
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Exact Methods for Extended Rotating Workforce Scheduling Problems
Lucas Kletzander, Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling
DBAI, TU Wien, Karlsplatz 13, 1040 Vienna, Austria

{lkletzan,musliu}@dbai.tuwien.ac.at

Johannes Gärtner, Thomas Krennwallner, Werner Schafhauser
XIMES GmbH, Hollandstraße 12/12, 1020 Vienna, Austria
{gaertner,krennwallner,schafhauser}@ximes.com

Abstract

In many professions daily demand for different shifts varies
during the week. The rotating workforce scheduling problem
deals with the creation of repeating schedules for such de-
mand and is therefore of high practical relevance. This paper
investigates solving this real-life problem with several new
practically relevant features. This includes early recognition
of certain infeasibility criteria, complex rest time constraints
regarding weekly rest time, and optimization goals to deal
with optimal assignments of free weekends. We introduce a
state-of-the-art constraint model and evaluate it with differ-
ent extensions. The evaluation shows that many real-life in-
stances can be solved to optimality using a constraint solver.
Our approach is under deployment in a state-of-the-art com-
mercial solver for rotating workforce scheduling.

Introduction
In many professions different shifts are required to cover
varying requirements including areas like health care, pro-
tection services, transportation, manufacturing or call cen-
ters. This problem may surface in many shapes, using dif-
ferent demands and constraints.

In several applications it can be beneficial to obtain a ro-
tating schedule where each employee rotates through the
same sequence of shifts and days off across several weeks,
however, at different offsets within the rotation. As the de-
sign of shift schedules highly influences the work-life bal-
ance of the employees, such problems are subject to a wide
range of constraints, dealing not only with the demand for
employees in different shifts, but also legal and organiza-
tional constraints that determine allowed shift assignments.

Due to its importance there has been ongoing research on
the rotating workforce scheduling (RWS) problem, and re-
sults have found their way into commercial software like the
Shift Plan Assistant (SPA) by XIMES GmbH. The contribu-
tions of this work are twofold. We introduce and solve a new
extended problem that includes several new additions based
on the experience from working with these problems in prac-
tice. Extensions include new constraints for fast detection of
infeasible instances, complex constraints to respect weekly
rest times, as well as soft constraints optimizing free week-
ends in the schedule, turning the satisfaction problem into

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an optimization problem. To solve the problem we provide
a new constraint model and implement it in the constraint
modelling language MiniZinc.

Both the core model and the extended models are then
evaluated on a standard set of benchmark instances based on
real-life examples using the constraint solver Chuffed and
compared to recent literature. The results show that the ex-
tended models greatly improve the handling of infeasible
instances and allow to incorporate complex rest time con-
straints and optimization goals providing optimal solutions
for the majority of the benchmark instances in short compu-
tational time. With our work we further improve the state-of-
the-art solver for rotating workforce scheduling and enable
this solver to be used in more complex real-life situations.

Related Work
Due to high practical relevance various versions of em-
ployee scheduling problems have been investigated for sev-
eral decades. For an overview of existing literature re-
fer to surveys like (Burke et al. 2004; Ernst et al. 2004;
Van den Bergh et al. 2013; De Bruecker et al. 2015).

The rotating workforce scheduling problem can be classi-
fied as a single-activity tour scheduling problem with non-
overlapping shifts and rotation constraints (Baker 1976;
Restrepo, Gendron, and Rousseau 2016) and is known to be
NP-complete (Chuin Lau 1996).

So far the problem has been addressed with a range of
different methods. Complete approaches include a network
flow formulation (Balakrishnan and Wong 1990), integer
linear programming (Laporte, Nobert, and Biron 1980), sev-
eral constraint programming formulations (Laporte 1999;
Musliu, Gärtner, and Slany 2002; Laporte and Pesant 2004;
Triska and Musliu 2011) and an approach with satisfiabil-
ity modulo theories (Erkinger and Musliu 2017). There is
also work on heuristic approaches (Musliu 2005; 2006), the
creation of rotating schedules by hand (Laporte 1999), and
using algebraic methods (Falcón et al. 2016).

The current state-of-the-art complete method for standard
RWS was introduced by (Musliu, Schutt, and Stuckey 2018).
It uses a solver independent formulation in the MiniZinc
constraint language, either with a direct representation or
using a regular automaton, and applies both the lazy clause
generation solver Chuffed and the MIP solver Gurobi. It is
the first complete method able to solve the standard bench-

519

mark set of 20 instances and introduces new benchmark in-
stances that we also use for comparison.

Existing work on RWS mostly deals with the standard
version of the problem, requiring any feasible solution, or
delegates the selection of preferred solutions to the user in
an interactive process (Musliu, Gärtner, and Slany 2002).
While standard RWS already has practical relevance, the ex-
tensions allow to deal with more complex issues and provide
solutions that are of higher value in real-life applications.

