otherwise noted. The
NNF of an LTL f formula ϕ is a formula ϕ′ equivalent to ϕ
where negations (¬) only appear at the level of propositional
formulae. LTL f formulae can be rewritten in NNF in linear
time by pushing negations to the level of propositional for-
mulae. NNF transformations preserve the formula size.

Finally, a premise of this paper is that LTL/LTL f is more
interpretable than automata or other formal languages. Our
claim is supported in small measure by the wide use of LTL
by non-experts for the specification of user intent in the de-
velopment of software systems. Indeed, the declarative and
compositional nature of LTL shares much with natural lan-
guages. Replacing LTL operators with their English equiva-
lents – next for X, eventually for F, always for G, etc. – fur-
ther illustrates this claim, e.g., ”Always have-key.” or ”Even-
tually at-home”.

3 The Problem: Learning Finite LTL Models
We are concerned with the problem of learning a high-level
description of the behavior observed in a given set of pos-
itive (E+) examples, while excluding behavior observed in
a set of negative (E−) examples. Having effective means to
recognize and model patterns in observed behavior is use-
ful to the design of intelligent agents that need to gener-
alize to previously unseen situations. This includes learn-
ing of safety rules and reachability objectives, as well as

622

Examples
+ : {p} {p} {q}
− : {p} {r} {q}
+ : {p} {q}
− : {p} {r}
− : {r} {q}
− : {q, r}
+ : {p, r} {q}

Passive
Learner

Model
p U q

(a) Workflow of passive learning

Oracle Active
Learner

query

response

(b) Interaction between the active learner and the oracle.

Figure 1: Illustrative representations of passive and active
learners. Figure 1a exemplifies a passive learner that learns
an LTL f formula that is consistent with a given set of posi-
tive (+) and negative (−) examples. States are truth assign-
ments to AP := {p, q, r}, represented as sets s ⊆ AP, and
interpreted with the closed-world assumption. In contrast,
an active learner (Figure 1b) learns from interaction with an
oracle, by performing membership and equivalence queries.

temporally extended formulae that capture complex behav-
ior, like pumping up a bicycle tire. Models can provide do-
main knowledge, that can be used to reward behaviors in
MDPs (Bacchus, Boutilier, and Grove 1996) and to prune
the search space in planning (Bacchus and Kabanza 1998).

Related to this problem there is a body of work on active
and passive learning of regular languages, starting from the
seminal work by Angluin (1987) on learning deterministic
finite-state automata with the L∗ algorithm, to more recent
work on learning DFA (Giantamidis and Tripakis 2016),
non-deterministic automata (Bollig et al. 2009), alternating
automata (Angluin, Eisenstat, and Fisman 2015), and finite-
state machines (Smetsers, Fiterau-Brostean, and Vaandrager
2018). These approaches use explicit state representations,
and suffer from scalability. It has been observed that the
number of states in the model hypothesis becomes a bot-
tleneck to model learning, as many learning algorithms are
quadratic in this number. The key to scale is reducing the
number of states with some sort of abstraction (Vaandrager
2017). LTL f realizes this by allowing for compact represen-
tation of state properties at an abstract level. We adopt LTL f
as our behavior description language.
Passive Learning Passive learning is the problem of con-
structing a model that is consistent with a given set of ex-
amples (cf. Figure 1a). Examples can come from a teacher,
or an oracle that responds to membership and equivalence
queries (c.f. (Angluin 1987)). In this paper, we address the
problem of passive model learning of LTL f formulae (Def-
inition 2). Throughout the paper, we consider examples e
which are finite sequences of observations, e = o1 · · · on. An
observation o denotes what is true in a world state s. We
represent observations as subsets o ⊆ AP, where AP is a
finite set of propositions. Observations are interpreted with
a closed-world assumption, as is done in databases and in
a number of knowledge representation languages: anything

that is not in o is assumed not to hold in a state, s.

Definition 2. Passive model learning of LTL f relative to a
disjoint set of positive and negative examples involves com-
puting an LTL f formula that entails all positive examples,
and none of the negative examples.

Active Learning An active learner performs queries to an
oracle, which knows the target model (cf. Figure 1b). Mem-
bership queries ask whether an example belongs to the lan-
guage of the target model. Equivalence queries ask whether
a guessed model corresponds to the target. When this is not
the case, the oracle responds with a counterexample, i.e., a
positive example that is not modeled by the guessed model,
or a negative example that is modeled by the guessed model.

Definition 3. Active model learning relative to a target
LTL f formula involves computing an LTL f formula logi-
cally equivalent to the target by performing membership and
equivalence queries to an oracle.

An active learner can always be constructed from a pas-
sive learner that only performs equivalence queries (Walkin-
shaw, Derrick, and Guo 2009), as illustrated in Algorithm 1.
Other forms of active learning can be designed that take into
account the cost of performing different queries, available
resources, and whether the oracle is an adequate teacher. In
what follows, we largely focus on passive learning and leave
the development of efficient active learners for future work.

Algorithm 1 Active learning of a minimal LTL f formula.

1: Fix N = 1, E = ∅
2: Do passive learning of an LTL f formula ϕ of size bounded by

N consistent with the examples in E.
3: If no model exists, increment N by one and go to 2.
4: Perform an equivalence query with ϕ.
5: If ϕ is not equivalent to the target model, add counterexample

to E and go to 2. Else, return ϕ.

Simpler models are commonly preferred because they
tend to generalize better. This parsimony principle is typical
in model learning, including learning of automata and state
machines. In this context, there may be a benefit to learning
minimal LTL f formulae. (i.e., a formula of minimum size).

4 Skeletons for Finite LTL
Many approaches to reasoning with LTL f exploit the corre-
spondence between LTL f formulae and finite state automata
(e.g. (Baier and McIlraith 2006)). In this work, we exploit
their correspondence with alternating finite automata (AFA)
(Chandra, Kozen, and Stockmeyer 1981).

