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Abstract

Real-time ridesharing systems such as UberPool, Lyft Line,
GrabShare have become hugely popular as they reduce the
costs for customers, improve per trip revenue for drivers and
reduce traffic on the roads by grouping customers with similar
itineraries. The key challenge in these systems is to group the
right requests to travel in available vehicles in real-time, so
that the objective (e.g., requests served, revenue or delay) is
optimized. The most relevant existing work has focussed on
generating as many relevant feasible (with respect to avail-
able delay for customers) combinations of requests (referred
to as trips) as possible in real-time. Since the number of trips
increases exponentially with the increase in vehicle capacity
and number of requests, unfortunately, such an approach has
to employ ad hoc heuristics to identify relevant trips.
To that end, we propose an approach that generates many
zone (abstraction of individual locations) paths – where each
zone path can represent multiple trips (combinations of re-
quests) – and assigns available vehicles to these zone paths to
optimize the objective. The key advantage of our approach is
that these zone paths are generated using a combination of of-
fline and online methods, consequently allowing for the gen-
eration of many more relevant combinations in real-time than
competing approaches. We demonstrate that our approach
outperforms (with respect to both objective and runtime) the
current best approach for ridesharing on both real world and
synthetic datasets.

1 Introduction
Real-time taxi sharing platforms, such as UberPool, Lyft
Line and GrabShare, etc. and on demand shuttle services
such as Shotl, Beeline and GrabShuttle, etc. have become
hugely popular in recent years due to significant benefits
provided by them. These ridesharing and shuttle services re-
duce costs for the customer and improve per trip revenue
for drivers. In addition, they also help in reducing the traffic
congestion as they allow customers with similar itineraries
to share a vehicle. Other shared mobility services, such as
car sharing, courier services, scooter sharing, bikesharing,
etc. also have a similar underlying problem and the approach
(with minor extensions) presented in this paper can be used
for those problems.

Copyright © 2019, Association for the Advancement of Artificial
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The ridesharing problem (Alonso-Mora et al. 2017; Bei
and Zhang 2018) is related to the vehicle routing (Ritzinger,
Puchinger, and Hartl 2016) and multi-vehicle pickup and de-
livery problems (Parragh, Doerner, and Hartl 2008; Yang,
Jaillet, and Mahmassani 2004), where customer demand
should be picked up from their origin locations and dropped
at their destination locations while satisfying vehicle ca-
pacity and delay constraints. Earlier work on these prob-
lems has focussed on traditional integer programming ap-
proaches which are limited to small scale problems of 8 ve-
hicles and 96 requests (Ropke, Cordeau, and Laporte 2007;
Ropke and Cordeau 2009). It is also possible to model
the ridesharing problem as a Markov Decision Process
(MDP) (Puterman 2014) because the underlying problem is
a multi-step matching problem of demand and supply. But
as the number of states and actions are exponential in the
number of agents (vehicles) and the number of vehicles is in
the thousands, it is even difficult to specify the model.

Figure 1: Related Work

In recent times, many heuristic approaches (Ma, Zheng,
and Wolfson 2013; Agatz et al. 2011) have been proposed to
solve the real-time taxi ridesharing problem. Most existing
research can be categorized as either:
• Finding a greedy solution – that assigns one request at

a time to the best available vehicle – for high capacity
vehicles (shuttles, buses etc.) (Tong et al. 2018; Huang et
al. 2014; Ma, Zheng, and Wolfson 2013) or on

• Finding a batch solution – that assigns all active re-
quests together in a batch to the available vehicles – for
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Figure 2: (a) Representation of RTV graph generated by the model in (Alonso-Mora et al. 2017) for capacity 2. (b) Represen-
tation of RPV graph generated by ZAC approach.

low capacity vehicles (e.g., taxis) (Bei and Zhang 2018;
Dutta 2018; Zheng, Chen, and Ye 2018).

Related work is succinctly summarized in Figure 1. The
greedy solution is faster to compute but the quality of so-
lution obtained is typically poor. On the other hand, batch
solution takes significantly more time to compute but the
solution quality is significantly better than greedy solution.

Similar to Alonso et al. (Alonso-Mora et al. 2017), we fo-
cus on the most challenging category of obtaining a batch
solution for high capacity vehicles in real-time. The ap-
proach by Alonso et.al. (Alonso-Mora et al. 2017) is a gen-
eralization of the greedy approach typically employed by
taxi companies (Widdows et al. 2017; Tang et al. 2017;
Browns 2016) and is divided into two parts.
• The first part constructs a RTV (Request Trip Vehicle)

graph. A trip in an RTV graph corresponds to a combina-
tion of requests that is feasible (with respect to available
delay for customers). There is an edge between request
and trip if the request is a part of the trip and there is an
edge between trip and vehicle if the vehicle can serve all
the requests in that trip.

• From all allowable allocations of vehicles to trips, the sec-
ond part computes an optimal allocation of vehicles to
trips that minimizes delay or maximizes the number of
requests served.

This approach is limited in scalability as the set of possible
trips increases exponentially with the increase in the number
of requests and capacity of vehicles. To ensure scalability
and address the key challenge of identifying as many rel-
evant trips as possible in real-time, this approach employs
ad hoc heuristics (e.g., limiting time available and edges in
RTV graph).

