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Abstract

Surveillance camera networks are a useful monitoring infras-
tructure that can be used for various visual analytics appli-
cations, where high-level inferences and predictions could
be made based on target tracking across the network. Most
multi-camera tracking works focus on re-identification prob-
lems and trajectory association problems. However, as cam-
era networks grow in size, the volume of data generated is
humongous, and scalable processing of this data is imperative
for deploying practical solutions. In this paper, we address the
largely overlooked problem of scheduling cameras for pro-
cessing by selecting one where the target is most likely to ap-
pear next. The inter-camera handover can then be performed
on the selected cameras via re-identification or another tar-
get association technique. We model this scheduling problem
using reinforcement learning and learn the camera selection
policy using Q-learning. We do not assume the knowledge of
the camera network topology but we observe that the result-
ing policy implicitly learns it. We evaluate our approach using
NLPR MCT dataset, which is a real multi-camera multi-target
tracking benchmark and show that the proposed policy sub-
stantially reduces the number of frames required to be pro-
cessed at the cost of a small reduction in recall.

Camera networks have emerged as a preferred sens-
ing infrastructure for monitoring and surveillance of pub-
lic spaces. With advances in visual analytics, we see an in-
creasing number of practical applications like footfall es-
timation and prediction, crowd and traffic flow analysis,
content based retrieval for forensics. These applications are
driven by state-of-the-art visual detection, tracking and re-
identification techniques that are robust to lighting varia-
tions, background clutter, occlusions, and non-overlapping
fields of view of cameras in the network. An example
of a camera network and trajectories of different targets
is shown in figure 1. State-of-the-art techniques that have
shown promise in overcoming these challenges often rely on
deep learning architectures that are computationally expen-
sive and have substantial hardware requirements like GPUs
to run at an acceptable frame rate. This computational chal-
lenge is exacerbated by the deluge of video data generated
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Figure 1: Camera topology of NLPR MCT dataset-4 (Chen,
Chen, and Huang 2014). The figure shows the trajectories
of person 5 and 6 across different cameras. The camera net-
work is deployed in a parking area and all cameras have non-
overlapping view.

from a network of cameras, making it challenging to imple-
ment these applications at scale.

While many vision techniques have been developed to
tackle the problems of tracking and re-identification un-
der illumination variations, clutter and occlusions, there
is a much smaller body of work that addresses the prob-
lem of camera selection to efficiently identify target han-
dovers across cameras. Inter-camera handovers are resolved
by matching the current target’s template with potential tar-
get instances detected in candidate cameras, and is typically
handled using visual re-identification techniques. This prob-
lem of correctly resolving handovers is difficult, especially
when candidate cameras have non-overlapping FOVs, im-
plying that a target’s transition time between two FOVs is
non-deterministic and unknown. Ideally, no re-identification
queries should be made during the target’s transition pe-
riod, as a larger number of queries result in an increased
chance of false alarms, which can severely deteriorate the
overall tracking performance. An auxiliary consequence of
a higher number of queries is significantly higher compu-
tational cost. As the transition time is not deterministic, in
order to minimize the false alarms, it is important to devise
a camera selection policy that intelligently schedules camera
re-identification queries.
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Target tracking in a camera network has been explored
extensively in the past using various approaches (Chen et al.
2014; Y. Cai 2014; Lee et al. 2018; W. Chen et al. 2017;
Zhang et al. 2015; Kuo, Huang, and Nevatia 2010; Daliyot
and Netanyahu 2013). Most of these approaches track tar-
gets in a two-step framework. First, single camera track-
ing (SCT) is applied to identify the trajectory of the target
within a single camera’s FOV. Second, inter-camera track-
ing (ICT) is performed to resolve handovers by finding as-
sociations for the target tracked by SCT. In addition to han-
dovers, ICT is also invoked during SCT for handling pe-
riods of occlusion, which may vary significantly depend-
ing on the targets’ speed and path. ICT requires search-
ing targets in multiple cameras at different time instances,
by making repeated re-identification queries until the tar-
get is found and SCT is invoked for the identified cam-
eras. In order to reduce the search space for ICT, most
existing techniques limit the set of candidate cameras to
be queried by assuming knowledge of the camera network
topology (W. Chen et al. 2017), while some attempt to model
the transition time as a random variable (Lee et al. 2018;
Javed et al. 2008).