We first introduce AFA and well-known transformations
of LTL f into AFA (Vardi 1997). Then, we introduce skele-
tons of LTL f subformulae. Skeletons allow for a modular
construction of AFA that preserves the structure of the LTL f
formula. In Section 5 we present a method to learn an LTL f
formula by constructing an AFA, and recovering the formula
from its skeleton structure.

623

AβAα

(a) AFA for α ∧ β

AβAα

(b) AFA for α ∨ β

>Aα

(c) AFA for Fα

>

Aα

(d) AFA for Xα

>

Aα

(e) AFA for Nα

Aβ

Aα >

(f) AFA for αU β

AβAα >

(g) AFA for αR β

>Aα

(h) AFA for Gα

p

(i) AFA for literal p

>

q >¬r

p

(j) AFA for p ∨ (q U X¬r)

Figure 2: Figures 2a to 2i: AFA skeletons of LTL and LTL f subformulae. Nodes are represented by circles. Accepting states are
indicated by double circles. Figure 2j: example AFA for p ∨ (q U X¬r).

4.1 AFA for LTL on Finite Traces
An AFA is a tuple A = 〈Σ,Q, q0, δ, F〉, where Σ is a finite
input alphabet, Q is a finite set of states, q0 ∈ Q is the initial
state of the automaton, δ : Q × Σ → B+(Q) is a transition
function that maps pairs (q, s) to positive boolean formulae
over Q∪{>}, and F ⊆ Q is a set of accepting states. A run of
an AFA on a finite word w = σ0 · · ·σn−1 is a Q-labeled tree.
The root node, at depth 0, is labeled with q0. The children
of a node N at level i labeled with q is a (possibly empty)
set of nodes at level i + 1 with labels q j such that

∧
j q j |=

δ(q, σi). In particular, if node N has no children, then it must
be δ(q, σi) = >. A run of A on w is accepting if all nodes
at depth n, if any, are labeled by accepting states. Finally,
an AFA A accepts a finite word w if some run of A on w
is accepting. Runs in AFA are tree expansions, and differ
from the runs of (perhaps more commonly used) finite-state
automata which are tree branches.

Definition 4. The size of an AFA A = 〈Σ,Q, q0, δ, F〉 is its
number of states, |Q|.

An LTL f formula ϕ can be transformed into an AFA Aϕ

that accepts all, and only the finite traces that satisfy ϕ. Here
we use a construction that follows (De Giacomo, Masellis,
and Montali 2014), and is analogous to the progression of
LTL f formula that appeared in (Torres and Baier 2015). The
transformation can be done in linear time (Theorem 1). For
the moment, we use an auxiliary predicate final that is true
in the last state of the trace. As we will observe later on, our
learning approach does not require the use of it.

Theorem 1. An AFA that accepts the models of an LTL f
formula ϕ can be constructed in linear time in the size of ϕ.

The AFA transformation of an NNF LTL f formula ϕ is
Aϕ := 〈2AP, sub(ϕ), qϕ, δ, F〉, with components described
below. Accepting states are those of the form αR β. The set
of states is sub(ϕ), where elements in sub(ϕ) are the subfor-
mulae of ϕ. The initial state is ϕ, and the set of accepting
states are those ψ of the form ¬(αU β). We use an auxiliary
function dual, defined as dual(ψ) = ¬ψ, and dual(¬ψ) = ψ.

The function δ is described below.

δ(p, s) := > if p ∈ s δ(p, s) := ⊥ if p < s
δ(α ∨ β, s) := δ(α, s) ∨ δ(β, s) δ(α ∧ β, s) := δ(α, s) ∧ δ(β, s)
δ(¬α, s) := dual(δ(α, s))
δ(αU β, s) := δ(β, s) ∨ (δ(α, s) ∧ αU β)
δ(αR β, s) := (δ(α, s) ∧ δ(β, s)) ∨ (δ(β, s) ∧ δ(N (αR β)))
δ(Nα, s) := δ(final, s) ∨ δ(Xα, s)

δ(Xα, s) :=
{
⊥, if final ∈ s
α, if final < s

Property 1. The size of NNF formula ϕ equals the size of
Aϕ.

4.2 AFA Skeletons
We represent AFA transformations of LTL f formulae by
composition of a set of basic structures, that we call skele-
tons. A skeleton is a graph whose root node represents a sub-
formula, state transitions replicate the transition function δ
for AFA, and leaf nodes represent other subformulae. Skele-
ton structures are similar to the AFA representations pub-
lished in (Finkbeiner and Sipma 2004).

Figure 2 shows skeleton representations of the LTL f sub-
formulae considered in this paper. Nodes are represented by
circles. The root node of a skeleton ξϕ represents subfor-
mula ϕ. Triangles represent skeletons for the subformulae of
ϕ. Node transitions replicate the transition function δ. Two
types of node transitions exist: universal (“and”) transitions
are indicated by edges connected with arcs, as in Figure 2a,
that model conjunctive formulae in the definition of δ; exis-
tential (“or”) transitions are indicated by unconnected edges,
as in Figure 2b, that model disjunctive formulae in δ.

A tree expansion of a skeleton ξ is defined as follows.
Starting from the root node of ξ, each node is expanded by
either one of its existential transitions, or by all its univer-
sal transitions. Leaf nodes that represent skeletons ξ′ are re-
placed by a tree expansion of ξ′. White circles represent the
start of a new level in the tree expansion. White nodes are

624

labeled with either a literal, or >. A tree expansion is valid
wrt finite word w = σ0 · · ·σn−1 when each σi satisfies the la-
bels of all white nodes at level i. A valid tree expansion wrt
w is accepting if all white nodes at depth n are accepting,
indicated by double circles.

