
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Solution Approaches for an Automotive Paint Shop Scheduling Problem
Felix Winter, Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling
DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria

{winter,musliu}@dbai.tuwien.ac.at

Emir Demirović
School of Computing and Information Systems

University of Melbourne, Parkville, Victoria, Australia
emir.demirovic@unimelb.edu.au

Christoph Mrkvicka
MCP GmbH

Canovagasse 7, 1010 Vienna, Austria
christoph.mrkvicka@mc-partners.at

Abstract
In the paint shops of the automotive supply industry, a large
number of synthetic material pieces need to be painted every
day to provide the large variety of items required for car man-
ufacturing. Because of the sophisticated automated produc-
tion process and the tight due dates requested by car manu-
facturers, finding an optimized production schedule becomes
a challenging task that is at the present time performed by
multiple human planners.
In this paper, we formulate and solve a novel real-life paint
shop scheduling problem from the automotive supply indus-
try which introduces unique constraints and objectives that do
not appear in the existing literature. Additionally, we provide
a new collection of benchmark instances based on real-life
planning scenarios that can be used to evaluate solution tech-
niques for the problem.
An exact approach based on constraint programming is able
to provide optimal solutions for smaller instances, but many
larger instances could not be solved yet. Therefore, we pro-
pose a metaheuristic method based on local search that uses
novel neighborhood relations and various ways to escape lo-
cal optima. Our approach is able to provide feasible solutions
for all instances within reasonable running time.

Introduction
Painting large amounts of synthetic material pieces that are
required for car manufacturing is a cost-intensive and time-
consuming production process. Therefore, paint shops of the
automotive supply industry utilize a high level of automa-
tion including a conveyor belt system and multiple painting
robots. The sophisticated production process introduces the
need for a production schedule that has to fulfill many con-
straints and minimization objectives. However, at the present
time, planning is usually done by humans and therefore it
is currently not possible to efficiently find optimized pro-
duction sequences. For this reason, there is a strong need to
develop efficient automated scheduling techniques for paint
shop scheduling in the automotive supply industry.

In this paper, we introduce a novel scheduling problem
that appears in the paint shops of the automotive supply in-
dustry. The main goal of the problem is to find a production

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sequence that fulfills a large set of given demands and min-
imizes the number of color changes as well as the number
of carrying devices that are required to transport demanded
materials through the paint shop. Previous work has dealt
with production scheduling problems from the automotive
industry that consider the minimization of color changes in
the production sequence (e.g. (Spieckermann, Gutenschwa-
ger, and Voß 2004), (Solnon et al. 2008), (Prandtstetter and
Raidl 2008)) and several variants have shown to be NP-
complete (Epping, Hochstättler, and Oertel 2004). However,
minimizing the number of color changes forms only one
part of the multi-objective optimization problem we intro-
duce in this work. The problem we describe further includes
the need for finding an optimized allocation of materials
onto carrying devices while fulfilling many problem-specific
sequence and resource constraints, that to the best of our
knowledge have not been described before in connection
with paint shop scheduling. Furthermore, previous schedul-
ing problems from the automotive area usually incorpo-
rate an objective function that uses linear sums that capture
color change and setup costs (e.g. (Prandtstetter and Raidl
2008)). However, the paint shop scheduling problem we in-
troduce in this paper includes a unique aspect of balancing
the changes over the scheduling horizon that is expressed
with a quadratic objective function which to the best of our
knowledge has not been considered for automotive schedul-
ing problems. Additionally, to evaluate the problem’s ob-
jective function, multiple instances of the longest common
subsequence problem (LCS) (Hirschberg 1977) have to be
solved. Another challenge that has to be tackled to efficiently
solve the problem we describe is caused by the very large-
scale planning scenarios that usually appear in practice.

In this paper, we introduce a greedy algorithm and novel
neighborhood operators that can be used together with a
local search based approach to tackle very large practical
problems. Furthermore, we propose innovative extensions to
metaheuristic techniques that incorporate elements of sim-
ulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983),
a min-conflicts heuristic (Minton et al. 1990) and tabu
search (Glover 1986) to escape local optima while searching
for an optimal solution. We provide a set of 24 instances that
are closely based on real-life paint shop scheduling prob-

573

lems and can be used to benchmark the solution approaches
to the problem. Additionally, we show that our metaheuris-
tic methods are able to provide promising solutions for all of
the benchmark instances.

The following points summarize the main contributions:

• We specify a novel scheduling problem that appears in the
paint shops of the automotive supply industry.

• We generate 24 benchmark instances closely based on
real-life planning scenarios. These instances will be made
publicly available to serve as benchmarks for the scientific
community.

• We propose a metaheuristic method that utilizes novel
neighborhood moves to solve the problem.

• We propose a novel adaptive neighborhood move accep-
tance function that can be used together with simulated
annealing and the quadratic objective function that is used
for the paint shop scheduling problem.

• We propose a greedy algorithm that can be used to gen-
erate an initial solution for our metaheuristic approach to
solve very large practical instances in reasonable time.

• We perform a series of benchmark experiments for eval-
uation and provide new upper bounds for large practical
problem instances using our metaheuristic approach.