Recently, (Lee et al. 2018) proposed a method that dis-
covers a camera-link model that identifies candidate cam-
eras for ICT based on appearance based features. They
model the inter-camera transition time using a Gaussian dis-
tribution, which is used during test-time to generate a sample
transition time for which their system waits before initiating
re-identification queries. Not surprisingly, this approach for
ICT shows an improvement over exhaustive search and near-
est neighbor based search, however, it is not clear if a static
distribution of transition time is the best model choice.

In this paper, we argue that the transition time distribution
is conditioned on the target instance and its properties like
speed, which itself may be time-varying. Consequently, our
proposed ICT approach is a policy for scheduling candidate
cameras for re-identification queries based on the target’s
most recent SCT trajectory, as well as the history of can-
didate cameras queried. We model our ICT approach as a
reinforcement learning (RL) problem and learn a policy that
picks an action of querying one of the candidate cameras
or not querying any camera. The learned RL policy implic-
itly discovers the camera network topology, with our only
assumption about the network being that all cameras are
static. Since the focus of our work is on the camera selec-
tion policy for ICT, our state representation abstracts out the
visual appearance based features and only retains spatial in-
formation from SCT. In our experiments, we evaluate our
approach with real data (NLPR MCT dataset (Chen, Chen,
and Huang 2014)) where the targets are restricted to pedes-
trians, and compare them to the state-of-the-art.

The NLPR MCT records real-world scenarios in four dif-
ferent sub-datasets. This dataset has both indoor and outdoor
cameras deployed in a campus building, in parking areas,
and along footpaths. We will be using this dataset for train-
ing and testing of our proposed approach. We will also com-
pare our results with state of the art methods on this dataset.
Figure 1 shows a sub-dataset of NLPR MCT dataset.

Our specific contributions are:

• We propose an intelligent camera selection approach for
inter-camera tracking in a camera network. The goal is
to learn a policy that schedules the re-identification query
by selecting the next candidate camera where the target is
likely to appear.

• We formulate the camera selection as a reinforce-
ment learning problem and learn the policy using Q-
learning (Sutton and Barto 1998), without any knowledge
of the camera network topology.

• We demonstrate that the camera selection policy queries a
very small number of frames by making a small trade-off
on the recall values.

• We demonstrate our Q-learning based approach on
NLPR MCT (Chen, Chen, and Huang 2014) dataset im-
plicitly learns the network topology.

The rest of the paper is structured as follows. We discuss
related work for tracking in a camera network in the next
section followed by the details of our proposed framework.
We then describe the dataset, evaluation metric and experi-
mental results before concluding the paper.

Related Works
In this section, we survey related works for multi-camera
tracking and scheduling of cameras for tracking. For multi-
camera tracking, initial works such as (Hamid et al. 2010;
Zhang, Zhu, and Roy-Chowdhury 2015; Khan and Shah
2003) use 3D coordinates of the target object to track in
the camera network with overlapping field of views. This
often require camera calibration and network topology for
tracking using 3D coordinates. Some (Zhang, Zhu, and Roy-
Chowdhury 2015) fuse the single-camera tracks from SCT
to generate the 3D location of the target from the calibrated
cameras and then track the target by assuming the spatial re-
lationship between cameras. Tha approach in (Zhang, Zhu,
and Roy-Chowdhury 2015) also assumes overlapping views
and formulate a network flow problem for multi-camera
tracking. With cameras having overlapping field of view, a
homography matrix is estimated (Khan and Shah 2003) to
find the 3D position of the target to enable tracking using
Kalman filter or particle filter. However, an assumption of
overlapping field of view is overly restrictive in real-world
scenarios.

Many works exist that represent few initial works that
work with non-overlapping field of views (Chen, An, and
Bhanu 2015; Daliyot and Netanyahu 2013; Kuo, Huang,
and Nevatia 2010; Chen et al. 2011). Few works such
as (Kuo, Huang, and Nevatia 2010; Zhang et al. 2015;
Daliyot and Netanyahu 2013; Zhang et al. 2015; Y. Cai
2014; Lee et al. 2018; W. Chen et al. 2017) assume that
the tracks from individual camera are given and they ex-
tend these to multiple cameras using inter-camera associa-
tions by building an affinity model of the appearances of
individual tracks (Kuo, Huang, and Nevatia 2010), using so-
cial grouping model (Zhang et al. 2015), using data associa-
tion across different cameras (Makris, Ellis, and Black 2004;
Chen, An, and Bhanu 2015; Daliyot and Netanyahu 2013)
and graph-based techniques (W. Chen et al. 2017; Zhang et
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al. 2015). (Chen et al. 2011) makes a spatio-temporal map-
ping between cameras for 3D coordinates. Few other works
model the travel time of the moving target (Javed et al. 2008)
to learn space-time relation between the cameras, (Ristani
and Tomasi 2015; Ristani et al. 2016) use clique based meth-
ods, (Ristani et al. 2016) also formulates within and across
camera tracking in a unified framework.