Valid tree expansions of an skeleton ξϕ wrt a finite word w
simulate the runs of an AFA Aϕ on w. In particular, accept-
ing runs of Aϕ have its counterpart in accepting tree expan-
sions of ξϕ. Note that construction of ξϕ for an LTL f formula
does not require the use of the auxiliary predicate final to
indicate the end of the finite words. The skeleton structures
that we use here resemble AFA representations for LTL over
finite traces used in (Finkbeiner and Sipma 2004).
Example: Figure 2j represents an AFA for LTL f formula
ϕ := p ∨ (q U X¬r). The AFA is constructed by compos-
ing the skeletons of the subformulae of ϕ, namely: (p ∨
(q U X¬r)), (p), (q U X¬r), (q), (X¬r), and (¬r). Subformu-
lae that are literals are represented with a skeleton in the
form of Figure 2i. Subformulae that contain temporal or log-
ical operators are represented with a skeleton for such oper-
ators. The AFA in Figure 2j accepts the finite words that
satisfy ϕ, such as w = {¬p, q,¬r} {p,¬q, r} {p,¬q,¬r}. This
can be seen by expanding the AFA tree that checks q in the
first level, checks > (and commits to X¬r) in the second
level, and checks ¬r in the third level.

5 Passive Learning of Finite LTL
Our approach to passive learning of a minimal LTL f formula
relative to a given set of examples E+ and E− follows the
steps in Algorithm 2. For a fixed bound N, we construct an
AFA for some LTL f formula of size bounded by N, and that
entails all the positive examples, and none of the negative
examples. If no such AFA exists, we increment N by one and
repeat the process until termination (Theorem 2). In what
follows, we show how to reduce the problem of learning an
AFA to a boolean satisfiability problem.

Algorithm 2 Passive learning of a minimal LTL f formula.

1: Fix N = 1
2: Construct an AFA AN for some LTL f formula ϕ of size

bounded by N that is consistent with the set of examples.
3: If no AFA exists, increment N by one and go to 2.
4: Extract an LTL f formula ϕ from the structure ofAN . Return ϕ.

Theorem 2. Algorithm 2 returns a minimal LTL f formula
that is consistent with the set of examples.

Proof. For any given pair of disjoint sets of examples E+

and E−, there exists an LTL f formula that is consistent with
them – e.g. ϕ :=

(∨
e∈E+ toLTL(e)

)
∧

(∧
e∈E− ¬toLTL(e)

)
,

where toLTL(s1 · · · sn) :=
∧

1≤i≤n X(i)(si). Therefore, Algo-
rithm 2 is guaranteed to terminate. Minimality follows from
the guarantees on the size of ϕ in Step 2. �

5.1 Boolean Satisfiability
The boolean satisfiability problem (SAT, for short) relative
to a finite set of boolean variables V , and a propositional

formula φ over variables V is to find an assignment to vari-
ables V such that φ(V) holds true. Such assignment is called
a model. If no model exists, we say that the problem is unsat-
isfiable. It is useful to represent φ in conjunctive normal form
(CNF), that is, a conjunction of clauses where each clause is
a disjunction of literals over V . SAT is NP-complete (Cook
1971). Despite its non-tractable complexity, very efficient al-
gorithms exist. In the past, a variety of problems have been
solved efficiently via reductions to SAT – e.g. planning, cir-
cuit design, and theorem proving (cf. (Biere et al. 2009)).
Example Let V := {a, b, c}, and φ(a, b) := (¬a ∨ b) ∧ (¬b ∨
c) ∧ (¬c ∨ a). The SAT problem 〈V, φ〉 is satisfiable, and has
two models: a = b = c = true, and a = b = c = false.

5.2 Reduction into SAT
In this section we address Step 2 in Algorithm 2. Namely,
we aim to construct an AFA for some LTL f formula ϕ that
is consistent with a given set of positive and negative exam-
ples. We reduce the task into a SAT problem. Intuitively,
(some) variables simulate the structure of an AFA. Some
clauses force the AFA to be well constructed, and other
clauses force the AFA to be consistent with the examples.

In what follows, we explain the semantics of the variables
associated with the structure of the AFA. Then, we provide
details on how to enforce well-constructed AFA. Finally, we
detail how to enforce acceptance (resp. rejection) of positive
(resp. negative) examples. By omitting certain clauses, we
relax the constraint on the size of ϕ. Details follow.
AFA structure We number skeletons s according to a fixed
predefined order 1 ≤ s ≤ N and, by convention, we set the
root of the AFA be the skeleton indexed with s = 1. The
type of operator represented by each skeleton s is indicated
by the truth of one of the the variables in the set SkType(s).

SkType(s) := {AND(s),OR(s),NEXT(s),WNEXT(s),UNTIL(s),
RELEASE(s),EVENTUALLY(s),ALWAYS(s), LIT(s)}

We keep track of the AFA structure by means of variables
A(s, s′) and B(s, s′). Skeletons s that represent unary opera-
tors (NEXT, WNEXT, ALWAYS, EVENTUALLY) have one
associated skeleton s′ that makes A(s, s′) true. Skeletons
s that represent binary operators (AND, OR, RELEASE,
UNTIL) have, in addition, one associated skeleton s′′ that
makes B(s, s′′) true. Variable LIT(s) is true when skeleton s
represents a literal. For example, the truth of AND(s) indi-
cates that skeleton s represents a conjunctive subformula of
the form α∧β. The subformulae α and β are associated with
the skeletons s′ and s′′ that make true A(s, s′) and B(s, s′′).
Similar interpretations are given to the other skeleton types.
Enforcing formula size bound An extra set of constraints
can be incorporated into the SAT model to enforce that the
size of the learned AFA is bounded by N. These constraints
have the form¬A(s, s′)∨¬A(s′′, s′) and¬B(s, s′)∨¬B(s′′, s′)
and prevent the model from reusing skeletons to represent
different subformulae with an equivalent syntactic form.