We propose a new approach called ZAC (Zone pAth
Construction), that employs two crucial ideas to identify sig-
nificantly more relevant trips in real-time:
• Focus on zone paths instead of trips: A zone path is a

path that connects zones (a zone is an abstraction for mul-
tiple individual locations) and therefore it can group mul-
tiple trips that have ”nearby” or ”on the way” pickups and
drop-offfs. This focus on zone paths helps automatically
capture multiple relevant trips with one zone path.

• Offline-online computation of zone paths: Since, we fo-
cus on zone paths, we can generate partial zone paths of-

fline. This helps capture more number of relevant trips
online in real-time, where the partial paths are completed.

Instead of an RTV (Request Trip Vehicle) graph in Alonso
et al.’s (Alonso-Mora et al. 2017) approach, we construct an
RPV (Request Path Vehicle) graph, where we associate re-
quests and vehicles to zone paths. This is shown in Figure 2.
Once the RPV is constructed, we then employ a scalable
integer linear program to find the optimal assignment (e.g.,
maximize revenue, maximize the number of requests served
or minimize the delay) of vehicles and requests to paths.
We compare our approach against the Alonso et
al.’s (Alonso-Mora et al. 2017) approach, referred to
as TBF, on synthetic and two real world datasets and show
that our approach not only is very efficient (with respect to
runtime) but also serves more requests. On real datasets, as
shown in the experimental results, ZAC obtains upto 4%
gain over TBF. This is a significant gain, compared to the
0.5% gain achieved by a real taxi company (Xu et al. 2018).

There is also a recent increase in the popularity of on
demand shuttle services (Shotl 2018; Beeline 2016; Grab
2018). These shuttles have fixed pickup/drop-off points
which is a very small subset of complete road network of a
city. Therefore, we also perform experiments on a synthetic
dataset introduced by Bertsimas et al. (Bertsimas, Jaillet,
and Martin 2018), where the first mile and last mile trans-
portation requests are simulated. In these cases, ZAC ob-
tains a staggering 20% gain over TBF, further supporting
our claim that ZAC is suitable for real-time ridesharing with
higher capacities.

2 Rideshare Matching Problem (RMP)
Real-time ridesharing is a service provided by platforms
such as Uber, Lyft etc. for arranging shared rides for multi-
ple customers at a very short notice. Customers request for a
shared ride from a source to destination. The platform then
groups all those requests that can share a ride – based on
whether the delay1 of reaching the destination is less than a
given threshold for all requests sharing the ride. These ser-
vices are popular because customers are ready to accept a
delay in exchange for a reduced fare. However, after an ac-
ceptable threshold, delay cannot be compensated with mon-

1Time taken to reach the destination using the shared ride minus
the time taken using an individual ride
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etary benefits. Therefore, when making groups of customer
requests, platforms need to ensure that matching algorithms
find groupings which do not increase the delay of individual
customers beyond an acceptable threshold2.

Formally, we define RMP using the following tuple:

< G,D,V, C, τ, λ,∆ >

• G = (L, E) is a graph with the vertices as the set of loca-
tions. For e.g., as considered in previous works (Alonso-
Mora et al. 2017) the graph G is the road network with
the set L including all street intersections in the road net-
work of a city and E denotes the set of road segments.
Travel Time (T ) and shortest paths (Sp) between all loca-
tion pairs in set L is pre-computed and stored.

• D denotes the set of customer requests. Each element
j ∈ D is represented using the tuple: 〈oj , dj , aj〉, where
oj , dj ∈ L denote the origin and destination location and
aj denotes the arrival time of the request j.

• V denotes the set of vehicles. Each element i ∈ V is repre-
sented using the tuple: 〈νi, ωi, µi, qi〉. νi ∈ L denotes the
initial location of vehicle i, ωi denotes the time at which
vehicle first becomes available at νi, µi denotes the capac-
ity of vehicle i and qi denotes the set of customer requests
assigned to vehicle i. Each element j of qi is represented
using the tuple: 〈oj , dj , aj〉, where oj , dj , aj are as de-
scribed in the demand tuple above.

• C represents the objective (e.g. revenue, number of re-
quests served, etc.), with Ctij denoting the value obtained
on assigning request j to vehicle i at decision epoch t.

• τ denotes maximum allowed wait time for a request (in
seconds). The wait time is defined as the difference be-
tween the arrival time of a requests and the time at which
vehicle picks the customer from its origin.

• λ denotes maximum allowed travel delay for requests (in
seconds). The travel delay is the total delay experienced
by the customer to reach its destination location 3.

• ∆ denotes the decision epoch duration in seconds, i.e., the
algorithm is executed every ∆ seconds.
The goal in RMP is to assign the incoming customer

requests to the vehicles such that the capacity constraints,
maximum wait time and delay constraints are satisfied.

3 ZAC: A Zone pAth Construction
Approach for solving RMP

Given the importance of zone path to ZAC, we first define
and explain about zone and zone path. We then describe the
intuitive advantages of using zone paths and then we explain
the ZAC algorithm.

Definition 1 Zone: refers to an abstracted location ob-
tained by clustering locations in set L.

2Threshold values can be potentially learnt by surveying differ-
ent customers.