In the next section, we describe the problem as it appears
in paint shops of the automotive supply industry. After-
wards, we give a formal problem specification of the prob-
lem followed by a description of the solution approaches we
propose in this paper. We then provide an overview of the ex-
periments that we conducted and evaluate the results before
we make concluding remarks and talk about future work.

The Paint Shop Scheduling Problem
A typical automotive supply company will serve not only
one, but many different car manufacturing companies and
therefore produce a large variety of different products that
need to be painted before delivery (e.g. bumpers and other
exterior systems). Because of the short manufacturing cycles
caused by the commonly used concepts of just in time manu-
facturing in the automotive industry (Sugimori et al. 1977), it
is of high importance to create production schedules that are
able to fulfill all due dates requested by car manufacturers.
Therefore, the main goal of the paint shop scheduling prob-
lem we describe in this paper is to determine a technically
feasible production sequence that produces all ordered prod-
ucts within the given due dates. Furthermore, two minimiza-
tion criteria should be considered to reduce waste and save
costs: Firstly, the schedule should group orders that request
similar colors to minimize required color changes in the pro-
duction sequence whenever possible. The second minimiza-
tion criterion is concerned with an efficient utilization of the
carrying devices that are used to transport the raw material
items through the paint shop. To understand the details be-
hind the second optimization objective, the reader needs to
know that all items scheduled for painting have to be placed
on custom carrier devices that will move through the paint
shop’s painting cabins. In each cabin, several painting robots

Figure 1: Schematic showing three carriers of two different
carrier types. The carriers shown on the left and in the mid-
dle have the same type, while the type of the carrier shown
on the right side is different. The left carrier uses a material
configuration that transports two triangular and two square
raw material pieces while the middle carrier transports two
circular and two square raw material pieces and the carrier
on the right side transports three circular pieces and three
squared pieces. The figure exemplifies how the same carrier
type can be used to transport different material type com-
binations through the paint shop as long as all pieces on a
single carrier are painted with the same color (e.g. white,
lightgray or gray).

will then apply paint on the raw material pieces. Due to the
fact that there are many different carrier types available, each
being able to transport certain configurations of demanded
materials, it will be necessary to use a variety of different
carrier device types during production. Although combina-
tions of different raw material items may be transported by a
single carrier, it is never possible to schedule products with
different colors on a single carrying device. Figure 1 shows
a schematic of two carrier types and three possible material
configurations.

The paint shops of the automotive supply industry are
designed to support an almost fully automated production
process. Therefore, any scheduled carrying devices will be
automatically moved through the paint shop on a circular
conveyor belt system. Carriers can be inserted and removed
from and onto the conveyor belt at two carrier gates. One of
the gates is used to insert carrying devices, while the other
one can be used to remove carriers from the circular con-
veyor belt system. Once a carrier has been inserted, it will
be moved through the cyclic paint shop system where it re-
peatedly will pass by the painting cabins, the carrier gates,
and a material gate, until the schedule will select the car-
rier for ejection at the output gate. At the material gate un-
painted raw materials may be placed on any empty carrying
device by paint shop employees. A loaded carrier will then
move to the painting cabins, where the scheduled color will
be applied on all carried items. Whenever a loaded carrier ar-
rives at the material gate after having completed a full round,
another employee will take off the colored material pieces
and may place new uncolored raw materials onto the carrier
that will then be painted in the following round. Figure 2
shows a schematic of the paint shop’s layout and visualizes
the movement of carriers through the paint shop.

Because of the circular layout of the paint shop, the paint-
ing schedule is organized in rounds. Within each painting
round, several carrier units will be painted one after the other
in a sequence that is predetermined by the schedule. How-
ever, the number of processed carriers per round as well as

574

Material Gate

Carrier Gate (In)Carrier Gate (Out)

Carriers (Unpainted) Carriers (Painted)

Painting Cabins

Figure 2: Schematic showing a paint shop layout that is com-
monly used in the automotive supply industry. During pro-
duction a number of carrying devices will be inserted onto a
circular system of conveyor belts. These will then transport
unpainted material pieces to the painting cabins and later
return with the colored pieces to the material gate where fin-
ished products can be unloaded.

R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .

A1

A1

A2

B1

B2

A2

A2

C1

B2

B3

C1

C2

C3

B1

B2

Figure 3: An Example painting schedule for three rounds.
Each column represents the scheduled carrier sequences
scheduled within a single round. Each cell contains informa-
tion about the associated carrier type (letter), carrier config-
uration (number) and scheduled color (background color).

the exact sequence do not necessarily have to be equal for
each round. A schedule will therefore plan the painting se-
quences for multiple rounds and determine the raw material
and color configurations for each sequenced carrying device.
One can represent a candidate solution to the paint shop
scheduling problem as a table, where each column repre-
sents the scheduling sequence for a single round. Each table
cell will then assign the carrier type, material configuration,
and color that should be scheduled in the associated round
sequence. Figure 3 pictures an example of a small painting
schedule.