When these constraints are not incorporated into the SAT
problem, the size of the AFA (and corresponding LTL f for-
mula) constructed from the model may be larger than the
bound N. This is caused by subformulae that appear du-
plicated repeated times in the learned model. Allowing the

625

learned model to reuse syntactically equivalent subformulae
produces more compact AFA, and therefore simpler models.
Arguably, this may be also a good property to pursue.
Enforcing well-constructed AFA for LTL f It is known that
AFA are strictly more expressive than LTL f , and not each
AFA is a transformation of some LTL f formula.1 We con-
strain the structure of the models to be learned to enforce that
the learned AFA is well-constructed, and that corresponds to
the transformation of some LTL f formula.

We require that each skeleton s (recall that 1 ≤ s ≤ N, and
the AFA is rooted at skeleton s = 1) represents either a literal
or one, and only one LTL f operator. In order to avoid cycles,
and enforce a well-constructed AFA, we require skeletons s′
and s′′ have higher index than skeleton s, and s′′ have higher
index than s′. We accomplish this with the following sets of
constraints, where oneOf(V) is a propositional formula that
forces that one, and only one of the variables in V is true.

oneOf(SkType(s))
oneOf({A(s, s′) | s + 1 ≤ s′ < N})
oneOf({B(s, s′′) | s + 1 < s′′ ≤ N})
oneOf({L(s, v) | 1 ≤ v ≤ |V |} ∪ {L(s,−v) | 1 ≤ v ≤ |V |})

Finally, we do not allow skeletons s with index greater than
N−2 (resp. N−1) to represent binary (resp. unary) operators.

¬NEXT(N)
¬WNEXT(N)
¬EVENTUALLY(N)
¬ALWAYS(N)

¬AND(N)
¬OR(N)
¬UNTIL(N)
¬RELEASE(N)

¬AND(N − 1)
¬OR(N − 1)
¬UNTIL(N − 1)
¬RELEASE(N − 1)

Enforcing Acceptance of Positive Examples So far, we
have enforced the modular skeleton structure of the AFA be-
ing learned to be representative of some LTL f formula. We
now show how to enforce that the AFA is consistent with
(i.e. accepts) all positive examples.

We use variables RUN(e, t, s) to monitor a run of the
AFA on each positive example e. Intuitively, the truth of
RUN(e, t, s) indicates that there exists a run of the AFA
on e at level t labeled with the subformula represented by
skeleton s. In particular, we require the variable RUN(e, 1, 1)
to hold true for each positive example e. The implication
clauses listed in Table 1 force that tree expansions of the
modular skeleton construction are in correspondence with
the runs of the AFA and that an accepting run exists. These
clauses directly replicate the transition function δ defined in
Section 4. Note that we no longer need the variable final,
because the size of each example is known.
Enforcing Rejection of Negative Examples The AFA A
to be learned has to reject all negative examples. Recall
that A rejects negative example e iff none of the runs of A
on e is accepting. Performing this check is challenging for
two reasons. First, for the potentially exponential number of
runs that need to be checked for rejection. Second, because
checking all runs can only be done after the automaton has
been learned, not during the learning process. We mitigate

1AFA can accept exactly the regular languages, whereas the ex-
pressiveness of LTL f is reduced to star-free regular expressions (De
Giacomo and Vardi 2013).

for the two challenges above by reasoning on the dualiza-
tion of the AFAAϕ to be learned. The dual of an AFAAϕ is
a transformation AFA Adual(ϕ) that accepts the complement
language (cf. Proposition 1).
Proposition 1 (from (Muller and Schupp 1987)). Let
Aϕ = 〈Σ,Q, q0, δ, F〉 be an AFA transformation of LTL f
formula ϕ, and let Adual(ϕ) be the AFA that results from
replacing δ by δdual, where δdual(q, s) := δ(dual(q), s), and

dual(p) := ¬p, p ∈ AP
dual(¬p) := p, p ∈ AP
dual(Xα) := N dual(α)
dual(Nα) := X dual(α)

dual(α ∨ β) := dual(α) ∧ dual(β)
dual(α ∧ β) := dual(α) ∨ dual(β)
dual(αU β) := dual(α) R dual(β)
dual(αR β) := dual(α) U dual(β)

Then,Adual(ϕ) accepts the complement language ofAϕ.
We require Adual(ϕ) to accept all negative examples. The

key point to realize is that we can reason on the runs of
Adual(ϕ) without actually having to construct it: we only need
to construct Aϕ. Given Aϕ, a run on Adual(ϕ) can be simu-
lated onAϕ by reinterpreting each automaton state (i.e. LTL f
subformula) as its dual. In other words, runs of Adual(ϕ) are
constructed on the fly, but never stored.

Based on the observation above, we use variables
RUN(e, t, s) to monitor automaton runs on each negative ex-
ample e. The difference with the approach taken to monitor
the runs on positive examples is that, now, RUN(e, t, s) mon-
itors a run on the dual AFAAdual(ϕ). The implication clauses
to enforce Adual(ϕ) accepts a negative example e are analo-
gous to the ones in Table 1. As usual, variables in SkType
indicate the skeleton type in Aϕ. The exception is that im-
plication clauses are dualized to simulate runs on Adual(ϕ).
For example, the implication clauses for a skeleton of type
α∨β replicate those of its dual subformula in Table 1, α∧β.
Namely,

RUN(e, t, s′)←RUN(e, t, s) ∧ OR(s) ∧ A(s, s′)
RUN(e, t, s′′)←RUN(e, t, s) ∧ OR(s) ∧ B(s, s′′)

And the dualization of skeletons that represent variables is:

If v ∈ e[t]: ⊥ ←RUN(e, t, s) ∧ LIT(s) ∧ L(s, v)
If v < e[t]: ⊥ ←RUN(e, t, s) ∧ LIT(s) ∧ L(s,¬v)

5.3 Recovering the LTL Formula from the AFA
It remains to see how to extract an LTL f formula from the
learned AFA. Observe that the truth of variables A(s, s) and
B(s, s′′) describe the tree structure of the AFA, and its as-
sociated LTL f formula can be extracted in linear time in the
size of the formula, by recursively replacing node labels (i.e.
skeleton types) with subformulae from the root automaton.