3If tdj denotes the time at which a request j is dropped at its
destination then the travel delay is given by tdj − (aj +T (oj , dj)).

In this work, we investigated Grid Based Clustering (GBC),
Hierarchical Agglomerative Clustering with Complete Link-
age (HAC MAX) and Hierarchical Agglomerative Cluster-
ing with Mean Linkage (HAC AVG) to cluster locations into
zones. We use these methods as they do not require prior
knowledge about the number of clusters and have been used
in earlier works on similar problems (Ma, Zheng, and Wolf-
son 2013; Hasan et al. 2018).

Definition 2 Zone path: refers to an ordered sequence of
nodes, where each node corresponds to either a location
from set L or a zone.

There are two key advantages to a zone path:
• Zone path represents multiple trips that have “nearby” or

“on the way” pickups and drop-offs; and
• Zone path can be generated at different levels of granular-

ity (e.g., individual locations, communities) depending on
the time available.

Due to these two advantages, zone paths assist in identify-
ing more relevant trips (combinations of requests) within a
given amount of runtime. We further enhance the ability to
identify more relevant trips within limited runtime, by gen-
erating zone paths partially offline and completing them in
real-time depending on the set of active requests.

We generate the zone path of time span τ offline and
complete the rest of the zone path online. This is because
requests can be picked up only in initial τ seconds 4. There-
fore, partial zone paths generated offline automatically
provide a pickup order for the active requests. As a result,
online, we only need to compute drop-off order while
ensuring that the delay constraints are not violated. This
is in contrast to Alonso et al.’s (Alonso-Mora et al. 2017)
approach, where both pickup and drop-off order along with
the delay feasibility have to be computed online.

Intuitively, the inherent nature of zone paths to capture
multiple relevant trips coupled with the extra time made
available online due to offline computation of partial zone
paths enables ZAC to consider significantly more relevant
trips in real-time.

Due to abstraction of locations into zones, the travel time
is approximately represented when considering zone paths.
This can result in longer wait times or longer estimate of
wait times than a path over locations in set L. Customers
prefer to have a shorter wait time pre-process (Dube-Rioux,
Schmitt, and Leclerc 1989; Maister and others 1984), i.e.,
before pick-up in this case. Therefore, it is essential to re-
duce this approximation in travel time computation during
pickup. We reduce this approximation by generating offline
partial paths at the level of locations. This is another benefit
of having an offline partial path.

ZAC is an offline-online approach for solving the RMP
every few seconds on active requests and available vehicles
by using offline generated partial paths. The key components
of the ZAC algorithm are as follows:

4τ is typically 300 and we experiment with values between 120-
420 seconds.
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• Offline: generation of all partial location paths of time
span, τ from every location.

• Online: generation of RPV graph by loading and process-
ing offline partial paths, completing the partial paths and
identifying edges in RPV graph.

• Online: finding optimal assignment of requests to paths
to vehicles by using an efficient integer (0/1) linear opti-
mization

Figure 3: Example Zone Based Path.

Example 1 Figure 3 provides an example of a zone path
generated using ZAC. There is a partial zone path (gener-
ated offline) over individual locations (i.e., A → . . . → F )
and the completion of that zone path (online) using larger
zones (black and red).

3.1 Offline: Partial Paths Generation
The main challenge with generating a partial path at the level
of individual locations – even for a time span of only max-
imum wait time, τ – is the time taken to generate all the
paths. Therefore, we compute these partial paths (of span τ
seconds) offline by generating all simple paths of duration τ
in the network G. The number of all possible paths grows ex-
ponentially with the increase in the value of τ and increase
in the number of locations. In case all possible paths can not
be generated due to memory constraints, we can employ a
data driven approach (based on historical data) to generate
paths which have high likelihood of grouping large number
of requests. These offline partial paths (Poff ) are stored by
indexing on the start location and start time (Poff [l, t]) 5.
The start time associated with the path indicates the time at
which the first node (location) in the path is visited. For a
clear explanation, two paths starting at the same location but
having different start times are considered different. This is
because vehicles can become available at the same location
but at different time. These offline partial paths are further
indexed by the location and time of each node present in the
path for quick online processing.

3.2 Online
We now describe the crucial online component of ZAC that
generates the RPV graph and finds the optimal match on the

5We discretize the time at the level of 10 seconds.

generated RPV graph. The pseudocode for the online com-
ponent ZAC-Online is provided in Algorithm 1. After load-
ing the offline computed partial paths, travel times and short-
est paths, at every decision epoch, ZAC-Online considers the
currently available batch of requests and current vehicle sta-
tus to find the optimal assignment in two steps: (1) Genera-
tion of the Request, Path and Vehicle (RPV) graph and (2)
Finding optimal match in RPV graph using a linear integer
optimization model.

Algorithm 1 ZAC-Online()
1: t = starttime (in seconds)
2: Poff =

⋃
l∈L,
t′<τ

Poff [l, t′] = LoadOfflinePartialPaths()

3: T =LoadTravelTimes(), Sp =LoadShortestPaths()
4: while t < endtime do
5: t1 = t− starttime
6: if (t1)%∆ == 0 then
7: D,V ←GetCurrentDemand-VehicleStatus(t)
8: P, Pv, Pr, b,N =

GenerateRPVGraph(t,Poff ,D,V, T ,Sp)
9: SolveOptimization(P, Pv, Pr, b,N )

10: t = t+ 1

We now describe the two steps of ZAC in detail.