Considering all carrier configurations and colors that can
be scheduled for production, a tremendous number of dif-
ferent schedules can be created, however many constraints
impose restrictions regarding due dates and allowed carrier
sequences have to be fulfilled on feasible schedules.

A multi-objective minimization function further includes
two optimization criteria. As already mentioned, the first op-
timization goal is to minimize color changes in the schedul-
ing sequence, while the second optimization goal is con-
cerned with an efficient utilization of carrying devices. In
the following we will further explain the second minimiza-
tion goal.

Since a paint shop schedule will usually not use the same

R1 R2

1 a a

2 a a

3 a a

A

B

C

C

A

B

Feasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Infeasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Optimal

Figure 4: Three possible options to reuse carriers between
two consecutive rounds. The feasible option on the left side
of the figure will reuse only a single carrier of type C and
requires a total of two carrier insertions and two carrier re-
movals. The infeasible option shown in the middle of the fig-
ure suggests to keep carriers of type B and C between two
consecutive rounds. However, this is technically not possi-
ble as C can not be placed on an earlier position than B in
the next round if it is reused (no edge crossings are allowed).
The option shown on the right side of the figure requires the
fewest number of carrier insertions and removal for this ex-
ample.

carrier type sequence in each round, it is often required to
remove and insert the carriers from the conveyor belt system
between rounds. However, if carriers of the same type are
scheduled in two consecutive rounds it may be possible to
reuse some of them as long as the sequence of kept carri-
ers is compatible with the scheduled carrier sequence in the
succeeding round. Since the insertion and removal of carrier
units from the circular track might lead to delays and can in
general not be done in parallel, it is desired to keep the num-
ber of such operations as low as possible. Note that for any
given two consecutive rounds, the minimal amount of re-
quired carrier insertions and removals can be calculated by
determining the LCS of the two carrier type sequences. One
can also think of the carrier type sequences as two strings,
where the minimal number of required carrier changes cor-
responds to the edit distance (Wagner and Fischer 1974)
with only insertion and deletion operations. Figure 4 visual-
izes three alternative ways how carriers between consecutive
rounds may be reused.

Formal Problem Description
In this section we provide a formal specification of the paint
shop scheduling problem described in this paper.

Input parameters
The following parameters describe instances of the problem:

Set of carrier types: T

Set of colors: C

Set of materials: M

Set of carrier configurations: K
A carrier configuration is always associated to a single car-
rier type and provides information about the materials that
are placed on this carrier.

575

Number of rounds to schedule: n

Set of all rounds to schedule: R = {1, . . . , n}
Maximum number of carrier slots per round: s

Set of carrier slots per round: S = {1, . . . , s}
Minimum number of carriers that have to be scheduled
in each round: q

Number of available carriers of type t in round r:
ar,t,∀r ∈ R, t ∈ T
The number of available carriers are input parameters be-
cause in practice some carriers will be scheduled for clean-
ing and maintenance from time to time (independently of the
production schedule).

Set of demands: D ⊆ {(a,m, r, c)|a ∈ N>0,m ∈
M, r ∈ N>0, c ∈ C}
Each demand will ask for a number a of materials m in
color c that have to be scheduled until round r. The set of
demands may contain optional demands that are due until
future rounds lying outside the scheduling horizon.

Number of pieces of material type m that can be placed
on configuration k: uk,m,∀k ∈ K,m ∈M
Carrier type of each carrier configuration:

vk ∈ T, ∀k ∈ K

Number of carriers scheduled in the round previous to
the scheduling horizon (history round): p

Carrier type of the scheduled carrier at position i of the
history round: pti ∈ T, ∀i ∈ {1, . . . , p}
Used color at position i of the history round: pci ∈
C,∀i ∈ {1, . . . , p}
Set of forbidden carrier type sequences. All elements in
F define forbidden carrier type sequences of length two
that may not appear anywhere in the schedule: F ⊂
{(t1, t2)|t1, t2 ∈ T, t1 6= t2}
Minimum block length for carrier type t: bmin

t ,∀t ∈ T
Whenever a carrier of type t is scheduled, the same carrier
type has to be used for the next consecutive carriers until the
given minimum block length is reached. (For example let
bmin
t1 = 3 and the previously scheduled carrier type sequence

be 〈t3, t3, t2, t1〉, then to satisfy the minimum block length
at least the next two carriers in the sequence have to be t1).

Maximum block length for carrier type t: bmax
t ,∀t ∈ T

The number of carriers that have to be painted in a
different color before a switch from color c1 to color
c2 becomes legal in the scheduled sequence: oc1,c2 ∈
N,∀c1, c2 ∈ C
For example let ov,w = 3 for colors v and w. Then the color
sequences 〈v, w〉 and 〈v, y, w〉 would be illegal while the
color sequence 〈v, y, y, y, w〉 would be legal (assuming that
y 6= v and y 6= w).

Function that assigns color transition costs for all pairs
of colors: fc : {C × C} → N

Decision variables
We define the following decision variables for the paint shop
scheduling problem:

The carrier configuration scheduled in round i and posi-
tion j1:

xi,j ∈ K ∪ {ε},∀i ∈ {0, . . . , r}, j ∈ S
x0,j1 = λ (where vλ = ptj1),∀j1 ∈ {1, . . . , p}

x0,j2 = ε,∀j ∈ {p+ 1, . . . , s}

If the value ε is assigned, the position is empty and no carrier
will be scheduled at the position.