6 Hardness Bounds
So far, we have presented algorithms for active and passive
learning of LTL f formulae from input examples. A natural
question is: how many examples are required to learn an
LTL f formula of size N?

An LTL f formula of size N can be learned with an ex-
ponential number of examples when each new example re-
duces the number of models that are consistent with respect
to the previous set of examples. We say that these examples
are informative. In particular, the counterexamples output

626

Subformula Timestep Implication clauses for a positive example

α ∧ β 1 ≤ t < |e| RUN(e, t, s′)← RUN(e, t, s) ∧ AND(s) ∧ A(s, s′)
RUN(e, t, s′′)← RUN(e, t, s) ∧ AND(s) ∧ B(s, s′′)

α ∨ β 1 ≤ t ≤ |e| RUN(e, t, s′) ∨ RUN(e, t, s′′)← RUN(e, t, s) ∧ OR(s) ∧ A(s, s′) ∧ B(s, s′′)

Xα 1 ≤ t < |e| RUN(e, t + 1, s)← RUN(e, t, s) ∧ NEXT(s) ∧ A(s, s′)
t = |e| ⊥ ← RUN(e, |e|, s) ∧ NEXT(s) ∧ A(s, s′)

Nα
1 ≤ t < |e| RUN(e, t + 1, s)← RUN(e, t, s) ∧WNEXT(s) ∧ A(s, s′)
t = |e| > ← RUN(e, |e|, s) ∧WNEXT(s) ∧ A(s, s′)

αU β
1 ≤ t < |e| RUN(e, t, s′′) ∨ (RUN(e, t + 1, s) ∧ RUN(e, t, s′))← RUN(e, t, s) ∧ UNTIL(s) ∧ A(s, s′) ∧ B(s, s′′)
t = |e| RUN(e, |e|, s′′)← RUN(e, |e|, s) ∧ UNTIL(s) ∧ B(s, s′′)

αR β
1 ≤ t < |e| RUN(e, t, s′) ∨ RUN(e, t + 1, s)← RUN(e, t, s) ∧ RELEASE(s) ∧ A(s, s′) ∧ B(s, s′′)
1 ≤ t ≤ |e| RUN(e, t, s′′)← RUN(e, t, s) ∧ RELEASE(s) ∧ B(s, s′′)

Fα 1 ≤ t < |e| RUN(e, t, s′) ∨ RUN(e, t + 1, s)← RUN(e, t, s) ∧ EVENTUALLY(s) ∧ A(s, s′)
t = |e| RUN(e, |e|, s′)← RUN(e, |e|, s) ∧ EVENTUALLY(s) ∧ A(s, s′)

Gα
1 ≤ t < |e| RUN(e, t + 1, s)← RUN(e, t, s) ∧ ALWAYS(s) ∧ A(s, s′)
1 ≤ t ≤ |e| RUN(e, t, s′)← RUN(e, t, s) ∧ ALWAYS(s) ∧ A(s, s′)

p 1 ≤ t ≤ |e| If v < e[t]: ⊥ ← RUN(e, t, s) ∧ LIT(s) ∧ L(s, v)
1 ≤ t ≤ |e| If v ∈ e[t]: ⊥ ← RUN(e, t, s) ∧ LIT(s) ∧ L(s,¬v)

Table 1: Implication clauses induced by a positive example e, where states are interpreted with the closed-world assumption.
We write the implication rule α ← β to represent the formula α ∨ ¬β. Timestep parameter t ranges from 1 to |e|. Skeleton
indexes s range from 1 to |S |; s′ ranges from s + 1 to |S |; and s′′ ranges from s + 2 to |S |. Finally, v ∈ V represent state variables.

by the oracle in response to equivalence queries are infor-
mative. Informative examples can be also constructed from
examples for which two potential models disagree.
Theorem 3. Active learning of an LTL f formula ϕ can be
done with a number of queries exponential in the size of ϕ.
Theorem 4. Passive learning of an LTL f formula ϕ can be
done with a number of informative examples exponential in
the size of ϕ.

The bounds in Theorems 3 and 4 contrast with the doubly-
exponential bound with respect to the size of the formula
required to learn DFA, as noted by Angluin (1987) with
the well-known L∗ algorithm. The results are encouraging,
as learning LTL f can be realized with exponentially lower
bounds on the number of required examples.

7 Practical Applications
In a broad context, model learning of finite-state automata
has been used for property extraction and verification of im-
plemented systems. In (Fiterau-Brostean et al. 2017), the au-
thors employed active learning to identify several violations
of the standard in SSH implementations. Our methods learn
properties in LTL f . Because LTL f can be converted into au-
tomata (and in fact, we also learn an AFA representation of
the formula), our system inherits all benefits of learning au-
tomata representations. In particular, LTL f is equally suitable
for verification and model checking. The only caveat is that
LTL f is strictly less expressive than finite-state automata.
Interpretability Learning LTL f models presents a num-
ber of benefits relative to learning automata. Interpretabil-
ity is one major benefit. Our approach outputs a lifted
LTL f formula that is, in comparison, easier to interpret than

grounded models with explicit state representations. Fur-
thermore, LTL f may be more compact, and easier to inter-
pret than automata – recall that DFA transformations of LTL f
are worst-case doubly exponential, Another benefit is that
model maintenance may be easier to perform by a human
using LTL f than using automata. In all cases, it is worth re-
membering that LTL f can be transformed into automata if
needed, but the opposite is not always true.

Few-shot learning Our approach is exact, in the sense that
we learn a model that is consistent with all given examples.
As such, its scalability will, in principle, be more limited
than statistical approaches that sacrifice guarantees for the
benefit of scalability – e.g. deep learning approaches to time
series classification (Karim et al. 2018). On the other hand,
we can expect our approach to be able to learn from sets of
examples of reasonable size, LTL f formulae concisely repre-
sent properties of state traces, and these properties general-
ize to unseen examples. For these reasons, our approach can
be suitable to few-shot learning.