Generation of the RPV graph As shown in Algorithm 2,
there are three key steps to RPV graph generation: (1) Online
processing of Offline Partial Paths; (2) Online Partial Zone
Path Completion; (3) Identifying edges in the RPV graph.

Algorithm 2 GenerateRPVGraph(t, Poff , D, V , T , Sp)

1: P ′
off ,R′ = ProcessOfflinePartialPaths(t, Poff , D, V ,
T , Sp)

2: P,R′′ = OnlineCompletion(t,P ′
off ,R′, T ,Sp)

3: P, Pv, Pr, b,N = IdentifyEdgesRPVGraph(t, P , D,
V ,R′′)

4: return P, Pv, Pr, b,N

Online Processing of Offline Partial Paths: The offline
generated partial paths are processed online based on
the current available demand and vehicle status (vehicle
location, currently assigned requests to vehicle) as shown
in Algorithm 3. Steps 1-2 ensure that we consider only
those paths which start at a location and time where atleast
one vehicle is present and these paths are processed in
parallel using multiple threads. The GetPathsFromIndex
function returns the set of offline partial paths which visit
the given location within given time interval and uses the
pre-computed offline indexes for quick online retrieval. Step
12 stores the set of destination locations of the currently
available requests grouped along the path (based on the
pickup). In addition to the destination location, we also
store the lower and upper bound on the time by which the
location should be visited. Similarly, in step 19, we store
the destination locations of the requests previously assigned
to vehicles. In, step 19, we consider only those paths which
can potentially satisfy all the previously assigned requests
for a vehicle. This is because a vehicle will be assigned to a
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path if and only if it can serve all the previously assigned
requests. In addition, a vehicle should deviate from its
current path only if it can be assigned to a new request,
therefore, we consider only those paths which can pick at
least one of the newly available request.

Algorithm 3 ProcessOfflinePartialPaths(t,Poff ,D,V ,
T ,Sp)

1: P ′
off = [],Ltv =

⋃
i∈V

(νi, ωi)

2: Create H threads. Each thread h processes Phoff =⋃
k′∈Lthv

Poff [k′], ,s.t., Ltav ∩ Ltbv = φ,∀a 6= b and ∪hLthv =

Ltv
3: for each thread h do
4: V ′ ⊂ V, s.t., ∀i′ ∈ V ′, (νi′ , ωi′) ∈ Lthv
5: for j ∈ D do
6: Ph,joff = GetPathsFromIndex(Phoff , oj , aj− t, aj− t+τ)

7: for each path k ∈ Ph,joff do
8: lbj = aj − t+ T (oj , dj), ubj = lbj + λ
9: ifR[k] contains dj then

10: R[k][dj ][1] = max(R[k][dj ][1], ubj)
11: else
12: R[k].add(dj , (lbj , ubj))
13: Rp[k].add(oj)
14: if lbj < τ and k visits dj then
15: Rp[k].add(dj)
16: else if ubj < τ and k does not visit dj then
17: R[k].remove(dj , (lbj , ubj))
18: for i ∈ V ′ do
19: R[k],Rp[k] =

GetPathsForVehicle(i, qi,R[k],Rp[k],Poff )
20: for each path k do
21: if |Rp[k]| > 0 then
22: Remove nodes not in Rp[k], updateRk using

T , Sp
23: P

′h
off .add(k)

24: for each thread h do
25: P ′

off .addAll(P
′h
off )

26: return P ′
off ,R

Steps 14 and 19 ensure that if the drop-off location of re-
quest can be visited in the partial path, then it is considered
in the processing. In the end, in steps 20-22, as an optimiza-
tion, we only keep those locations in the partial paths which
correspond to a pickup or drop-off location and update the
travel time and path between the locations using T and Sp.

The offline generated partial paths significantly improve
the scalability of completing the path online using exhaus-
tive search. This provides more time online for considering
more zone paths and hence more relevant trips.

Online Partial Zone Path Completion: The partial paths
generated offline are completed online using exhaustive
search starting at the end location of the partial path as
shown in the Algorithm 4. By online processing of offline
paths (refer Algorithm 3), we can identify the requests that
can be associated with each of the offline generated partial
paths (based on their pickup location). We use the destina-
tion locations of these requests to complete the remaining

Algorithm 4 OnlineCompletion(t,P ′
off ,R′, T ,Sp)

1: P = [],R = []
2: Create H threads.