The color that is used in round i at position j:

ci,j ∈ C ∪ {ε},∀i ∈ {0, . . . , r}, j ∈ S
c0,j1 = pcj1 ,∀j1 ∈ {1, . . . , p}
c0,j2 = ε,∀j ∈ {p+ 1, . . . , s}

If the value ε is assigned, the position is empty and will not
be painted.

Helper Variables for Hard Constraints
To formulate the problem’s hard constraints, we introduce
the following helper variables and functions:

The number of carriers that are scheduled in round i:
pi ∈ {0, . . . , s},∀i ∈ {0, . . . , n}
p0 refers to the number of carriers scheduled in the history
round.

The total number of carriers scheduled in the entire
schedule, excluding the history round: pt ∈ {0, . . . , n ·
s}

Sequence coordinate helper function: fs(i, j) = p +∑
r∈{2...i} pr−1 + j

This helper function converts the two-indexed scheduling
coordinates (round and position within rounds) into a one-
indexed scheduling coordinate. For example let exactly 100
carriers be scheduled in round 1, then f2(2, 3) will be set to
the value 103.

The carrier configuration that is scheduled at the one-
indexed position coordinate i:

seqxi ∈ K ∪ {ε},∀i ∈ {1, . . . , p+ n · s}

The color that is scheduled at the one-indexed position
coordinate i: seqci ∈ C ∪ {ε},∀i ∈ {1, . . . , p+ n · s}

Hard Constraints
1. Unplanned carrier positions should always be scheduled

last in a round:

(xi,j = ε)⇒ (xi,j+1 = ε), ∀i ∈ R, j ∈ {1, . . . , s− 1} (1)

1The input parameters do not specify any information about the
configurations used in the history round. For simplicity we fix the
corresponding decision variables for the history round to any con-
figuration λ that is compatible with the used carrier type in the
history round.

576

2. Any scheduled carrier position must also assign a color
and any unscheduled position must not assign a color:

(xi,j 6= ε)⇔ (ci,j 6= ε), ∀i ∈ R, j ∈ S (2)

3. Force the correct number of scheduled carriers to the as-
sociated helper variables:

p0 = p

pr = |{j ∈ {1, . . . , s}|xr,j 6= ε}|, ∀r ∈ R

pt =
∑
r∈R

pr

(3)

4. Bind the values of the decision variables to the associated
one indexed sequence helper variables:

seqxj = x0,j ∧ seqcj = pcj , ∀j ∈ {1, . . . , p}

xi,j 6= ε⇒

(seqx(fs(i,j)) = xi,j ∧ seqc(fs(i,j)) = ci,j),

∀i ∈ R, j ∈ S

(k > p+ pt)⇔ seqxk = ε,

∀k ∈ {p+ 1, . . . , p+ n · s}

(4)

5. All demands must be satisfied in time (overproduction is
allowed): ∑

{(da,dm,dr,dc)∈D| dm=m∧dr<=r∧dc=c}

da ≤

∑
{i∈{1,...,r},j∈{1,...,s}|ci,j=c}

u(xi,j),m

∀r ∈ R,m ∈M, c ∈ C

(5)

6. Carrier availabilities must be respected in each round (X
here refers to the set of all xi,j variables):

|{xi,j ∈ X|i = r ∧ v(xi,j)
= t}| ≤ ar,t, ∀r ∈ R, t ∈ T (6)

7. The minimum round capacity must be fulfilled in each
round:

pr >= q, ∀r ∈ R (7)

8. Forbidden carrier type sequences must not appear in the
schedule:

v(seqxi)
6= t1 ∨ v(seqxi+1) 6= t2,

∀(t1, t2) ∈ F, i ∈ {p, . . . , (p+ n · s− 1)}
(8)

9. Minimum carrier block length restrictions must be ful-
filled:

(v(seqxi)
6= t ∧ v(seqxi+1) = t)⇒

∧
j∈{2,...,bmin

t }

(v(seqxi+j)
= t),

∀t ∈ T, i ∈ {1, . . . , (p+ n · s− bmin
t − 1)}

(9)

¬(v(seqx
p+n·s−bmin

t +1
) 6= t ∧ v(seqx

p+n·s−bmin
t +2

) = t)

∀t ∈ T
(10)

10. Maximum carrier block length restrictions must be ful-
filled: ∨

j∈{0,...,bmax
t }

(v(seqx(i+j))
6= t),

∀t ∈ T, i ∈ {1, . . . , (p+ n · s− bmax
t)}

(11)

11. No forbidden color sequences should occur in the sched-
ule:

(seqci = c1)⇒
∧

j∈{1,...,o(c1,c2)}

(seqc(i+j) 6= c2),

∀c1, c2 ∈ C, i ∈ {1, . . . , (p+ n · s− o(c1,c2))}

(12)

Helper Variables and Constraints for the Objective
Function
To formulate the problem’s minimization function, we intro-
duce the following helper variables:

The amount of color change costs occurring in round r
of the schedule: ccr,∀r ∈ R
The number of required carrier type changes between
round r and r + 1:

scr,∀r ∈ {0, . . . , n− 1}
The number of carriers that will not be changed after
round r and reused in round r+1: skr,∀r ∈ {0, . . . , n−
1}
Edge helper variables:

er,k,l ∈ {0, 1},∀r ∈ {0, . . . , n− 1}, k ∈ S, l ∈ S
Edge variables that are set to true whenever a carrier from
round r at position k is reused in round r + 1 at position l.