Problem Definition for Standard RWS
A rotating workforce schedule consists of the assignment
of shifts or days off to each day across several weeks for a
certain number of employees. Table 1 shows an example for
four employees (or four equal-sized groups of employees),
assigning the three shift types day shift (D), afternoon shift
(A), and night shift (N). Each employee starts their schedule
in a different row, moving from row i to row i mod n + 1
(where n is the number of employees) in the following week.

Empl. Mon Tue Wed Thu Fri Sat Sun
1 D D D D N N -
2 - - A A A A N
3 N N - - D D D
4 A A N N - - -

Table 1: Example schedule for 4 employees

Problem Specification
We start by defining the basic version of the rotating work-
force scheduling problem and recall definitions and notation
by (Musliu, Gärtner, and Slany 2002) and (Musliu, Schutt,
and Stuckey 2018). Extensions to the formulation are intro-
duced in the next section. We define:

• n: Number of employees.
• w: Length of the schedule, typically w = 7 as the de-

mands repeat in a weekly cycle. The total length of the
planning period is n ·w, as each employee rotates through
all n rows.

• A: Set of work shifts (activities), enumerated from 1 to m,
where m is the number of shifts. A day off is denoted by
a special activity O with numerical value 0 and we define
A+ = A ∪ {O}.

• R: Temporal requirements matrix, an m×w-matrix where
each element Ri,j corresponds to the number of employ-
ees that need to be assigned shift i ∈ A at day j. The
number of employees oj that need to be assigned a day
off on day j can be calculated by oj = n−

∑m
i=1 Ri,j .

• `w and uw: Minimal and maximal length of blocks of con-
secutive work shifts.

• `s and us: Minimal and maximal lengths of blocks of con-
secutive assignments of shift s given for each s ∈ A+.

• Forbidden sequences of shifts: Any sequences of shifts
(like N D, a night shift followed by a day shift) that are
not allowed in the schedule. This is typically required due

to legal or safety concerns. In practice in is usually suf-
ficient to forbid sequences of length 2 or sequences of
length 3 where the middle shift is a day off. These are also
the kind of restrictions used in the benchmark instances
for rotating workforce scheduling.
In our model, we use a set F2

s ⊆ A for each s ∈ A to
denote forbidden sequences of length 2, such that x ∈ F2

s
declares that shift x must not follow shift s.
Forbidden sequences of length 3 are given as a set F3 of
arrays of length 3 containing elements of A+. This defi-
nition could be extended to arbitrary lengths ` using cor-
responding sets F`.

The task is to construct a cyclic schedule S, represented
as an n×w-matrix, where each Si,j ∈ A+ denotes the shift
or day off that employee i is assigned during day j in the first
period of the cycle. The schedule for employee i through the
whole planning period consists of the cyclic sequence of all
rows of S starting with row i.

Instead of the matrix representation, the same schedule
can also be represented as an array T which is equal to the
schedule of the first employee, where Ti denotes the shift
assignment on day i with 1 ≤ i ≤ n · w. As the schedule
is cyclic, we could choose any day in the schedule to corre-
spond to the first element in T . We define the offset o with
0 ≤ o < w to denote the position of the first element in T
within the schedule, i.e., its day of the week.

Constraint Model
Our main model for standard RWS uses a direct representa-
tion of the constraints based on (Musliu, Schutt, and Stuckey
2018). Some aspects are modelled in a different way, most
notably the different way to deal with cyclicity using the off-
set o.

For any array or matrix the indices are modulo its dimen-
sion. Within this description, such modulo operations are
omitted for better readability. We define N = {1, . . . , n},
W = {1, . . . , w} and NW = {1, . . . , n · w}.

The following equations model the demand.

n−1∑
i=0

(Td+w·i = s) = Rs,d+o ∀d ∈W, s ∈ A (1)

n−1∑
i=0

(Td+w·i = O) = n−
m∑
i=1

Ri,d+o ∀d ∈W (2)

Equation (1) models the demand for each day d and each
shift type s. The left side counts occurrences of s on day d,
the right side uses the offset to access the correct column
of the demand matrix. Equation (2) is a redundant con-
straint that counts the number of day-off assignments for
each day d. This is not necessary to obtain a complete model
of the problem, however, constraint satisfaction solvers can
benefit from such redundant definitions.

The next equations introduce symmetry breaking con-
straints which are also used to make dealing with the cyclic

520

nature of the problem easier in following constraints.

T1 6= O (3)
Tn·w = O (4)

Equations (3) and (4) declare that the first element of T
has to hold a working shift, while the last element of T has
to hold a day off. In principle any day of the planning pe-
riod could be used as the first day as it is cyclic. Taking into
account that every reasonable rotating workforce scheduling
problem contains at least one working day and at least one
day off, we can set the first element of T to align with the
beginning of a working block.