Each thread h processes P
′h
off ⊂ P ′

off ,s.t., P
′h
off ∩ P

′h′
off =

φ,∀h 6= h′ and ∪hP
′h
off = P ′

off

3: for each thread h do
4: Phon = [],Rhon = []
5: for each path k do
6: z = getAppropriateZoneSize(R[k],M)
7: R′ = convert(R[k], z)
8: Phon,Rhon =

ExhaustiveSearch(end node(k),R′,Phon,Rhon)
9: for each thread h do

10: P.addAll(Phon)
11: R.addAll(Rhon)
12: return P,R

path online. As with each destination location, we also store
a lower and upper limit on the time at which it should be vis-
ited, we only explore those branches in the search tree where
these time limits are satisfied. The computational complex-
ity of online partial path completion is dependent on the
number of destination locations (size of R[k] in Algorithm
4) and can be significant , therefore, we use zones (and not
individual locations) in this step. As mentioned before, by
using zones, travel time is approximately represented which
can result in additional delay for requests. The additional
delay introduced is dependent on the size of the zones6 cho-
sen. Therefore, to consider a trade-off between computa-
tional complexity and the quality of solution, we propose
picking the zone sizes dynamically for each offline partial
path. In order to fix the amount of dynamism in zone size,
we use a parameter M that defines the number of different
zone sizes that can be used in completion of offline partial
paths. M = 1, implies static zone sizes, i.e., using zones of
a fixed size for online completion of all offline partial paths.
The zones of M different sizes are generated offline and in
the step 6, depending on the number of destination locations
and M available zone sizes, we decide the appropriate zone
size for the partial path k 7.

As the partial paths are independent of each other, to fur-
ther speed up the path generation process, we perform the
online path completion process in parallel by creating mul-
tiple threads as shown in the pseudocode provided in Al-
gorithm 4. Please note that the exhaustive search in step 8,
will return multiple completed zone paths corresponding to
a single partial path k.

For the objective of maximizing the number of requests
served, the paths which start at the same location at the same
time and serve a subset of requests served by another path
are redundant. This is because, we check for capacity con-
straints in the optimization formulation presented in the next

6The size of the zone is defined as the time taken to travel within
a zone. Zone size 0 indicates that locations in set L are used.

7In the experiments, we use M = 4 with zone sizes
0,60,120,300 and use the zone size which reduces the number of
locations to 12 (this provides the best trade-off between runtime
and solution quality and is determined based on experiments.
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section. So a single path serving r requests can be used to
represent all request combinations,

∑r
i=1

(
r
i

)
. Therefore, the

search tree in step 8 of Algorithm 4 can be pruned only to
search for non redundant paths. This reduces the size of set
P which in-turn reduces the complexity of optimization for-
mulation presented in section 3.2.

Figure 4: Representation of assignment of vehicle and re-
quest to a zone path

Identifying Edges in the RPV Graph: Once the zone paths
(P) are created using the offline-online method described
above, we construct the RPV (Request Path Vehicle) graph
by finding the set of requests and vehicles which can be as-
signed to each of the generated zone path. We use the in-
formation available from previous 2 steps about the requests
and vehicles which can be assigned to these zone paths and
process the paths in parallel using multiple threads to speed
up the computation. This step is essential as in Algorithm
3, when same destination location has different value for
the upper limit on time in step 10, we take the maximum
value. Therefore, in the path generated using Algorithm 4,
the delay constraint may be violated for some requests in
such cases.

In this step, we ensure that a request is assigned to a zone
path, if and only if, the path visits the pickup and drop-off
location of a request within the delay constraints. The bi-
nary constants b (defined in Table 1 and used in optimiza-
tion formulation presented next) are also populated in this
step. A vehicle i represented by the tuple (µi, νi, ωi, qi) can
be assigned to a zone path if the initial location of vehicle,
νi, is same as the starting location of the path, start time of
the path is same as the availability time of vehicle ωi and
currently assigned set of requests, qi, can be served using
the path. The vehicle capacity µi along with qi is used to
compute the number of free seats (N ) in the vehicle at each
zone/location.
Example 2 Figure 4 shows a graphical view of the same for
a single vehicle, request and path. The path is represented
using a sequence of locations/zones in the order in which
they will be visited. In Figure 4, we use blue arrows to denote
the incoming flow by vehicle i assignment and green num-
bers indicate the number of free seats at the location/zone 8

for vehicle i. The red arrows indicate outgoing flow by re-
quest assignment.

8Number of free seats is computed by taking µi and qi of the
vehicle into consideration. In figure, in the representation of qi, we
use * to indicate that customer is already present in the vehicle and
provide its drop-off location.

At each location, the optimization formulation presented
next, will ensure that the outgoing flow (the number of re-
quests assigned) is less than or equal to the incoming flow
(total number of free seats in the vehicles assigned to the
path), i.e., at each location/zone capacity constraints are sat-
isfied.

Finding Optimal match in RPV graph We now describe
the integer linear programming optimization formulation to
optimize the assignment of requests and vehicles to zone
paths. P denotes the set of zone paths generated in previ-
ous step. Pn

m is used to denote the nth location/zone in zone
path m. Let Prj ⊂ P denotes the set of paths which can
serve request j while satisfying delay constraints. Similarly
Pvi denotes the set of paths which can be assigned to vehicle
i based on its current location νi, availability time ωi and al-
ready assigned/picked-up requests qi. Binary constants bnjm
are set to 1 if the pickup location of request j is visited but
drop-off location/zone is not visited along path m by nth
location/zone. These are computed as part of generation of
RPV graph as shown in previous section. Table 1 describes
the notation used in the optimization formulation.

Variable Description
xjm Binary variable denoting if the request

j ∈ D is assigned to path m.
yim Binary variable denoting if the vehicle i is

assigned to the path m.
Pvi Pvi ⊂ P denotes the set of paths which can be

assigned to vehicle i based on its current status
νi, ωi and qi.