Behavior Classification We can use LTL f for multi-class
behavior classification. A model can be trained to recognize
a target behavior, represented by one or more LTL f formulae,
and discriminate it relative to others. The LTL f formulae act
like a classifier that is interpretable.

Plan Intent and Recognition Similar to multiclass behav-
ior classification, learned LTL f models for a multiclass set
of behaviors can be used to recognize plan intent. The idea
is to use LTL f models to monitor observed behavior and test
it against multiple classes. All formulae that are incompati-
ble with the observed behavior are ruled out. The remaining
formulae represent possible plan intent.

627

LTL f learning DFA

Target |AP| |E+| |E−| Time |CS| S →

X p 3 1 4 0.3 40 4 32
p ∧ X q 3 2 5 0.5 29 4 32
X (p ∧ q) 3 5 5 0.4 42 4 32
N (p ∧ q) 3 5 6 0.4 29 4 32
p U q 3 3 4 0.2 22 3 24
p R q 3 3 3 0.3 22 3 24

Table 2: Number of positive (|E+|) and negative (|E−|) exam-
ples needed for active learning of each LTL f formula, and
comparison with the number of characteristic samples (CS)
that uniquely define minimal DFA with S states.

Reward Function Learning Another application of learn-
ing LTL f from observation traces is for the purpose of ex-
tracting a non-Markovian reward function (Camacho et al.
2017a) from positive and negative observation trace exam-
ples. Inferring intended behavior from observation traces is
central to inverse reinforcement learning (IRL) (Ng, Harada,
and Russell 1999).
Knowledge Extraction What properties does the system
under observation have? Our approach can be easily adapted
to extract not only one but all LTL f formulae (of bounded
size) that are consistent with the observed behavior. It suf-
fices to replace the SAT solver by an all-SAT solver.
LTL mining Another interesting use of our approach is to
learn LTL f formulae that are consistent with examples and
have a predefined structure. For example, we may be inter-
ested in learning assume-guarantee formulae of the form
G(ϕa → ϕg) for some assumption subformula ϕa, and
some guarantee subformula ϕg – e.g. whenever the room
temperature surpasses the threshold, the ventilation system
is activated. This task has been referred to as LTL min-
ing. Lemieux, Park, and Beschastnikh (2015) introduced a
method for LTL mining that fulfills finite observation traces
with an infinite number of terminal events, from which a
consistent LTL formula is learned. Shah et al. (2018) adopted
a non-exact, Bayesian approach to infer models in terms
of three behaviors encoded as LTL templates. Our approach
can be adapted to LTL f mining by overconstraining the SAT
model with the pattern of the formula to be learned. In our
example, the first automaton type has to be an always (G)
operator, and the second automaton type has to be a logical
disjunction (∨) – recall that G(ϕa → ϕg) ≡ G(¬ϕa ∨ ϕg).

8 Experiments
To the best of our knowledge, we have presented the first ap-
proach to learning LTL f models from input examples using
SAT. We conducted a series of tests to evaluate the benefits
of our approaches. For reference, we compared our system
with a SAT-based approach to learn DFA (Giantamidis and
Tripakis 2016), and with a state-of-the-art deep learning ap-
proach for time series classification (Karim et al. 2018).

Our system was implemented in Python, using off-the-
shelf SAT solver Pycosat (Biere 2008). In our tests, we al-
lowed the learned model reuse subformulae (cf. Section 5.2).

100

102

Ru
n

Ti
m

e
(s

)

2 3 4 5 6 7 8 9 10 11
Formula Size

0

20

Ex

am
pl

es

Figure 3: Summary of experimental results on active learn-
ing of LTL f . Run time (top) and number of examples needed
(bottom) to learn a variety of LTL f formulae of differing size.

We limited memory to 8GB.
Few-shot learning We implemented an active learner of
LTL f that performs equivalence queries to an oracle. The or-
acle generates counterexamples as follows. First, we check
whether the guessed (ϕG) formula is equivalent to the tar-
get (ϕT). This is done by checking emptiness of ϕT ∧ ¬ϕG,
and ¬ϕT ∧ ϕG. If the guessed formula is not equivalent to
the target, either a positive or negative example is generated
(at random, if it exists). Positive examples are generated by
searching for an accepting run of the DFA for ϕT ∧ ¬ϕG,
which we do via breadth-first search on the automaton. Neg-
ative examples are generated similarly with the DFA for
¬ϕT ∧ ϕG. Table 2 summarizes the results of our tests with
simple target LTL f formulae over AP = {p, q, r}. We com-
pare these numbers with the number of characteristic sam-
ples (CS) for each target language. A CS is a minimum set of
examples (with explicit states) that uniquely defines a min-
imum DFA (of size S) that models the language (cf. (Gi-
antamidis and Tripakis 2016)). Noteworthy, our approach
needed a number of examples that was much lower than the
size of the CS. This indicates the potential of our approach in
few-shot learning, and the benefits of exploiting lifted state
representations.

We conducted a similar test with the SAT-based approach
for learning DFA presented in (Giantamidis and Tripakis
2016). Their approach works with explicit grounded state
representations. Unless the CS was given as input, their sys-
tem needed a massive number of random examples to learn
the target language.

In order to test the scalability of our approach, we con-
structed a set of formulae with conjunctions of “eventu-
allys”, nesting of “untils”, nesting of “releases”, industrial
patterns from Dwyer, Avrunin, and Corbett (1999), and ran-
domly generated formulae. Figure 3 (right) summarizes the
number of examples needed to learn each formula, and the
run time of our system. Our active learning system needed a
reduced number of examples that increased linearly with the
size of the target formula, with relatively low variance. In
terms of run time, we observe that formulae with size larger
than 8 required significantly more computational effort.
Behavior Classification We conducted experiments to eval-
uate the adequacy of LTL f in behavior classification. Given

628

1 2 3 4 5 6 7 8 9 10
K

0.00

0.25

0.50

0.75

1.00
Accuracy

1 2 3 4 5 6 7 8 9 10
K

0.00

0.25

0.50

0.75

1.00
Precision

1 2 3 4 5 6 7 8 9 10
K

0.00

0.25

0.50

0.75

1.00
Recall

Figure 4: Results on behavior classification across different
sizes of the training sets. The training set is constructed by
sampling K examples on each of the four behaviors. Results
over 100 runs are reported.

a set of examples mainifesting different behavior in solving
different tasks, the objective was to discriminate one target
behavior from the others.