This has two advantages. First, it eliminates several sym-
metric versions of the same solution, reducing cyclic occur-
rences of the same solution from n · w possible notations to
the number of working blocks within the solution. Second,
this guarantees that blocks of the same shift type or working
blocks (consecutive days without day-off assignments) can
never cycle across the end of T , eliminating the need to deal
with cyclicity in their definition.

Next, constraints for the lengths of shift blocks and work-
ing blocks are defined.

∀j ∈ {1, . . . , `s − 1} : Ti+j = s

∀s ∈ A+, i ∈ NW, Ti = s, Ti−1 6= s (5)

i+ us > n · w ∨ ∃j ∈ {`s, . . . , us} : Ti+j 6= s

∀s ∈ A+, i ∈ NW, Ti = s, Ti−1 6= s (6)

∀j ∈ {1, . . . , `w − 1} : Ti+j 6= O

∀i ∈ NW, Ti 6= O, Ti−1 = O (7)

i+ uw > n · w ∨ ∃j ∈ {`w, . . . , uw} : Ti+j = O

∀i ∈ NW, Ti 6= O, Ti−1 = O (8)

Equation (5) defines the minimum block length for all
shift types including day-off assignments. For all elements
Ti containing shift s, where the block starts at i (correspond-
ing to Ti−1 6= s), the next elements of T until the mini-
mum length must also contain shift s. Equation (6) defines
the maximum block length, stating that no later than us ele-
ments after the block start a different shift type has to occur.
Additionally, if i is too close to the end of T , the block will
end anyway, giving rise to the inequality part.

Equations (7) and (8) define the same constraints for
working blocks, using `w and uw as bounds and checking for
any working shift (6= O) instead of a specific shift type s.

Finally the forbidden sequences need to be modelled.

Ti 6= s ∨ Ti+1 6∈ F2
s ∀s ∈ A, i ∈ NW (9)

∃j ∈ {1, . . . , `} : Xj 6= Ti+j−1

∀X ∈ F`, i ∈ NW (10)

Equation (9) models sequences of length 2, denoted by the
set F2

s of shift types not allowed to follow shift type s. For-
bidden sequences of arbitrary length ` are modelled in (10),

where for each possible match of each forbidden sequence at
least one element must differ from the forbidden sequence.

Further symmetry breaking constraints might be applied
to determine the offset o if certain conditions hold.

o = min

{
d ∈W

∣∣∣∣ m∑
i=1

Ri,d >

m∑
i=1

Ri,d−1

}
− 1 (11)

(∀s ∈ A, d ∈W : Rs,d = Rs,d+1)→ o = 0 (12)

Equation (11) models the case that there is any day d
where the previous day d − 1 has a lower total demand for
shifts, then at least one new shift block has to start on day d,
making it possible to fix the offset. Note that (11) cannot be
applied if the condition does not hold for any d, however, in
that case (12) might be applied if the demand is constant for
each shift. In this case week days are completely symmetri-
cal, allowing to fix the offset to 0.

Problem Extensions
This section introduces several new extensions to the prob-
lem and provides the formal constraint model for them. The
extensions cover different aspects of the problem and its
solving process, dealing with the detection of infeasible in-
stances, the introduction of complex rest time constraints
and the optimization towards better scheduling of free week-
ends.

Detecting Infeasible Instances
The standard benchmark data set consists of 20 instances de-
rived from real life scenarios, all of them admitting feasible
solutions. However, the larger instance data set by (Musliu,
Schutt, and Stuckey 2018) also includes infeasible instances.
The results show that the solver Chuffed also used by us has
difficulties identifying those instances. However, in practice
it is important to provide fast feedback to the user when they
give infeasible settings so that they can correct their input.

Two particular infeasibility tests are described in this sec-
tion. As these are defined on input parameters only, several
infeasible instances can be detected already while compiling
the instance for the solver, while there is still one consistent
formulation of the problem.

Infeasible Weekly Fluctuation. Consider the following
demand for any shift s together with `s = 3 and us = 4.

Mon Tue Wed Thu Fri Sat Sun
5 5 5 5 5 2 2

Table 2: Infeasible demand for shift s

Table 2 defines a common pattern for weekly demand,
weekdays with more demand and a weekend with less de-
mand. The increase in demand from Sunday to Monday re-
quires at least three new work blocks of shift s to start on
Monday, similarly the decrease from Friday to Saturday re-
quires at least three work blocks of shift s to end on Fri-
day. Next, as the minimum block length is 3, all three blocks
starting on Monday and all three blocks ending on Friday
span across Wednesday. On the other hand, all six blocks

521

are distinct as the maximum block length is 4 and therefore
no block can cover Monday to Friday at once. Therefore, at
least six shifts of type s are required on Wednesday, which
is higher than the demand and results in infeasibility of the
instance.