The following hard constraints are used to assign values
to the helper variables:

1. Sum up the color change costs per round in the associ-
ated helper variables. The value includes a potential color
change cost that occurs between the last position of the
previous round to the first position of the target round (We
assume here that if the value ε is assigned to any parame-
ter of fc, the function will return 0):

ccr =
∑

j∈{1,...,s−1}

fc(cr,j , cr,j+1)+

∑
{j∈{pr−1}}

fc(cr−1,j , cr,1), ∀r ∈ R
(13)

2. The number of necessary carrier changes between two
given rounds are calculated with the helper variables skr
that determine how many carriers can be kept after each
round.

scr = pr − skr + pr+1 − skr, ∀r ∈ {0, . . . , n− 1} (14)

3. The skr variables are assigned by summing up the num-
ber of associated edge variables that are set to 1. Note that
each edge variable set to 1 will represent a carrier that is
kept between two consecutive rounds:

skr =
∑

k,l∈S
er,k,l, ∀r ∈ {0, . . . , r − 1} (15)

4. The following constraints enforce that edges between car-
riers of consecutive rounds (carriers connected by an edge
will be reused) are only allowed if the carrier types at both
positions are equal and not set to ε:

(er,k,l = 0)⇐ (xr,k = ε ∨ xr+1,l = ε),

∀r ∈ {0, . . . , n− 1}, k ∈ S, l ∈ S
(16)

(er,k,l = 1)⇒ (v(xr,k) = v(xr+1,l)
),

∀r ∈ {0, . . . , n− 1}, k ∈ S, l ∈ S
(17)

577

5. The following constraint forbids crossings between se-
lected edges of two consecutive rounds. These crossings
have to be forbidden to enforce the correct order of kept
carriers.:

(er,k,l = 1)⇒ ∧
m∈{1,...,k−1},

n∈{l,...,s}

(er,m,n = 0) ∧
∧

m∈{k,...,s},
n∈{1,...,l−1}

(er,m,n = 0)


∀r ∈ {0, . . . , n− 1}, k ∈ S, l ∈ S

(18)

Objective function
The objective function aims to minimize the number of car-
rier changes (sc) and color change costs (cc). The sums
are squared, since it is preferable to distribute the required
changes over the scheduling horizon and to avoid peaks of
many changes within a single round.

minimize
∑

r∈{0,...,n−1}

sc
2
r +

∑
r∈R

cc
2
r (19)

A Greedy Algorithm for Paint Shop
Scheduling

One of the requirements stated by the automotive company
who requested an automatic scheduling system was to pro-
vide practical solutions to large scale problems within few
minutes of running time, and therefore we chose to at first
approach the problem using a greedy algorithm.

Phase 1: Constructing a round layout
Although the method cannot guarantee to always produce
feasible solutions, in practice the few remaining violations
can quickly be repaired by a human planner.

Phase 1: Constructing a round layout
A challenging property of the paint shop scheduling problem
is that demanded materials and associated carrier configura-
tions have to be distributed over the rounds of the scheduling
horizon. One strategy to keep the number of required car-
rier and color changes low in each round, is to minimize the
number of scheduled colors per round while trying to reuse
as many carrier types as possible between rounds. The first
phase of our greedy algorithm follows this idea, while as-
signing carrier configurations and colors to each round with-
out considering an exact round sequence at first.

Therefore, phase 1 of the greedy heuristic will, given a
customer demand, insert a carrier device with the config-
uration that maximizes the number of pieces for that de-
mand. The color is specified by the demand. Insertion is
done greedily, i.e. minimize violations with respect to the
current state. Customer demands are processed one after the
other: demands with earliest due dates first.

Even without knowing the exact carrier sequence, phase 1
can still consider hard constraints that do not depend on the
sequence and can calculate a lower bound of the objective.

Phase 2: Determining the carrier sequence for each
round
After the execution of Phase 1, the heuristic has decided
which carrier configurations and colors should be scheduled

within each round. Furthermore, Phase 1 has already consid-
ered hard constraints that are not sequence dependent (due
round, carrier availability, and round capacity). Phase 2 will
therefore only determine the exact carrier sequence within
each round while trying to fulfill sequence dependent hard
constraints and aiming for a low number of color and carrier
type changes.

The main idea behind the second phase is to determine the
carrier sequence one round at a time. It keeps the sequence
from the previous round as closely as possible, i.e. carriers
not used in the current round are removed. The remaining
carriers are inserted greedily. Therefore, the algorithm will
start with the first round and determine its sequence based
on the scheduling sequence from the history round which is
part of the input parameters.