Prj Prj ⊂ P denotes the set of paths which can be
assigned to request j ∈ D.

bnjm Binary constant: 1 if ∃n′ : n > n′ Pn
′

m = oj
&& @n′′ : n′′ < n, n′′ > n′ Pn

′′
m == dj

N(i,m, n) Number of free seats in the vehicle i for path m
at nth location/zone.

Table 1: Notations

The objective of the optimization formulation described
in Table 2 is to maximize the number of served requests.
Constraints (2) and (3) ensure that each vehicle and each
request is assigned to at most one path. Constraint (4) en-
sure that for every path at every location/zone capacity con-
straints are satisfied. The capacity constraints can be vio-
lated only while picking up a new request, therefore, the con-
straint (4) is redundant for the locations/zones visited after τ
duration.

The formulation is run at every decision epoch, i.e., af-
ter every ∆ seconds. The solution of the optimization for-
mulation provides assignment of vehicles and requests to
paths. Using these assignments, we can perform the assign-
ment of requests to vehicles 9. Once a vehicle is assigned
to a set of requests at any decision epoch, the assignment is

9The paths assigned to vehicle are also updated to keep only
those locations which correspond to pickup or drop-off location of
assigned requests and update the travel time and path between the
locations using T and Sp.
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SolveOptimization(P, Pv, Pr, b,N ):

max
∑
j∈D

∑
m∈Prj

xjm (1)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D (2)∑
m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (3)∑
j∈D

xjm ∗ bnjm ≤
∑
i

yim ∗N(i,m, n) ::: ∀m∀n

(4)

Table 2: Optimization Formulation for ZAC

not changed but the path of vehicle can change at next deci-
sion epoch to accommodate additional requests. The current
set of requests assigned to a vehicle, qi, limits the number
of paths to which it can be assigned in subsequent decision
epochs. The number of free seats in vehicle i for path m at
location/zone n, N(i,m, n) is computed based on µi and qi
(as shown in Figure 4) and is 0 if m /∈ Pvi.

Similar to Alonso et al. (Alonso-Mora et al. 2017), we
perform a re-balancing of unassigned vehicles to high de-
mand areas at the end of optimization formulation.

4 Experimental Setup
The goal of the experiments is to evaluate the performance
of ZAC in comparison to TBF 10. We evaluate the algorithms
on following metrics: (1) Service Rate, i.e., percentage of
total available requests served. (2) Runtime to compute a
single step assignment. We experimented by taking demand
distribution from two real world and one synthetic dataset.

The first real world dataset is the publicly available New
York Yellow Taxi Dataset (NYYellowTaxi 2016), hence-
forth referred to as the NYDataset. The name of the other
real world dataset can not be revealed due to confidential-
ity agreements. It is referred to as Dataset1. We use the
street intersections as the set of locations L. To find out
the street intersections in real world dataset, we take the
street network of the city from openstreetmap using osmnx
with drive network type (Boeing 2017). From these we re-
move the network nodes which do not have any outgoing
edges, i.e., we take the largest strongly connected compo-
nent of the network. For NYDataset, as considered in ear-
lier works (Alonso-Mora et al. 2017), we only consider the
street network of Manhattan as 75% of the requests have
pickup and drop-off locations in Manhattan. Moreover, less
than 15% of the total requests have pickup and drop-off loca-

10The complexity of TBF increases with the increase in vehicle
capacity. It is not possible to run it upto optimality. Therefore, we
run it with the heuristics mentioned in the paper (0.2 second for
each vehicle and keeping 30 vehicles for each request (but keeping
all request edges)). We use the objective of maximizing the number
of requests served for both TBF and ZAC. The objective can be
changed to the objective of minimizing the delay or maximizing
the revenue for both algorithms.

tion in different boroughs of New York indicating that these
boroughs can be solved independently.

Dataset Locations Edges Avg No. of Avg
(|L|) (|E|) Requests Requests

per day per hour
(Peak)

NYDataset 4373 9540 300237 19820
Dataset1 21212 41424 399695 23735
Synthetic 192 640 173557 8578

Table 3: Details for different datasets

Both real world datasets contain data of past customer re-
quests for taxis at different time of the day and for different
days of the week. From these datasets, we take the following
fields: (1) Pickup and drop-off locations (latitude and longi-
tude coordinates) - These locations are mapped to the nearest
street intersection. (2) Pickup time - This time is converted
to appropriate decision epoch based on the value of ∆. The
travel time on each road segment of the street network is
taken as the daily mean travel time estimate computed using
the method proposed in (Santi et al. 2014).

To simulate the scenario for on demand shuttle ser-
vices (Shotl 2018; Beeline 2016; Grab 2018) having a small
set of pickup/drop-off points in a city, we also perform ex-
periments on a synthetic dataset introduced by Bertsimas et
al. (Bertsimas, Jaillet, and Martin 2018). The network (Fig-
ure 5) has one downtown area represented by the big square
in center and 8 suburbs. We create a train station at one node
of each suburb (marked by red circle) to simulate special
cases of first and last mile transportation. At each decision
epoch, requests are randomly generated by taking pickup
and drop-off location uniformly. In addition, every 180 sec-
onds (frequency of arrival of train at the train stations), we
generate first and last mile requests in each suburb (repre-
senting arrivals by train).