To track objects in disjoint views, appearance cues of the
target are modeled in (Sunderrajan and Manjunath 2013;
Zhang, Zhu, and Roy-Chowdhury 2015; Daliyot and Ne-
tanyahu 2013). The appearance cues were integrated with
spatio-temporal reasoning (Hamid et al. 2010; Kuo, Huang,
and Nevatia 2010) and graph-based methods (W. Chen et al.
2017). Huang et. al (Huang and Russell 1997) has integrated
the color and the size of the object with velocities and arrival
time using Bayesian inference to track a vehicle in two cam-
era views. Pasula et. al (Pasula et al. 1999) extend the ap-
proach to more than two cameras by including hidden vari-
ables in the Bayesian framework. Matei et al. (Matei, Sawh-
ney, and Samarasekera 2011) use a multi-hypothesis frame-
work instead of Bayesian, while (Chen and Bhanu 2017)
formulates the tracking problem using conditional random
fields (CRF). The formulation uses spatio-temporal and ap-
pearance features to enable tracking. (W. Chen et al. 2017)
enables tracking using a global graph model in which a MAP
association problem is formulated and solved using flow
graphs. (Lee et al. 2018) performs SCT and ICT separately
by using human appearance features along with segmenta-
tion using change point detection. This approach is state of
the art on NLPR MCT dataset. Other approaches for track-
ing in a camera network use re-identification and data as-
sociation by matching a query image with the templates in
a gallery set (Zheng, Zheng, and Yang 2017). In this paper,
we propose to select a camera given the current state of the
target where the target is expected to appear next. We will
show that the camera selection based approach polls very
few frames as compared to the related methods. We learn
a policy directly from the data to intelligently select cam-
eras, and we formulate multi-camera tracking problem as a
reinforcement learning problem that learns this policy using
trial-and-error.

Proposed Methodology
In this section, we formulate the camera selection approach
and present an architecture that integrates camera selections
with re-identification to enable target tracking.

Problem Formulation
Target tracking in a camera network needs to handle inter-
camera handovers by resolving associations between the
tracked target and potential targets detected across all candi-
date cameras. This association problem is typically done by
visual re-identification or verification methods. When cam-
era networks have disjoint FOVs, a target may only reappear
in another candidate camera after a certain transition time,
which in turn depends on various factors like inter-camera
distance and target speed, where the latter would typically be
target-dependent and time-varying. Re-identification queries

made at times when a target is unlikely to appear in a candi-
date camera can lead to unnecessary false associations, dete-
riorating the tracking performance. To counter this challenge
of handling the time-varying nature of inter-camera transi-
tions, we attempt to schedule the re-identification queries by
intelligently selecting a candidate camera or waiting. Due
to its time-varying nature, a befitting model for this prob-
lem is a reinforcement learning (RL) based camera selection
policy that identifies a candidate camera or decides to wait.
Thus the task is to learn the policy π(st) = p(at|st) at time
t, where st is the current state (detailed in next paragraph),
at is the action taken at time t, which corresponds to select-
ing one of the N cameras or to wait (by picking a dummy
camera).

Algorithm 1 Target tracking in a camera network using pro-
posed RL based method. π is camera selection policy. c,b
are current camera and corresponding bounding box for tar-
get location.

1: procedure TRACK(c,b, π)
2: traj← [] . Stores computed trajectory
3: traj.append((c,b))
4: h← ZEROS . Initialize history with ZEROS
5: τ ← ZERO . Initialize telapse to ZERO
6: rt← getRT(b) . Discretize the frame to get region of

target’s location
7: s← [c,rt,h, τ ] . Concatenate location and history
8: while True do
9: cprob← π(s) . Get distribution using policy

10: if all(cprob(:) == cprob(1)) then
11: c = randi(length(cprob))
12: else
13: c = argmax (cprob)
14: b← get the bounding box location
15: if b is not empty then
16: rt← getRT(b)
17: traj.append((c,b))
18: s← f(s,c)
19: return traj

To model the RL problem, we will define the state space,
action space, and the training methodology.