More formally, this observation can be generalized as fol-
lows.

∀j ∈ {us + 1, . . . , 2 · `s − 1}, k ∈ {j − `s, . . . , `s − 1} :
Rs,i+k ≥ Rs,i −Rs,i−1 +Rs,i+j−1 −Rs,i+j

∀s ∈ A, i ∈W (13)

Equation (13) extends the example above for arbitrary
block lengths. j iterates through possible distances between
block starts and block ends (5 in the example), k iterates
through days of guaranteed overlap (only Wednesday in the
example). The check is performed for every shift type s and
every possible start day i.

Bounding the Number of Blocks. Another observation is
the fact that in a cyclic schedule the number of work blocks
and the number of free blocks is equal. On the other hand,
both for work blocks and free blocks a minimum and maxi-
mum number of blocks can be calculated from the required
number of shifts and the allowed block lengths.

loww =

⌈
r

uw

⌉
(14)

upw =

⌊
r

`w

⌋
(15)

lowO =

⌈
n · w − r

uO

⌉
(16)

upO =

⌊
n · w − r

`O

⌋
(17)

low = max{loww, lowO} (18)
up = min{upw, upO} (19)

Equations (14) and (15) define lower and upper bounds
for the number of work blocks, using the total demand for
work shifts r =

∑m
i=1

∑w
j=1 Ri,j . Equations (16) and (17)

define lower and upper bounds for the number of free blocks.
As the numbers of blocks need to be equal, (18) and (19)
define the common bounds. Instances with low > up can
immediately be classified as infeasible.

Using Block Bounds for Redundant Constraints. We
introduce two possibilities to use the block bounds for re-
dundant constraints. The first uses a global cardinality con-
straint that takes four arguments: an array to operate on, an
array of values to count in the first array, and lower and up-
per bounds for the corresponding values.

gcclu([(Ti 6= O ∧ Ti−1 = O)− (Ti = O ∧ Ti−1 6= O)

| i ∈ NW], [−1, 1], [low , low], [up, up]) (20)

Equation (20) defines an array holding −1 for the start of
off-blocks and 1 for the start of work blocks and sets lower
and upper limits for the counts of both of them. Note that this

constraint does not enforce both counts to be equal, how-
ever, it propagates lower and upper bounds well to restrict
the search space.

The second possibility uses counting arrays of length n·w
for the number of days off CO, the number of work days Cw,
and the number of blocks Cb.

CO
i =

{
0 if i = 1

CO
i−1 + (Ti = O) otherwise

(21)

Cw
i =

{
1 if i = 1

Cw
i−1 + (Ti 6= O) otherwise

(22)

Cb
i =

{
1 if i = 1

Cb
i−1 + (Ti−1 = O ∧ Ti 6= O) otherwise

(23)

(low − Cb
i) · `O ≤ n · w − r − CO

i ≤ (up − Cb
i) · uO

∀i ∈ NW, Cb
i < Cb

i+1 (24)

(low − Cb
i) · `w ≤ r − Cw

i ≤ (up − Cb
i) · uw

∀i ∈ NW, Cb
i < Cb

i+1 (25)

Equations (21), (22) and (23) count the number of days
off, work days and blocks (counting every time a work block
starts) up to each day i ∈ NW. These counts are then
used in (24) and (25) to bound the remaining number of off-
blocks and work blocks after every day i where a new work
block starts on the next day, using the bounds for the number
of blocks.

Weekly Rest Time
While forbidden sequences of shifts can be used to handle
minimum free time between consecutive shifts, work reg-
ulations often contain different, more complex regulations
for free time. Real-world scenarios often need to consider a
weekly rest time. Typically once a week a certain minimum
amount of time has to be free without interruption. Further, it
might be possible to have exceptions once every few weeks
where the weekly rest time might be shorter according to
certain rules.

Definition. The following requirements are defined to
consider weekly rest times.
• g: Time granularity, given as the number of time slots per

day, in this paper we use minute level granularity with
g = 1440.

• starts and ends: As weekly rest times consider the time
between shifts, start and end times need to be defined for
each shift. The times are given in minutes relative to the
day the shift is assigned to, e.g., a night shift s ending at
6:00 on the next day has ends = 1800.

• wr : Minimum weekly rest time (full weekly rest) in min-
utes, denoting the minimum time from the end of the last
shift before the weekly rest time to the beginning of the
next shift after the weekly rest time.

• A weekly rest needs to contain a full free day (0:00 to
24:00, i.e, no night shift from the previous day might over-
lap).

522

• A weekly rest is required in each calendar week (Monday
to Sunday). Each rest period counts for the week where
more than half of the rest is located, if the rest time is
exactly split between two weeks, it counts for the later
week.