After the sequence has been determined for round 1 the
algorithm will continue to sequence round 2 and so on.

A Local Search Based Approach for Paint
Shop Scheduling

In this section we introduce a local search based approach to
solve the paint shop scheduling problem. We propose three
different types of neighborhood moves, and several meta-
heuristic techniques to escape local optima.

Cost Function
We extend the objective function described in Equation 19
to also include a sum of all hard constraint violations hv
that will be multiplied with a constant M that is guaran-
teed to be larger than the largest possible objective value.
The sum of hard constraint violations will be calculated in-
dependently for each constraint in a way that captures the
distance to a feasible solution (E.g. If the minimum round
capacity constraint is violated for any round, the minimal
number of missing carriers will be included in the sum of all
hard constraint violations). Equation 20 defines the extended
objective function.

minimize
∑

r∈{0,...,n−1}

sc
2
r +

∑
r∈R

cc
2
r + hv ·M

M = s
2 · r + (maxColorCost)

2 · r + 1

maxColorCost = max {fc(c1, c2)|c1, c2 ∈ C}

(20)

Search Neighborhoods
We propose the following three neighborhood moves for lo-
cal search:

1. Carrier removal: Any carrier assignment that is placed
in the schedule can be simply removed. Whenever a car-
rier is removed from a round, all carriers that have been
planned after the removed position in the same round will
be shifted down by one position.

2. Carrier insertion: A new carrier assignment can be in-
serted in any round that has not reached its full capacity.
Carriers that have been previously planned at or after the
newly inserted carrier’s position will be shifted upwards
by one position.

578

R1 R2 R3

a a a

a a a

a a a

a a a

a a a

A1

A1

A2

B3

B3

A1

A2

C2

B1

B1

C1

C1

C2

B3

B1

C1

Figure 5: This figure shows a visualization of how the three
neighborhood move types (swapping positions, delete posi-
tions, and insert positions) can make modifications to a paint
shop schedule.

3. Carrier swap: Any two carrier assignments in the sched-
ule can be swapped. In this case both the selected carrier
configurations and colors are exchanged.

The local search approach we propose will also consider
block moves where multiple consecutively scheduled carrier
assignments may be inserted, deleted or swapped at once.
In our experiments we used a maximum block move size
that corresponds to the largest input parameter given with
the minimum block length constraint (max {bmin

t |t ∈ T}),
since block moves will be especially effective for repairing
minimum block length violations. Figure 5 shows a visu-
alization of the three neighborhood move types. In the fol-
lowing, whenever we say search move we refer to a single
neighborhood move that can be either a carrier removal, in-
sertion or swap.

Neighborhood Generation
Since generating the complete search neighborhood usu-
ally cannot be done within reasonable time for large in-
stances, we propose to incorporate elements of a min-
conflicts heuristic into our local search approach to focus on
promising parts of the search neighborhood. Our algorithm
will therefore track any carrier assignment in a candidate
solution that is causing a constraint violation, a carrier-, or a
color change. Furthermore, for constraints that require addi-
tional carrier configurations to be inserted into the schedule
we track which carrier configurations are still missing. Our
neighborhood generation routine will therefore consider two
types of conflicts:

1. Position Conflicts: All positions in the schedule that are
involved in at least one constraint violation will be con-
sidered to be in conflict.

2. Insertion Conflicts: Some constraints can be violated be-
cause of a number of missing carrier assignments in the
schedule (e.g. demand constraint, min capacity). For those
constraints we track information about what carrier con-
figuration needs to be inserted to repair any violation. For
some insertion conflicts it is irrelevant which color and
configuration is inserted to repair the constraint violation
(e.g. minimum round capacity constraint). Our algorithm
will randomly select a configuration and color for inser-
tion in such a case.

Algorithm 1 further describes our neighborhood generation
routine.

Algorithm 1 Generate Neighborhood Moves
allMoves← []
Calculate position and insertion conflicts
ic← select random insertion conflict
pc← select random position from position conflicts
sp← generate random swap position
for i← 1 to maxBlockMoveSize do

Add insertion of size i based on ic to allMoves
Add deletion of size i at pc to allMoves
Add swap of size i for pc and sp to allMoves

end for
Add randomly generated search move to allMoves
return allMoves

After Algorithm 1 has generated a collection of potential
search moves, we propose two alternative methods to select
the best neighborhood move. The first option will always
select the neighborhood move that will lead to the lowest
cost value, while the second option will use a tabu list to
prevent the repeated selection of recently performed moves.
Note however, that the second option will always select a
move that will lead to a new unknown best solution even if
it is contained in the tabu list.

Neighborhood Move Acceptance
We further propose to use an innovative simulated annealing
based acceptance function that will decide whether or not a
selected move should be accepted during a search iteration
(if not accepted, no move will be performed in the current it-
eration). In addition to the standard homogeneous simulated
annealing temperature cooling scheme (Kirkpatrick, Gelatt,
and Vecchi 1983), we incorporate a problem specific fac-
tor t′ that will adjust the acceptance probability P based on
the search progress (see Equation 21, where e and e′ are the
current- and the neighbor solution cost, and T is the current
temperature).