State: The state st at time t captures the spatial and tem-
poral information of the target. The spatial information in-
clude the position rt of the target in the current camera FOV
and the temporal information include camera history ht, and
time elapsed τ . The state vector is following,

st = (xt, ht, τ). (1)
The individual elements of the state space are following:

1. xt: it is the last seen location of the target. It consists of
(c, r), where c is the last seen camera and r is the spatial
location of the target in camera c. To compute, r, the in-
put image is divided into a 8 × 8 grid, and all the cells
are numbered in row-major order. The cell numbers cor-
responding to the target’s bounding box are identified and
one of these is used as r as shown in figure 2.

2. ht: it represents the history of the cameras polled by the
learned policy in past N time steps, where N is the num-
ber of cameras.
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Figure 2: The cells in the grid capture the spatial location of
the target. The image is first discretized in 8×8 grid, and all
cells are numbered sequentially in row-major order. The cell
number on the target position is used as the spatial location
of the target named rt at time t.

Figure 3: The proposed architecture using reinforcement
learning. The architecture shows two blocks, block Q and
block presence. Block Q learns a policy to select a new cam-
era using current state and block presence verifies whether
the target is present in the camera frame chosen.

3. τ : it captures the time elapsed since the target was last
seen in a camera. The elapsed time is discretized with a
step size of 0.25 sec and with every time step that the
target is not found, the value of τ increments by 1. It resets
to 0 once the target is found.

Actions: The action at at time t is encoded by N + 1 di-
mension vector, where N is the number of cameras in the
camera network. The actionN + 1 is selected when the pol-
icy selects no camera, i.e., the target is not visible in all the
cameras.

State evolution: After deciding an action at, the next state
st+1 is decided by following state evolution function:

st+1 = f(st, at) (2)

The function appends the selected camera ct to the camera
history. If the target is found in polled camera then last seen
location is updated to new (c, r) otherwise telapse is incre-
mented accordingly.

Reward: The reward function R(s) is defined for each
state irrespective of the action a. At time t, it is following:

R(st) =

{
+1 if target is present in st
−1 otherwise

(3)

Training procedure: We define state-action value func-
tion Q to estimate the values (reward) of actions at a given
state. The estimates will then be used to make the ac-
tion selection decision. The function Q(s, a) estimates the

Table 1: Details of NLPR MCT dataset (W. Chen et al.
2017), which has four subsets. The table shows number
of cameras (#Cameras), duration of the capture, frame rate
(FPS) and the number of people (#People) captured in each
subset.

Set1 Set2 Set3 Set4

#Cameras 3 3 4 5
Duration 20 min 20 min 3.5 min 24 min

FPS 20 20 25 25
#People 235 255 14 49

value of state action pair (s, a). The goal is to learn opti-
mal state-action function Q∗ (Sutton and Barto 1998). Tra-
ditionally, the Q-functions are iteratively learned using Q-
learning (Sutton and Barto 1998) as shown below:

Q(st, at)⇐Q(st, at) + α

(
R(st+1)+

γmax
at+1

Q(st+1, at+1)−Q(st, at)

) (4)

Where α is the learning rate, and γ is the discount factor.
Sufficient exploration is essential for Q-learning methods to
explore complete state-space, we use epsilon-greedy explo-
ration strategy (Sutton and Barto 1998) with epsilon anneal-
ing. Policy: The policy π selects an optimal action from the
learned Q-functions. After learning, given the target state, it
selects an optimal action in-state st as:

π∗
t (st) = argmax

a
Q∗(st, a) (5)

System Architecture

The system architecture is shown in figure 3. The architec-
ture consists of two blocks, first, block Q which learns a
policy π to select the next camera where the target will ap-
pear given target’s current state. Second, the presence block
which will verify whether the target is present in the camera
selected by the policy at that time frame. The presence block
takes as input the selected camera frame and will return 1 if
the target is present along with the bounding box otherwise
it returns a 0. The presence block can be implemented us-
ing person re-identification (Zheng, Zheng, and Yang 2017).
In this paper, we simulate the presence block with errors to
falsely identify the presence. Details of this block are given
in the results sections. The policy (block Q) takes as input
the current state of the target (the spatial information and
the temporal history) and selects a camera where the target is
likely to appear. The policy is learned using Q-learning (Sut-
ton and Barto 1998). Algorithm 1 show the pseudo-code for
tracking a target using the proposed method.