• wr red : Reduced minimum weekly rest time in minutes.
• e: Number of exceptions per sp weeks.
• sp: Span in weeks for the number of exceptions and the

calculation of the average.
• Every week in the planning period needs to have a weekly

rest of length at least wr with the exception of e times in a
rolling horizon of sp weeks where the weekly rest can be
reduced to wr red , however, the average across sp weeks
always needs to be at least wr .

Constraint Model. To capture the rest time between shifts
an array Rest of length n · w is defined. For a day off we
define startO = g.

Rest i =

{
Rest i−1 + startTi if Ti−1 = O

g − endTi−1
+ startTi

otherwise
(26)

Equation (26) first considers the case Ti−1 = O where
Rest i−1 holds an intermediate rest time starting at the last
shift and ending at the end of day i− 1. In any case, startTi

holds the rest time from midnight until the start of the next
shift, while g−endTi−1 holds the rest time from the previous
shift until midnight.

Next, the individual requirements are modelled via a
boolean matrix D of dimension 6× n · w.

D1,i = (Rest i ≥ wr) (27)
D2,i = (Ti 6= O) (28)

D3,i = (Ti−1 = O) (29)
D4,i = (endTi−2 ≤ g) (30)

D5,i =

(
Rest i
2

< g · ((i+ o− 1) mod 7) + startTi

)
(31)

D6,i = (Rest i ≥ wr red) (32)

Each of (26) to (32) is evaluated for i ∈ NW. Equa-
tion (27) models the minimum weekly rest time, (32) the re-
duced minimum weekly rest time. (28) ensures that only the
end of a rest period is considered, not intermediate results
that are used in (26). Equations (29) and (30) make sure that
the full free day is respected. If less than half of the rest is
located in the previous week, D5,i is set to true in (31), the
right side of the inequality specifies the time from the start
of the current week to the start of the shift on day i.

The content of matrix D is also used to allow users to
understand why a certain rest period does or does not qualify
as a weekly rest period.

Now the position Pi of the weekly rest period for each
week i can be determined, using x = (i− 1) · w + j − o.

Pi = max{0; j | D1,x ∧D2,x ∧D3,x ∧D4,x

∧ (j ≤ w) = D5,x} ∀i ∈ N (33)

Equation (33) defines the position of the weekly rest pe-
riod for each week i by taking the latest rest period that qual-
ifies as a proper weekly rest using the elements from D and
is still assigned to the correct week. Here, (j ≤ w) = D5,x

makes sure that either the weekly rest still ends in the current
week and is also assigned to the current week or it ends in the
next week, but is not yet assigned to the week where it ends.
This also guarantees that no j with j > w+ uo

2 +1 needs to
be considered as the corresponding rest would be counted to-
wards the following week for sure. In case no proper weekly
rest is found, Pi is set to 0.

Exceptions. Now regular weekly rest for each week could
be enforced simply requiring Pi 6= 0 for all i, however, we
want to consider exceptions as follows.

sp−1∑
j=0

(Pi+j = 0) ≤ e ∀i ∈ N (34)

Equation (34) counts the number of weeks for each span
of length sp where no proper weekly rest can be found.

To check the reduced weekly rest the position P red
i for

each week i is defined, using x = (i− 1) · w + j − o.

P red
i =


Pi if Pi 6= 0

max{0; j | D6,x ∧D2,x

∧ (j ≤ w) = D5,x} otherwise

∀i ∈ N (35)

P red
i 6= 0 ∀i ∈ N (36)

Equation (35) is built similar to (33), but uses the reduced
rest time and does not enforce the full free day. If Pi already
holds a valid weekly rest, it is simply transferred to P red

i .
(36) ensures that the reduced minimum weekly rest time is
never violated.

Finally the average rest time needs to be checked for each
span of sp weeks.

sp−1∑
j=0

(Rest (i+j−1)·w+P red
i+j−o ≥ wr · sp) ∀i ∈ N (37)

Equation (37) calculates the sum of the weekly rest times
for the given span of weeks. Note that the index of P red

is modulo n and the index of Rest modulo n · w. Further
the index of Rest is not correct for P red

i+j = 0, but in this
case (36) is already violated anyway.

Optimizing Free Weekends
In the previous SPA implementation the user was presented
a choice in several stages of the algorithm, potentially se-
lecting from a large number of feasible solutions. However,
defining properties of beneficial solutions beforehand and
including these definitions in the model allows to transform
the satisfaction problem into an optimization problem and to
shift the selection process to the solver.

Shift work can be very disruptive to the social life of
employees, e.g., social interactions with friends and family

523

might be hard to schedule as free time is arranged in various
different patterns compared to employees with regular free
weekends.

Therefore, we chose to optimize the free time on week-
ends and provide different measurements of desirable week-
end schedules. Note that for each optimization goal we also
include bounds that allow the solver to immediately stop if
the bound can be reached. While there is no room to discuss
them here, they are used for the evaluation results.