P (e, e
′
, T) = exp(−(e′ − e)/(T · t′)) (21)

We included the factor t′ into our algorithm due to the
observation that the impact of unit improvements on the ob-
jective function (such as reducing the number of hard con-
straints violations by one or lowering the number of required
color or carrier changes by one) will depend on the current
objective value. The idea is to set t′ to a value that roughly
estimates the cost improvement that would occur to the cur-
rent solution if the number of violations or required color
and carrier changes is reduced by one. To calculate t′ we do
the following in each iteration: As long as the current so-
lution violates any hard constraint, we simply set t′ = M .
However, if the current solution is feasible we instead cal-
culate t′ based on the current solution’s cost as described
in Algorithm 2 (The values colorCosts and carrierCosts
store the sum of color- or carrier costs from the objective
function.)

579

The rationale behind algorithm 2 is to normalize the ac-
ceptance rate of moves that decrease the number of car-
rier or color changes during the overall search progress.
This is done by calculating the average cost improvements
that would occur to the current solution if the total num-
ber of color and carrier changes in the schedule is lowered
by one. The calculated value depends on the quality of the
current solution and significantly changes during the search
progress.

Algorithm 2 Calculating t′ if the current solution does not
violate any hard constraints.

a← colorCosts
numberOfRounds

b← carrierCosts
numberOfRounds

c← (
√
a+maxColorCost)

2 − a
d← (

√
b+ 1)

2
− b

t′ ← min (c, d)
return t′

Empirical Evaluation
We generated 24 instances for the paint shop scheduling
problem based on actual planning scenarios from the auto-
motive industry2. Instances 13–24 have been generated by
processing scheduling scenarios as they have recently ap-
peared at a real life production site of our industrial partner.

Those instances describe six different planning horizons
of 7, 20, 50, 70, 100 and 200 rounds (we generated two
instances for each horizon). Early experiments with the in-
stances showed that exact methods could not provide any
solutions to these instances (the solvers ran out of memory
on a machine with 48GB RAM), and we therefore decided
to manually scale down Instances 13–24 by randomly select-
ing roughly 5% of the materials, colors, configurations and
demands to create the smaller Instances 1–12. We conducted
all benchmark experiments using an Intel Xeon E5345 2.33
GHz CPU with 48 GB RAM, and limited the running time
to 60 minutes.

In first experiments we evaluated our search neighbor-
hoods with a simple random walk move generation and stan-
dard simulated annealing techniques, however this approach
could not produce feasible solutions for the larger instances.

After we implemented the adaptive simulated annealing
scheme as well as the conflict based neighborhood gener-
ation technique we propose in this paper, we were able to
produce feasible solutions for all but the four largest in-
stances within the time limit. Although the greedy algorithm
was not able to find any feasible solutions on its own, we
could utilize greedily constructed initial solutions together
with the metaheuristic approach to produce feasible solu-
tions for all of our benchmark instances. In our final exper-
iments we evaluated two variants of the combined greedy
and local search approach: One variant that will always se-
lect the best move from the generated neighborhood and a
second variant that will use a tabu list to prevent the repeated

2https://www.dbai.tuwien.ac.at/staff/winter/ps instances.zip

selection of recently performed moves. Based on our initial
experiments we set the following parameters: Initial temper-
ature t1 = 0.25, tabu list length tl = 0.001 (relative to the
instance size), cooling rate α = 0.95. In addition to the ap-
proaches that are discussed in this paper, we also compare to
the exact method from (Winter and Musliu 2019) using the
solvers chuffed (Chu et al. 2018) and gurobi (Gurobi Opti-
mization 2018). Table 1 gives an overview of our final ex-
perimental results.

Columns 2 and 3 of Table 1 show the results achieved with
standard simulated annealing compared to the methods pro-
posed in this paper that make use of an adaptive simulated
annealing acceptance without the greedy algorithm (in this
case local search will start from an empty schedule). The
results show that the local search methods proposed in this
paper produced better results for the majority of the smaller
instances (1-12) and most of the larger instances (13-20). Al-
though the standard simulated annealing approach can pro-
cess search iterations much faster and produced better re-
sults for two of the small instances, the results show that
the proposed local search methods were more robust in our
experiments especially when it comes to solving larger in-
stances.

Exact methods could produce optimal results for seven of
the smaller instances and could provide good solutions for
three additional instances. The methods we have proposed
in this paper were able to produce feasible solutions for all
instances and could provide the best results for all of the
large practical sized instances. Starting from a greedily gen-
erated solution did not always have positive effects on the
results for instances 1–12, however for the larger instances
13–24 methods incorporating greedily constructed solutions
produced the best results. Adding a tabu list mechanism to
our metaheuristic approach did not lead to improved results
for most of the instances, although this technique could pro-
duce the best results for instances 15, 20 and 23.

Conclusion
In this paper we have introduced a novel paint shop schedul-
ing problem that appears in the automotive industry. We ad-
ditionally have provided a formal specification of the prob-
lem and generated 24 different problem instances that are
closely based on real-life planning scenarios. Furthermore,
we proposed a greedy algorithm as well as a local search
based approach that includes novel neighborhood operators
and innovative techniques to escape local optima.