Experiments and Results
In this section, we present details of the dataset used, the
evaluation metric and the experimental results.
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Dataset and Evaluation Metric
Dataset: We have used NLPR MCT data set (Chen, Chen,
and Huang 2014) for training and testing of our proposed
approach. The dataset consists of four sub-datasets each hav-
ing 3− 5 cameras with a resolution of 320× 240. Details of
the dataset are given in Table 1. The dataset comprises cam-
eras installed in both indoor and outdoor environments with
significant illumination variation across different cameras.
The set-1 and set-2 have the same environment and network
topology. The set-3 was captured in an office building, and
the set-4 was captured in a parking area. We learn a separate
policy for set-3, set-4, and set-1. Since the camera network
in set-2 is same as set-1, we use the same policy for both
subsets. The training and the testing sets are constructed by
randomly selecting half the people for training and the re-
maining half for testing for each dataset. We expect the pol-
icy to implicitly learn the network topology, and so long as
the network is static, the policy should work for all new, un-
seen target individuals. Typically, CCTV network topologies
in the real-world are seldom modified.

We define evaluation metrics over the entire sequence of
frames generated by the a camera network. The sequence is
indexed by time-steps corresponding to the time of frame
capture for the cameras. Since the cameras operate on the
same frame rate for a given subset, we can ignore any syn-
chronization errors without any significant impact on the
camera selection and tracking performance.

Table 2: Table is showing confusion matrix of the camera se-
lections made by the proposed policy for DB-3. Rows are the
ground truth cameras and columns are the cameras polled by
the policy. Values are percentages rounded off to third deci-
mal.

↓ GT/p→ C1 C2 C3 C4 C×

C1 0.91 0.003 0.005 0.002 0.081
C2 0.006 0.796 0.008 0.011 0.178
C3 0.015 0.02 0.828 0.015 0.120
C4 0.003 0.005 0.004 0.767 0.219
C× 0.08 0.08 0.079 0.072 0.685

Evaluation Metric: To evaluate the camera selection per-
formance, we report camera selection accuracy, precision
and recall computed over the entire sequence of each subset.

Table 3: Table showing average time taken (in the number
of frames) by all targets from camera Ci (row) to camera Cj

(column). The values (g, p) are ground truth (g) time and
time taken by the policy (p) to find the target in the next
camera. The values are averaged over all targets in the test
set of sub-dataset 3.

Camera C1 C2 C3 C4

C1 (57,71) (100,105) (0,0) (0,0)
C2 (77,88) (20,0) (282,288) (0,0)
C3 (0,0) (78,119) (5,40) (275,280)
C4 (0,0) (0,222) (51,98) (190,329)

In order to consider instances when the target is not visible
in any of the cameras, we introduce a dummy null camera
and denote it by C×. Given a target, let the ground truth se-
quence of cameras in which it appears be contained in the
vector g and sequence of cameras polled by the policy be
in vector p with the ith element indicated using a subscript.
The Accuracy (A), precision (P) and recall (R) are defined
as following for a single target

A =

∑
i(pi == gi)

Length(g)
(6)

P =

∑
i((pi == gi) ∧ (pi! = C×))∑

i(pi! = C×)
(7)

R =

∑
i((pi == gi ∧ gi! = C×)∑

i(gi! = C×)
(8)

The final value for each of these metrics is reported as
an average computed over all targets. Along with A,P,R,
we also report number of frames polled (F ) during an inter-
camera transition of the target. It is defined as

F =
∑
i

((gi == C×) ∧ (pi! = C×)) + (9)∑
i

((pi! = gi) ∧ (gi! = C×) ∧ (pi! = C×))

F is an important measure because with a large number
of frames polled, the chance of false alarms during a re-
identification query as well as the computational complexity
is substantially increased.