We considered the openstacks planning benchmark do-
main (retrieved from (Muise 2016)) as a testbed for gen-
erating examples. In the openstaks domain, the agent has to
complete and ship a number of orders (in our tests, 5 orders).
An order is completed when all its parts are assembled. Dif-
ferent parts from different orders can be stacked and assem-
bled. We modified the domain and designed four behaviors:
each behavior ships orders in a particular fixed order. Then,
we considered a planning task, common to all behaviors. We
generated 1000 examples per behavior. The training set was
created by sampling k examples per behavior – those sam-
pled from the target (resp. non-target) behavior constitute the
positive (resp. negative) examples. All remaining examples
were left to the testing set. Examples were generated using
the Top-k planner KStar (Katz et al. 2018), then transformed
into state plans, and post-processed to eliminate auxiliary
fluents used to enforce desired behavior.

Figure 4 shows the accuracy, precision, and recall of the
LTL f classifiers obtained. We ran 100 experiments per dif-
ferent k. The width of each violin plot is an indicator of the
density of datapoints. Our system was able to learn with a
few examples per task (K). Most examples had length 25.
The formulae learned had size 3 in most cases. Remarkably,
those formulae are not the formulae that describe the tar-
get behavior, but rather simpler formulae that discriminate
the target behavior from the others given the common con-
straints of the environment dynamics. For example, the LTL f
formula ((not (shipped o5))) U(((stacks avail n4))) received
full score.

We compared the performance of our system with the
state-of-the-art multivariate time series classification system
in (Karim et al. 2018). Their system takes a multivariate
state representation as input, and uses an LSTM deep neural
network architecture with convolutional filters for classifi-
cation. The learning rate was set to 1e−3, using Adam opti-
mizer. We trained the model with 20 epochs. Accuracy re-
sults obtained for different values of K were similar to those
in Figure 4 – e.g. 48% accuracy for K = 1; 75% for K = 2;
96% for K = 3, and 99.8% for K = 10. Learning took
more than four epochs to reach 100% accuracy in the train-
ing set, with 3 to 4 seconds per epoch. In contrast, our system
learned LTL f formulae with considerably less computational

effort. For comparison, our system only needed on the order
of 0.1 seconds to learn LTL f formulae.
Interpretability An advantage of our model learning ap-
proach is the interpretability of the models with respect to
alternative representations. We elaborate on our claim be-
low. DFA tend to be difficult to interpret. Observe that the
models in Figure 2 have a very small DFA representation
(only three and four states), whereas the number of state
transitions (ranging from 24 to 32, indicated with a symbol
→) is too high to be easily interpreted by a human. In con-
trast, learned LTL f models resulted in small formulae that
are more manageable. Deep learning models, as those ob-
tained with Karim et al. (2018)’s approach, are not human-
interpretable. In contrast, our system generates classifiers
with associated semantics that are interpretable.

9 Summary and Discussion
We introduced the problems of active and passive learning
of an LTL f formula that captures the temporally extended
behavior of a set of positive- and negative-example observa-
tion traces. In Section 7, we identified some practical appli-
cations of LTL f learning. In the context of planning, learning
LTL f classifiers has application in plan recognition. Another
interesting line of research is in learning temporal invariants,
constraints, and heuristics for planning. In non-deterministic
and probabilistic planning, landmarks and no-goods can be
learned by taking plans obtained from the determinization of
the problem and using them as examples – positive if they
reach the goal, negative if they reach a deadend.

We presented a SAT-based approach to passive learning
of LTL f formulae, and showed how it can be extended to
an active learning system. Our approach proved to be fast
and successful at learning models that generalize from few
examples, and the learned models were more interpretable
than the alternative. Our approach to learning LTL f has sev-
eral sources of implicit bias. coming from the preference
to learn models (either LTL f formulae or AFA) of smaller
size and from the choice of skeletons, which collectively
impose a structural bias by pre-defining the primitive build-
ing blocks used to construct LTL f formulae. More generally,
LTL f mining for a specific pattern can be seen as a form of
search bias that imposes hard constraints on the structure of
the learned formula. A further source of bias comes from the
examples that are generated by the oracle, and the heuristics
of the SAT solver. Whereas we leave further investigation to
future work, one can imagine that an adequate oracle that
outputs examples that optimally disambiguate between the
models that are still consistent with the observed examples
may help in the learning process.

An obvious restriction of the work presented here is that
it does not deal explicitly with noisy data. In future work,
we also plan to investigate this setting (c.f. Kasenberg and
Scheutz (2017) and Shah et al. (2018) for potential ap-
proaches). While noise constrains the applicability of our
work, there are numerous dynamical systems that do not
manifest noise in their data such as data generated by soft-
ware systems including user interaction logs, transaction
logs, and data from discrete control systems.

629

Acknowledgements
We thank the reviewers for their thoughtful comments on an
earlier version of this paper. We also acknowledge funding
from the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and Microsoft Research.