Maximizing the Number of Free Weekends. Note that
our week length w could be any positive number, however,
in this context we use regular 7-day weeks where Saturday
and Sunday are considered weekend. Usually it is beneficial
to have a whole free weekend compared to a weekend with
only one free day. We first define the number of free week-
ends f as follows.

f =

n∑
i=1

(Tw·i−o−1 = O ∧ Tw·i−o = O) (38)

Equation (38) counts the number of weeks where both
Saturday and Sunday do not have a shift assigned.

However, having Saturday and Sunday free might not be
enough. Consider the case of having a night shift assigned
to the Friday before a free weekend, where most of Saturday
will probably be spent sleeping. Therefore, while not every
option can be described here in detail, in practice it is im-
portant to have a flexible definition and allow settings like
no Friday night shift before free weekends or even lexico-
graphic combinations of different priorities.

Optimizing the Distribution of Weekends. While the
number of free weekends is a good candidate for optimiza-
tion, it is not the only possible measure regarding weekend
schedules. Consider a schedule where two weekends are free
in a row, followed by six weeks without a free weekend.
Usually, a more regular distribution, e.g., a free weekend ev-
ery four weeks, would be considered better.

In the following we use a boolean array Free , denoting
for every week i whether the corresponding weekend is free.
This array could be built using any of the definitions of free
weekends above or a different one. We use free Saturday
and Sunday as defined in (38). Next an array Dist of length
n holding distances to the next free weekend is defined and
used to minimize the maximum distance.

Dist i =

{
min{j ∈ N | Freei+j} if Freei
0 otherwise

∀i ∈ N (39)

dm =

{
n+ 1 if max(Dist) = 0

max(Dist) otherwise
(40)

Equation (39) gathers the distance to the next free week-
end. The index of Free is modulo n, therefore in the worst
case the distance is n. In (40), the maximum distance dm is
defined, taking into account the case of no free weekends in
the whole schedule, which gets assigned the worst possible
value for dm.

A different possibility to deal with weekend distances, not
only optimizing the maximum distance, is presented in the
following, using a slightly modified distance definition D̂ist .

D̂ist i =

{
min{j ∈ N | Freei+j} − 1 if Freei
n otherwise

∀i ∈ N (41)

d =

n∑
i=1

D̂ist
2

i (42)

Equation (41) defines the distance to the next free week-
end such that maximum values are assigned to weekends
that are not free. Therefore, in (42) non-free weekends have
the worst penalty, leading to the optimization of the num-
ber of free weekends, but due to the penalization of higher
distances, at the same time the distribution of weekends is
optimized.

Evaluation
This section describes the implementation of the models and
the choice for the solver and evaluates the different models
on a set of benchmark instances that are based on real-life
problems. All experiments were carried out on an Intel Core
i7-7500 CPU with 2.7 GHz and 16 GB RAM.

Implementation and Solver
All models described above were implemented us-
ing the solver-independent modelling language MiniZinc
2.2.2 (Nethercote et al. 2007). It allows to directly specify
the constraint models and compiles them into a format called
FlatZinc, which is understood by a wide range of solvers.
This allows to evaluate the performance of different solvers
or to switch to a new solver whenever new technologies ad-
vance without having to recreate the model.

A preliminary version of our model was tested with a
range of different solvers. However, the lazy clause gener-
ation solver Chuffed (Chu et al. 2018) was clearly the best
choice among the tested solvers for the presented model.
Therefore, in the following evaluation Chuffed 0.10.3 is
used for all experiments.

To increase the efficiency of the search, both MiniZinc
and Chuffed offer settings to guide the search in the right
direction. MiniZinc uses search annotations that allow to
specify a custom search strategy. A wide range of differ-
ent strategies was tested with different preliminary models.
While details are omitted here, overall the best results where
achieved using the variable selection strategy smallest
and the value selection strategy indomain min on T , as-
signing the smallest possible values first.

Regarding Chuffed, a range of flags is available to influ-
ence the search. Again, a range of combinations was tried to
find the best settings. Free search turned out to be the most
important flag. This allows to switch on each restart between
the user-specified search from the MiniZinc annotation and
the activity-based search which is default for Chuffed. Fur-
ther the restart scale was set to 1000 and variable assignment
decisions are restricted to the main variables instead of ad-
ditional ones introduced during compilation.

524

Instances
For the experiments we focus on the standard 20 benchmark
instances1 to look at results in more detail. These instances
stem from real life applications and cover a range of 7 to 163
employees (or employee groups), which includes instances
considered very large in real settings, while most are in the
range from 15 to 50 employees.

For the first comparison regarding the core model we use
the extended 50 instances by (Musliu, Schutt, and Stuckey
2018) which also include infeasible instances that were gen-
erated in a similar range like the real life instances.