We also evaluate the overall performance of target track-
ing in a camera network, when our camera selection policy
is used for ICT. We use the standard Multi-Camera Track-
ing Accuracy (MCTA), which gives a single scalar value
for all components involved in multi-camera tracking, i.e.,
F1-score for detection, number of target handovers for sin-
gle camera tracking, and the number of handovers in inter-
camera tracking. The metric is defined as

MCTA =

(
2PTRT

PT +RT

)
︸ ︷︷ ︸

F1−score

(
1−

∑
t µ

s
t∑

t tp
s
t

)
︸ ︷︷ ︸
within−camera

(
1−

∑
t µ

c
t∑

t tp
c
t

)
︸ ︷︷ ︸
cross−camera

(10)
where PT is the precision, RT is recall for target IDs. The
number of target-ID mismatches at time t is given by µt and
tpt is the number of true positives in a single camera at time
t. The superscripts s and c denote the single camera tracking
(SCT) or cross-camera tracking (ICT) scenario. Readers are
requested to see (Ristani et al. 2016; Chen, Chen, and Huang
2014) for details about the MCTA metric.

Experiments
We design three experiments to evaluate our camera selec-
tion approach independently, as well as a part of a target
tracking framework. As in most tracking settings, we assume
the initial location of the target to be known as given by the
camera and a bounding box around the target.

Experiment-1: Evaluation of Camera Selection:
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Figure 4: The figure shows the transitions for 4 targets in the testing set of dataset-3. GT is the sequence of cameras in ground-
truth, Sel is the sequence of cameras selected/polled by the policy. Horizontal axis is the time. White color is the time when the
target is transitioning between cameras and colorbar depicts the camera numbers in the plot.

Table 4: Table is showing camera selection accuracy (A), precision (P) and recall (R) for the proposed method and baseline
approaches for NLPR dataset for ICT alone and for both SCT with ICT.

Set-1 Set-2 Set-3 Set-4
A P R A P R A P R A P R

Inter-camera Tracking (ICT)
Exhaustive 0.025 0.008 1.0 0.019 0.007 1.0 0.008 0.002 1.0 0.017 0.003 1.0
Neighbor 0.025 0.013 1.0 0.019 0.009 1.0 0.008 0.003 1.0 0.017 0.006 1.0
Gaussian 0.435 0.215 0.127 0.40 0.16 0.195 0.36 0.007 0.571 0.33 0.0078 0.168
Proposed 0.85 0.042 0.31 0.86 0.037 0.31 0.685 0.026 0.929 0.519 0.027 0.808

Single-camera tracking + Inter-camera Tracking
Exhaustive 0.72 0.24 1.0 0.65 0.22 1.0 0.42 0.10 1.0 0.56 0.11 1.0
Neighbor 0.72 0.36 1.0 0.65 0.32 1.0 0.42 0.14 1.0 0.56 0.18 1.0
Proposed 0.91 0.95 0.83 0.88 0.94 0.78 0.76 0.64 0.86 0.77 0.61 0.91

In this experiment, we initialized the state of a target with
its initial location and used the learned policy to poll cam-
eras at subsequent time steps. Based on the presence or ab-
sence of the target, the state vector is appropriately updated.
In this experiment, we use the ground truth location for
determining the presence of the target. We make this sim-
plifying choice in this experiment to eliminate the uncer-
tainty introduced due to the re-identification performance.
The policy continues polling of cameras until the target ex-
its the camera network or the sequence terminates. Met-
rics like accuracy, precision and recall encapsulate overall
performances and allow comparative analysis as shown in
Table 4, which reports the camera selection performance.
In addition to the proposed policy’s performance, we also
compare with exhaustive search and nearest neighbor search
as used in multiple related works discussed in the follow-
ing text. The Exhaustive approach is a brute-force approach
which polls each camera at all time steps until the target
is found in one of the cameras. The table shows that it
has 100% accuracy but poor precision. The Neighbor ap-
proach assumes that the camera network topology is known

and searches the target by polling only in the neighbor-
ing cameras. Approaches proposed in (Zhang et al. 2015;
Chen and Bhanu 2017) searches the target in the adjacent
cameras and hence process the same number of frames as
the neighbor search approach. Along with these two ap-
proaches, we also compare camera selection performance
with a method proposed in (Lee et al. 2018). The approach
proposed in (Lee et al. 2018) first estimates the distribution
of the camera transitions assuming the fact that the multi-
ple targets generally follow same paths and then samples a
transition time to reduce the number of frames to be pro-
cessed. They estimate a Gaussian distribution and hence we
named this approach as Gaussian. After the transition time,
they start searching the target in cameras using a camera
link model which will link different cameras having a path
for transition. We repeated their experiment by estimating a
Gaussian distribution from the train set and sampling a tran-
sition time for each person in the test set. The camera link
model is used as set of neighboring cameras. The metrics
computed in Table 4 are reported for two cases: For ICT, the
metrics are computed using equations (6, 7, and 8), but only

560



Figure 5: The figure shows the learned topology for set 4
(5 cameras) and 3 (4 cameras). A black arrow indicates the
correct prediction and red arrow indicate a false positive.

using the time instances when the target is transitioning from
one camera to the other. For SCT + ICT, the entire sequences
are used. As expected, we see that the proposed policy has
better precision than the other competing approaches. The
Gaussian method is excluded in case of SCT + ICT, as the
distribution is only defined for the ICT case.