References
Angluin, D.; Eisenstat, S.; and Fisman, D. 2015. Learning regular
languages via alternating automata. In IJCAI, 3308–3314.
Angluin, D. 1987. Learning regular sets from queries and coun-
terexamples. Information and Computation 75(2):87–106.
Bacchus, F., and Kabanza, F. 1998. Planning for temporally ex-
tended goals. Annals of Mathematics and Artificial Intelligence
22(1-2):5–27.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to ex-
press search control knowledge for planning. Artificial Intelligence
116(1-2):123–191.
Bacchus, F.; Boutilier, C.; and Grove, A. J. 1996. Rewarding be-
haviors. In AAAI, 1160–1167.
Baier, J. A., and McIlraith, S. A. 2006. Planning with temporally
extended goals using heuristic search. In ICAPS, 342–345.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A heuristic
search approach to planning with temporally extended preferences.
Artificial Intelligence 173(5-6):593–618.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2011. Specifying and
computing preferred plans. Artificial Intelligence 175(7–8):1308–
1345.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds. 2009.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press.
Biere, A. 2008. PicoSAT essentials. Journal on Satisfiability,
Boolean Modeling and Computation 4(2-4):75–97.
Bollig, B.; Habermehl, P.; Kern, C.; and Leucker, M. 2009.
Angluin-style learning of NFA. In IJCAI, 1004–1009.
Camacho, A.; Chen, O.; Sanner, S.; and McIlraith, S. A. 2017a.
Non-markovian rewards expressed in LTL: guiding search via re-
ward shaping. In SOCS, 159–160.
Camacho, A.; Triantafillou, E.; Muise, C.; Baier, J. A.; and McIl-
raith, S. A. 2017b. Non-deterministic planning with temporally
extended goals: LTL over finite and infinite traces. In AAAI, 3716–
3724.
Camacho, A.; Baier, J. A.; Muise, C. J.; and McIlraith, S. A. 2018.
Finite LTL synthesis as planning. In ICAPS, 29–38.
Camacho, A.; Bienvenu, M.; and McIlraith, S. A. 2018. Finite LTL
synthesis with environment assumptions and quality measures. In
KR, 29–38.
Chandra, A. K.; Kozen, D.; and Stockmeyer, L. J. 1981. Alterna-
tion. Journal of the ACM 28(1):114–133.
Coles, A., and Coles, A. 2011. LPRPG-P: relaxed plan heuristics
for planning with preferences. In ICAPS, 26–33.
Cook, S. A. 1971. The complexity of theorem-proving procedures.
In STOC, 151–158.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI, 854–860.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on finite traces. In IJCAI, 1558–1564.
De Giacomo, G.; Masellis, R. D.; and Montali, M. 2014. Reason-
ing on LTL on finite traces: Insensitivity to infiniteness. In AAAI,
1027–1033.

de la Rosa, T., and McIlraith, S. 2011. Learning domain control
knowledge for TLPlan and beyond. In PAL, 36–43.
Dwyer, M. B.; Avrunin, G. S.; and Corbett, J. C. 1999. Patterns in
property specifications for finite-state verification. In ICSE, 411–
420.
Edelkamp, S. 2006. On the compilation of plan constraints and
preferences. In ICAPS, 374–377.
Finkbeiner, B., and Sipma, H. 2004. Checking finite traces
using alternating automata. Formal Methods in System Design
24(2):101–127.
Fiterau-Brostean, P.; Lenaerts, T.; Poll, E.; de Ruiter, J.; Vaan-
drager, F. W.; and Verleg, P. 2017. Model learning and model
checking of SSH implementations. In SPIN@ISSTA, 142–151.
Gabel, M., and Su, Z. 2008. Symbolic mining of temporal specifi-
cations. In ICSE, 51–60.
Gabel, M., and Su, Z. 2010. Online inference and enforcement of
temporal properties. In ICSE, 15–24.
Giantamidis, G., and Tripakis, S. 2016. Learning Moore machines
from input-output traces. In FM, 291–309.
Karim, F.; Majumdar, S.; Darabi, H.; and Harford, S. 2018.
Multivariate LSTM-FCNs for time series classification. CoRR
abs/1801.04503. http://arxiv.org/abs/1801.04503.
Kasenberg, D., and Scheutz, M. 2017. Interpretable apprenticeship
learning with temporal logic specifications. In CDC, 4914–4921.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A novel
iterative approach to top-k planning. In ICAPS, 132–140.
Lemieux, C.; Park, D.; and Beschastnikh, I. 2015. General LTL
specification mining. In ASE, 81–92.
Muise, C. 2016. Planning.Domains. In the 26th International Con-
ference on Automated Planning and Scheduling - Demonstrations.
Muller, D. E., and Schupp, P. E. 1987. Alternating automata on
infinite trees. Theoretical Computer Science 54:267–276.
Neider, D., and Gavran, I. 2018. Learning linear temporal proper-
ties. In FMCAD, 1–10.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations : Theory and application to reward
shaping. In ICML, volume 3, 278–287.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. In Conference Record of the Sixteenth Annual ACM Sym-
posium on Principles of Programming Languages, 179–190.
Pnueli, A. 1977. The temporal logic of programs. In FOCS, 46–57.
Shah, A.; Kamath, P.; Shah, J. A.; and Li, S. 2018. Bayesian
inference of temporal task specifications from demonstrations. In
NeurIPS, 3808–3817.
Smetsers, R.; Fiterau-Brostean, P.; and Vaandrager, F. W. 2018.
Model learning as a satisfiability modulo theories problem. In
LATA, 182–194.
Torres, J., and Baier, J. A. 2015. Polynomial-time reformulations
of LTL temporally extended goals into final-state goals. In IJCAI,
1696–1703.
Vaandrager, F. W. 2017. Model learning. Communications of the
ACM 60(2):86–95.
Vardi, M. Y. 1997. Alternating automata: Unifying truth and valid-
ity checking for temporal logics. In CADE, 191–206.
Walkinshaw, N.; Derrick, J.; and Guo, Q. 2009. Iterative refinement
of reverse-engineered models by model-based testing. In FM, 305–
320.
Zhu, S.; Tabajara, L. M.; Li, J.; Pu, G.; and Vardi, M. Y. 2017.
Symbolic LTLf synthesis. In IJCAI, 1362–1369.

630