Core Model
First we evaluate the core model CORE using equations (1)
to (12) in comparison with the model EXT1 including ex-
tensions for infeasible instances and the global cardinality
constraint using (1) to (20) as well as the model EXT2 ad-
ditionally containing the block count constraints using (1)
to (25). The timeout is 3600 seconds, average values in sec-
onds are calculated across all instances including timeouts.

Table 3 shows the results of the comparison. Clearly both
EXT1 and EXT2 can provide a major reduction in runtime
(avg rt) compared to CORE with drops in the average run-
time of 49% and 54%. This is especially visible for the un-
satisfiable instances, where runtime drops by 67% for EXT1
and EXT2 can determine infeasibility for all 8 infeasible in-
stances in an average of 1.3 seconds.

Detailed comparison shows that 4 infeasible instances are
caught by (13). While no instances have low > up, sev-
eral have those two values equal or very close. Especially
for those instances EXT2 is often beneficial or even neces-
sary to prevent a timeout, while for some other instances the
additional constraints make EXT2 slower than EXT1, visi-
ble in the higher average regarding satisfiable instances. As
EXT1 and EXT2 are strong on different instances, a combi-
nation BEST, executing both models until the first one has
a result, can further provide a major improvement, allowing
to solve all 50 instances with an average of 25 seconds. This
is also a viable strategy in practice, as it can easily be done
using two threads.

In comparison to (Musliu, Schutt, and Stuckey 2018), we
can improve the number of instances solved by Chuffed
from 48 to 50 and both EXT1 and EXT2 provide signifi-
cantly better results for infeasible instances both regarding
the number of finished instances and the runtime.

Weekly Rest Time
In this section we compare the runtimes for the models with
weekly rest time constraints (26) to (37) added to the models
EXT1 and EXT2, resulting in EXT1 WR and EXT2 WR. We
use the following settings for weekly rest times.

• start = [6 · 60, 14 · 60, 22 · 60]
• end = [14 · 60, 22 · 60, 30 · 60]
• wr = 36 · 60; wr red = 24 · 60
• e = 1; sp = 4

1http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

The shift types represent typical early, late and night
shifts, the weekly rest time is set to 36 hours with the pos-
sible exception of 24 hours once within 4 weeks. Instances
with only 2 shift types do not have a night shift. All time
spans are in minutes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100

101

102

103

Instance

EXT1
EXT1 WR
EXT2

EXT2 WR

Figure 1: Runtime with weekly rest time constraints

Figure 1 shows the results of the comparison. The y-axis
depicts the runtime in seconds. With weekly rest constraints,
instance 2 was proven unsatisfiable and instances 15 and 19
ran into timeout while for the other 17 instances a valid re-
sult was found.

The results provide several insights. First, for almost all
instances it is still possible to find a valid solution with the
additional constraints, which is welcome. On the other hand,
infeasibility of instance 2 shows that we cannot assume to
always find such a solution, therefore, integrating these con-
straints is useful and important. Further, most schedules ac-
tually need the reduced weekly rest exceptions to get feasi-
ble, which supports the decision to also model these addi-
tional constraints. While 2 large instances that admit a so-
lution without weekly rest can now not be solved within 1
hour, for the majority of instances a solution can still be
found within a few seconds, justifying the usage in many
practical scenarios.

Optimizing Free Weekends
For the optimization, from a practical point of view, it is not
only important to reach a proven best result, but often also
to get results fast. This does not have to be a contradiction,
as many solvers, including Chuffed, allow the delivery of
intermediate solutions using the flag a. This allows users to
already consider intermediate plans, either accepting them at
some point or deciding to spend more runtime on potential
further improvements, while, given enough runtime, the best
solution is still guaranteed in the end. Therefore, this eval-
uation shows not only the best reached solutions, but also
the first reached solution and how the solver approaches the

525

Model #total avg nodes avg mem avg rt #sat avg rt #unsat avg rt
CORE 45 3.6m 64MB 445.9 40 271.1 5 1364.1
EXT1 47 1.8m 50MB 226.9 40 184.3 7 450.8
EXT2 49 251k 128MB 206.9 41 246.1 8 1.3
BEST 50 82k 52MB 25.5 42 30.2 8 0.8

Table 3: Evaluation results using infeasibility and block count constraints

best solution, using EXT1 as the base that is extended by the
optimization goals.

10−1 100 101 102 103 104

0

10

20

30

Runtime in seconds

f

Figure 2: Maximizing the number of free weekends f

Figure 2 shows the optimization of free weekends max-
imizing f . Each instance generates one trace where each
mark represents a new best solution, allowing to investigate
how solutions improve over time. The last mark indicates
proof of optimality or timeout. For 18 out of 20 instances a
solution is found within the timeout of 3600 seconds, for 14
instances the best solution is found and proven optimal. For
a few instances long horizontal lines indicate that no better
solution is found, but optimality is not proven. However, for
15 instances a first solution is found within 10 seconds, for
13 of those even optimality is proven within 10 seconds, in-
dicated by the cluster of traces in the lower left corner. This
shows viability and practical applicability of the approach
for the majority of problems.