(a)

Figure 5: Street network for synthetic dataset. Train stations
are marked with red.

The number of nodes/locations, edges in the street net-
work of the city and the number of requests present in each
dataset are shown in the Table 3. We evaluate the approaches
for 1 hour on different days starting at different time of
the day and take the average value over 5 days. We exper-
imented with different values for each parameter as men-
tioned in Table 4 but due to space constraint, we show only
the representative results. All experiments are run on 24 core
- 2.4GHz Intel Xeon E5-2650 processor and 256GB RAM.
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Figure 6: Comparison of service rate, runtime and abstraction error with different clustering methods and zone sizes forM = 1,
number of vehicles = 1000, capacity = 10, τ =300, λ = 600 seconds
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Figure 7: Comparison of service rate, runtime and abstraction error with different values of M and zone sizes for NYDataset, number of
vehicles = 1000, capacity 10, τ = 300, λ = 600 seconds

Parameter Values considered in Experiments
∆ (in seconds) 10,30,60
τ (in seconds) 120,180,300,420
λ (in seconds) 240,600,900
|V| 1000,2000,3000,5000,8000,10000
µi(∀ i) 1,2,3,4,8,10
M 2,4,6
Clustering Method GBC, HAC MAX,HAC AVG
Time of the day 08:00AM,03:00PM,06:00PM,12:00AM

Table 4: Parameter values

The algorithms are implemented in Java and optimization
models are solved using CPLEX 12.6.

5 Experimental Results
In this section, we show the experimental results obtained on
two real world datasets and a synthetic dataset. We first per-
form the experiments to identify the right clustering method
and the value of M to be used for ZAC. Later, we show the
comparison of ZAC and TBF on the datasets.

5.1 Identification of Right Clustering Method
We first conduct experiments by using different clustering
methods, with M = 1, by varying the zone sizes. Zone size
is taken as the intra zone travel time (in seconds). Figure 6
shows the comparison of GBC, HAC MAX and HAC AVG
on NYDataset. We compare the service rate, runtime and ab-
straction error with different clustering methods and differ-
ent zone sizes. We measure abstraction error by computing
the percentage of requests having delay above λ and maxi-
mum delay obtained by any request which is above λ. We

can observe that with HAC MAX not only we can serve
more requests but the error due to abstraction is also min-
imum. We also observe that as the zone size decreases, the
number of requests served increases, error due to abstraction
decreases with a slight increase in runtime. Based on these
results, we use HAC MAX as the clustering method for our
next set of experiments.

5.2 Identification of Right Value of M
Our next set of experiments compare the service rate, run-
time and abstraction error obtained using different values of
M . Based on the observations made earlier, for M = 1, we
use HAC MAX with zone size 120. For M > 1, the cluster-
ing method used is HAC MAX and we run the experiments
with different values of M . We use the zone sizes as 0, 60,
120, 300, 480, 600. The zone size of 0 means that the ac-
tual locations in the street network are used. Zone size of 60
means that the intra zone travel time is 60 seconds and so
on. For M = 2, zone sizes used are 0 and 60, for M = 4
zone sizes used are 0, 60, 120 and 300 and for M = 6, zone
sizes used are 0, 60, 120, 300, 480, 600.

We show the comparison of service rate and runtime with
M = 1 (with zone size 120) and different values of M in
Figure 7. HAC MAX 120 is used to denote thatM = 1 with
zone size 120 is used. HAC MAX D < m > denotes that
value ofM used ism. From the Figure 7 we can observe that
we can serve more requests when M > 1, as compared to
using fix large size zones. The abstraction error also reduces
significantly by usingM > 1. As the value ofM is reduced,
quality of solution improves with the increase in runtime.
With M = 2 (for zone sizes 0 and 60) , the abstraction error
is almost 0 but runtime also increases. With M = 4, the
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Figure 8: Comparison of ZAC and TBF on NYDataset for τ=180 seconds, λ=600 seconds and ∆ = 60 seconds
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Figure 9: Comparison of of ZAC and TBF on Dataset1 for τ = 180 seconds, λ = 600 seconds and ∆= 60 seconds

abstraction error is less than 1%.
From these experiments on NYDataset, we obtain that by

clustering locations into zones using HAC MAX and using
M=4 (with zone sizes 0,60,120,300), we get the right trade-
off between computational complexity and solution quality.
Therefore, we use this configuration for ZAC to compare
with TBF.

5.3 Real world datasets
In this section, we compare the service rate and runtime of
TBF and ZAC by varying different parameters on two real
world datasets.
Effect of change in vehicle capacity (µ) and number of
vehicles (|V |): Figure 8 and Figure 9 show the service rate
and runtime comparison of TBF and ZAC for NYDataset
and Dataset1 respectively at 8am (Peak time) .
Here are the key observations when vehicle capacity is
changed for a fixed number of vehicles:
(1) Service rate obtained by ZAC is more than TBF for both
datasets. For capacity 4 with 1000 vehicles for NYDataset,
the service rate obtained by ZAC is 2.29% more than the
service rate obtained by TBF and for capacity 10 we obtain
a gain of 2.89%. On the other hand for Dataset1 for capac-
ity 4 with 5000 vehicles, the service rate obtained by ZAC
is upto 4% more than the service rate obtained by TBF. On
Dataset1, we do not observe the increase in service rate be-
yond capacity 4 due to large size of the network and longer
travel times which allows fewer requests to be paired. (2)
While both ZAC and TBF can compute a solution in less
than 20 seconds, the time taken by ZAC is much less than
TBF.
For the change in the number of vehicles, we make the fol-
lowing observations:
(1) On Dataset1, the difference in the service rate obtained
by ZAC and TBF increases as the number of vehicles in-
creases from 3000 to 5000. This is because, TBF limits the
number of vehicles considered for each request to 30, so the