While the A, P and R measures indicate the overall per-
formance of camera selection, a confusion matrix shows the
pairwise miss-classification in camera selection. Based on
the cameras being polled by our policy at various time steps,
we report a confusion matrix for DB-3 as shown in Table 2.

Figure 4 show the sequence of cameras polled by the pol-
icy as compared to what is seen in the ground truth. Horizon-
tal axis is time and vertical axis shows the camera schedules
in ground truth (GT ) and polled by policy (Sel). The dark
colors are camera schedules (mapped with colormap) and
white is the transition time. The figure reflects that the pol-
icy starts polling the camera early when the transition time
is large and skips few frames while selecting a correct cam-
era when target enters a new camera FOV. This is because of
varying speed of different target individuals.

Experiment-2: Evaluation of Inter-Camera Tracking:
In this experiment, we evaluate only inter-camera tracking

(ICT) of our proposed method to capture the performance
when the target is navigating from one camera FOV to an-
other. Unlike experiment-1, ICT includes ground truth se-
quence during SCT. For ICT, it is not only required to find
the next camera where the target is likely to move but also
the transition time the target will take before appearing in
the next camera. The transition time is critical because it
will increase the number of search operations until the tar-
get is found. In this experiment, the single-camera track-
ing is taken from ground-truth. In our approach, we use the
learned policy to select a camera at any given time using the
current state of the target and when the target is located in
a camera frame then ground truth results are used until it
disappears from the camera FOV either due to an occlusion
or a possible transition. Unlike (Lee et al. 2018), we do not
model the transition time explicitly. However, the policy im-
plicitly captures the transition time by selecting a camera at
all times. The policy selects action N + 1 when the target
is not visible in all the N cameras of the camera network
otherwise it selects an action from 1 to N . The sequence

of (N + 1)th action selection gives us the transition time
of the target. Using this experiment, we will show that the
learned policy can learn the camera network topology and
captures the transition time of the target and hence is able
to reduce the number of frames to be processed (i.e., num-
ber of re-identification calls) at any given time. Visually, it
can be seen in the figure 4. The length of white color in GT
is the actual transition time between any two cameras and in
the same time duration the length of white color in Sel gives
the length of transition time captured by the policy.

For the experiment, the state is initialized with the initial
position of the target. Whenever the target moves out of the
current camera FOV, the policy selects a camera (equiva-
lently, selects an action in reinforcement learning) where the
target is expected to appear. As discussed earlier, the pol-
icy selects (N + 1)th camera when the target is expected to
be absent in all camera FOVs. The selected camera frame
is then used by the presence block to find whether the tar-
get is present in the frame (in camera N + 1, the target
is always absent). As stated earlier, the presence block can
be implemented using re-identification, and we will simu-
late different kinds of errors in re-identification. The track-
ing performance is reported in terms of MCTA metric in ta-
ble 5. The related methods are taken from the dataset bench-
mark available at (Chen, Chen, and Huang 2014). These
approaches are for multi-camera multi-target tracking and
hence we have used our policy for multiple targets to make
it a multi-target tracking approach. For ICT, the tracking per-
formance is reflected only for the duration of transition till
the right camera is predicted/selected. We have simulated er-
rors in a typical re-identification pipeline from 0% (no error)
to 20% (high error). In the table, the set-1 and set-2 show ap-
prox. same values for all percentage of errors in Re-ID and
this is because the many of the target individuals are only in
the single camera view and making the average value for all
target high for all cases.