Through a series of benchmark experiments we have
shown that the methods described in this work can pro-
vide promising upper bounds for all instances within a run-
ning time of one hour, and are able to produce better re-
sults than existing exact methods for all of the large prac-
tical sized instance. The experimental results further show
that our solution approaches provide promising results even
for the largest instances which are based on large scale real-
life planning scenarios.

Our solution approaches are currently in the deployment
phase at the production site of an automotive supply com-
pany. First tests with real-life data at the production site

580

SA LS LS/G LS/G/T EM

I1 NA 1028 844 882 775*
I2 896 868 932 927 842*
I3 1011 990 992 994 961*
I4 NA 1016 975 1050 918*
I5 618 616 593 599 530*
I6 913 887 891 895 842*
I7 1120 1084 1088 1137 1046
I8 NA 1871 1834 2553 1237*
I9 NA 1767 1735 2421 1006
I10 1134 1262 1243 1269 973
I11 5236 6298 5476 6439 NA
I12 6753 5723 7916 8274 NA
I13 NA 2097235 116235 123830 NA
I14 NA 1985513 118628 130552 NA
I15 NA 8159361 180863 172679 NA
I16 NA 8621490 262252 262897 NA
I17 NA 23320626 421777 455321 NA
I18 NA 23947097 581021 606917 NA
I19 NA 34294393 555829 576225 NA
I20 NA 34713814 930564 927822 NA
I21 NA NA 917955 957854 NA
I22 NA NA 1128716 1142530 NA
I23 NA NA 1889804 1884125 NA
I24 NA NA 2086450 NA NA

Table 1: The final results (total solution cost as defined in
Equation 19, NA if no feasible solution could be achieved)
for all instances produced with the standard simulated an-
nealing (SA), the metaheuristic methods and adaptive simu-
lated annealing acceptance proposed in this paper (LS), the
combined approach using the proposed local search methods
and the greedy algorithm (LS/G), the combined approach
that also uses a tabu list (LS/G/T), and the best results pro-
duced by exact methods (EM). The best result within each
line is formatted in bold face. Results marked with a * de-
note proven optimal solutions.

have shown that our methods can produce results that sig-
nificantly improve the solutions that are generated by human
life planners. Our implementation furthermore allows an in-
teraction between the human planner and the local search
algorithm, where the user can manually adjust results pro-
duced by the algorithm and trigger a restart of local search
if desired.

In future work, we plan to consider the hybridization
of exact techniques with our local search based approach
within the framework of large neighborhood search.

Acknowledgments The financial support by the Austrian
Federal Ministry for Digital and Economic Affairs and the
National Foundation for Research, Technology and Devel-
opment is gratefully acknowledged.

References
Chu, G.; Stuckey, P. J.; Schutt, A.; Ehlers, T.; Gange, G.; and
Francis, K. 2018. Chuffed, a lazy clause generation solver.
https://github.com/chuffed/chuffed.

Epping, T.; Hochstättler, W.; and Oertel, P. 2004. Complex-
ity results on a paint shop problem. Discrete Applied Mathe-
matics 136(2):217 – 226.
Glover, F. 1986. Future paths for integer programming and
links to artificial intelligence. Computers & OR 13(5):533–
549.
Gurobi Optimization, L. 2018. Gurobi optimizer reference
manual.
Hirschberg, D. S. 1977. Algorithms for the longest common
subsequence problem. J. ACM 24(4):664–675.
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Op-
timization by simulated annealing. science 220(4598):671–
680.
Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird,
P. 1990. Solving large-scale constraint-satisfaction and
scheduling problems using a heuristic repair method. In Pro-
ceedings of the 8th National Conference on Artificial Intelligence.
Boston, Massachusetts, USA, July 29 - August 3, 1990, 2 Volumes.,
17–24.
Prandtstetter, M., and Raidl, G. R. 2008. An integer linear
programming approach and a hybrid variable neighborhood
search for the car sequencing problem. European Journal of
Operational Research 191(3):1004 – 1022.
Solnon, C.; Cung, V. D.; Nguyen, A.; and Artigues, C.
2008. The car sequencing problem: Overview of state-of-
the-art methods and industrial case-study of the roadef’2005
challenge problem. European Journal of Operational Research
191(3):912 – 927.
Spieckermann, S.; Gutenschwager, K.; and Voß, S. 2004.
A sequential ordering problem in automotive paint shops.
International Journal of Production Research 42(9):1865–1878.
Sugimori, Y.; Kusunoki, K.; Cho, F.; and Uchikawa, S. 1977.
Toyota production system and kanban system materializa-
tion of just-in-time and respect-for-human system. Interna-
tional Journal of Production Research 15(6):553–564.
Wagner, R. A., and Fischer, M. J. 1974. The string-to-string
correction problem. J. ACM 21(1):168–173.
Winter, F., and Musliu, N. 2019. Constraint based modeling
for scheduling paint shops in the automotive supply industry.
Technical report, TU Wien, CD-TR, 2019/1.

581