number of requests missed due to this limit will be more
for higher number of vehicles. But on further increasing the
number of vehicles to 10000, the gap between ZAC and
TBF reduces. This is because, when more vehicles are avail-
able, it reduces the need of generating all combinations. On
NYDataset, the difference between service rate obtained by
ZAC and TBF is maximum for 1000 vehicles.
Effect of change in value of ∆: We compare the service rate
and runtime of algorithms for different values of ∆ (Figure
10). Here are the key observations: (1) Service rate increases
as the value of ∆ increases. This is because more requests
are available at each decision epoch which allows grouping
more requests together.(2) Difference between service rate
of ZAC and TBF decreases as ∆ increases. This is because
assignment of vehicles to requests at each decision epoch re-
stricts the future combinations for vehicle so it is more bene-
ficial to explore all combinations at each decision epoch. (3)
The time taken by TBF is much more than ZAC for larger
∆ values due to the presence of more number of requests at
each decision epoch.
Effect of time of the day: We compare the effect of time
of day on the performance of algorithms (Figure 11). Here
are the key observations: (1) The service rate of ZAC is
more than TBF in each time interval. (2) The difference be-
tween service rate of ZAC and TBF is more during non-peak
hours (3pm and 12am) as there are less requests available
at each decision epoch, so as opposed to peak time where
there are more possibility of grouping requests across deci-
sion epochs, at non-peak times it is advantageous to explore
more combinations at a single decision epoch.
Effect of change in values of τ and λ: We show the service
rate and runtime results for different values of τ and λ in
Figure 12. Irrespective of the delay constraints, service rate
obtained by ZAC is either more or same as TBF and the
runtime of ZAC remains less than TBF in all cases.

On real datasets, ZAC obtains up to 4% gain in ser-
vice rate over TBF across different parameter values. Typ-

536



10 30 6055

60

65

70
Se

rvi
ce

 Ra
te

Service Rate Capacity 4
TBF
ZAC

10 30 6065

70

75

Se
rvi

ce
 Ra

te

Service Rate Capacity 10
TBF
ZAC

10 30 600

5

10

Ru
nT

im
e(i

n s
ec

on
ds

)

RunTime Capacity 4
TBF
ZAC

10 30 600

5

10

Ru
nT

im
e(i

n s
ec

on
ds

)

RunTime Capacity 10
TBF
ZAC

Figure 10: Comparison of TBF and ZAC for NYDataset for 1000 vehicles and varying values of ∆, τ = 300, λ = 600 seconds
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Figure 11: Comparison of TBF and ZAC for NYDataset for 1000 vehicles and different time of the day. τ = 300, λ = 600
seconds

ically, even a 0.5% gain is considered significant on real taxi
datasets (as shown by a real car aggregation company (Xu et
al. 2018)), so 4% represents a significant gain.

5.4 Synthetic Dataset
The real world taxi datasets can not capture the scenarios
for on demand shuttle services (Shotl 2018; Beeline 2016;
Grab 2018) having a small set of pickup/drop-off points in
a city. These involve scenarios where many requests can be
combined at each decision epoch. We represent these sce-
narios by simulating the case of first and last mile transporta-
tion in the synthetic network (details provided in experimen-
tal setup), where there are multiple requests at each deci-
sion epoch with either identical pickup location and nearby
drop-off locations or identical drop-off locations and nearby
pickup locations resulting in higher possibility of having
large number of request combinations at a decision epoch.

The gain obtained by ZAC over TBF is even more sig-
nificant in these scenarios as TBF will not be exploring all
relevant combinations while ZAC can explore more com-
binations by using zone paths. We compare the service rate
obtained by TBF and ZAC with different number of vehicles
and different capacities and make following observations:
(1) We observe that with 500 vehicles and capacity 10, we
can obtain 20.8% gain in service rate. (2) With 1000 ve-
hicles, ZAC can serve 91% of the requests available while
TBF could serve only 75% requests. The gain reduces on in-
creasing the number of vehicles as in presence of sufficient
vehicles, we can serve the requests irrespective of current
assignments.

These results clearly demonstrate that ZAC is able to con-
sider significantly more trips than TBF.

6 Conclusion
In this paper, we presented a zone path based clustering ap-
proach which can efficiently perform ridesharing for higher

capacity vehicles. The experimental comparison on real
world and synthetic datasets show that our approach can out-
perform the current best approach (used even by taxi and car
aggregation companies like Grab and Lyft) in terms of both
runtime and solution quality. In future, we would be extend-
ing this work to consider future demand to further improve
the solution quality.
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Figure 12: NYDataset - 1000 vehicles, ∆=60 seconds.
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