During training, we did not assume the camera network
topology, and the policy learns the links. The transition time
is recorded from the frame when the target disappears from
current camera FOV to the camera frame where it is found
present by the presence block. Table 3 show the time taken
in the ground truth and identified by the policy for different
camera transitions in dataset-3. The values in the table are
the number of frames during camera transitions as found in
ground truth and by the policy. Based on these transitions
captured by the policy in this experiment, we have made a
graph of the camera network. The predicted camera network
topology is shown in figure 5 for sub-dataset 4 (5 cameras)
and 3 (4 cameras). A black arrow in the figure shows the
right prediction by the policy; red arrow show a link is pre-
dicted by the policy but it does not exist in ground truth.
The figure shows that the policy learns most of the links
and hence the target’s current state helps in finding the next
camera. There are false positives and false negatives due to
scheduling queries of different target individuals. Camera
schedules of target 2 in Figure 4 shows that the transition
at time frame 3500 is missed and hence this has generated a
false positive in DB-3 topology.

One crucial aspect of target tracking is the number of
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Figure 6: Boxplot of number of frames polled (metric F, see equation 9) on two datasets of NLPR dataset for our proposed
policy and other baseline approaches.

Table 5: The table is showing average MCTA values for inter-camera tracking (ICT) and both SCT-ICT on the test set of
NLPR MCT dataset. The related approaches are multi-camera multi-target tracking approaches taken from the benchmark
dataset (Chen, Chen, and Huang 2014). The last 5 rows show the MCTA values for the proposed approach with simulated
re-identification errors from 0% to 20%.

Inter-camera tracking (ICT) Single-camera tracking + ICT
Approach Set-1 Set-2 Set-3 Set-4 Set-1 Set-2 Set-3 Set-4

(Y. Cai 2014) 0.9152 0.9132 0.5163 0.7152 0.8831 0.8397 0.2427 0.4357
(Chen, Chen, and Huang 2014) 0.7425 0.6544 0.7369 0.3945 0.7477 0.6561 0.2028 0.2650

(Chen et al. 2014) 0.6617 0.5907 0.7105 0.5703 0.6903 0.6238 0.0848 0.1830
(Chen, Chen, and Huang 2014) 0.3203 0.3456 0.1381 0.1562 0.8162 0.7730 0.1240 0.4637

(Lee et al. 2018) 0.9610 0.9264 0.7889 0.7578 - - - -
(W. Chen et al. 2017) 0.835 0.703 0.742 0.385 0.8525 0.7370 0.4724 0.3778

RL+ReID-0 0.8210 0.7498 0.9099 0.8993 0.8235 0.7503 0.9134 0.9118
RL+ReID-5 0.8188 0.7481 0.8766 0.8137 0.7778 0.7064 0.7949 0.7338

RL+ReID-10 0.8219 0.7511 0.8848 0.7140 0.7355 0.6635 0.6791 0.6769
RL+ReID-15 0.8171 0.7468 0.7862 0.7128 0.7004 0.6160 0.6229 0.5879
RL+ReID-20 0.8203 0.7519 0.7101 0.6625 0.6281 0.5323 0.5541 0.5288

frames polled (the number of re-identification calls) because
a large number of frames will incur a more considerable de-
lay in locating the target. For single camera tracking (SCT),
the target will be searched only in the same camera whereas,
for ICT, it will be searched across multiple cameras which
will increase the number of frames to be polled to find the
right camera where the target has appeared. The number of
re-identification calls or the number of frames polled (F) are
shown in figure 6. The proposed policy queries approx. 10
times less number of camera frames compared to other base-
line methods (explained earlier in experiment-1).

Experiment-3: Evaluation of Complete Pipeline: In this
experiment, we evaluate our proposed policy during ICT
along with single-camera tracking (SCT) for multi-camera
multi-target tracking. The experimental setup is same as
experiment-2 but camera sequence during SCT is taken from
policy as compared to the ground truth. Table 5 show the
comparison of our approach with other related methods for
this experiment. Unlike previous experiment, both SCT and
ICT performance is compared. The re-identification is sim-
ulated with error from 0% to 20%. The policy outperforms

many methods and for set-3 and set-4, it has best best per-
formance even at high error in re-identification.

Conclusion
We have proposed a method to identify the camera sched-
ule of a target’s motion in a network of cameras. For this,
we have learned a reinforcement learning based policy to
select the next camera where the target is likely to appear
at next time. ICT is very challenging and existing methods
has to poll a large number of frames to search the target af-
ter a transition. We used spatial and temporal information of
the target to learn a policy that selects the next camera. We
showed through various experiments that the proposed ap-
proach is also useful to capture the transition time required
by a target to move from one camera FOV to other camera.
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