Figure 3 shows the same graph for the objective to mini-
mize dm. Steep declines for many instances show that there
is more potential for improvement starting from the first re-
sults and that results can be improved very fast. Here, 16 in-
stances get a first solution within 10 seconds, 14 are solved
to proven optimality within 10 seconds.

For the distance measure d the results are similar, giving
15 first solutions within 10 seconds, for 9 instances the best
solution is proven in 10 seconds. However, this time 7 in-
stances run into the timeout before proving the optimum. As
the definition of the objective is more complex, there is more
room for small optimizations, resulting in many new best so-
lutions during the search. With the majority of instances hav-
ing early first solutions, the user can choose a good trade-off

10−1 100 101 102 103

5

10

Runtime in seconds

dm

Figure 3: Minimizing the maximum distance dm

between solution quality and runtime.

Conclusion
We have presented a new exact model for rotating work-
force scheduling that is implemented using the modelling
language MiniZinc and solved with the lazy clause genera-
tion solver Chuffed. First we added new model extensions
that showed to be very efficient in detecting infeasible in-
stances in very little computational time and used bounds for
the number of blocks to define redundant constraints. Then
we added new real-life requirements in the form of com-
plex weekly rest time constraints and are still able to solve
the majority of the benchmark instances in short computa-
tional time. We introduced new objectives to optimize the
scheduling of free weekends and showed that for the ma-
jority of instances the optimum can be found and proven in
short computational time. Moreover, the output of interme-
diate solutions allows the user to decide about the trade-off
between runtime and quality while running the solver.

In total this provides several improvements to the state-
of-the-art modelling of the problem that are currently being
integrated as a core component of the next iteration of the
Shift Plan Assistant software.

Further work could for example extend explanations for
failure further than simple cases like individual constraints
detecting infeasibility or the output of intermediate vari-
ables. To look into infeasibility in more detail, e.g., minimal
unsatisfiable subsets could be used to explain infeasibilities
in a more general way.

526

Acknowledgements
The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foundation
for Research, Technology and Development is gratefully ac-
knowledged.

References
Baker, K. R. 1976. Workforce allocation in cyclical schedul-
ing problems: A survey. Journal of the Operational Re-
search Society 27(1):155–167.
Balakrishnan, N., and Wong, R. T. 1990. A network model
for the rotating workforce scheduling problem. Networks
20(1):25–42.
Burke, E. K.; De Causmaecker, P.; Berghe, G. V.; and
Van Landeghem, H. 2004. The State of the Art of Nurse
Rostering. Journal of Scheduling 7(6):441–499.
Chu, G.; Stuckey, P. J.; Schutt, A.; Ehlers, T.; Gange, G.; and
Francis, K. 2018. Chuffed, a lazy clause generation solver.
https://github.com/chuffed/chuffed.
Chuin Lau, H. 1996. On the complexity of manpower shift
scheduling. Computers & operations research 23(1):93–
102.
De Bruecker, P.; Van den Bergh, J.; Beliën, J.; and Demeule-
meester, E. 2015. Workforce planning incorporating skills:
State of the art. European Journal of Operational Research
243(1):1–16.
Erkinger, C., and Musliu, N. 2017. Personnel scheduling
as satisfiability modulo theories. In International Joint Con-
ference on Artificial Intelligence – IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 614–621.
Ernst, A.; Jiang, H.; Krishnamoorthy, M.; and Sier, D. 2004.
Staff scheduling and rostering: A review of applications,
methods and models. European Journal of Operational Re-
search 153(1):3–27.
Falcón, R.; Barrena, E.; Canca, D.; and Laporte, G. 2016.
Counting and enumerating feasible rotating schedules by
means of Gröbner bases. Mathematics and Computers in
Simulation 125:139–151.
Laporte, G., and Pesant, G. 2004. A general multi-shift
scheduling system. Journal of the Operational Research So-
ciety 55(11):1208–1217.
Laporte, G.; Nobert, Y.; and Biron, J. 1980. Rotating sched-
ules. European Journal of Operational Research 4(1):24–
30.
Laporte, G. 1999. The art and science of designing rotat-
ing schedules. Journal of the Operational Research Society
50:1011–1017.
Musliu, N.; Gärtner, J.; and Slany, W. 2002. Efficient gen-
eration of rotating workforce schedules. Discrete Applied
Mathematics 118(1-2):85–98.
Musliu, N.; Schutt, A.; and Stuckey, P. J. 2018. Solver in-
dependent rotating workforce scheduling. In International
Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, 429–445.
Springer.

Musliu, N. 2005. Combination of local search strategies
for rotating workforce scheduling problem. In International
Joint Conference on Artificial Intelligence – IJCAI 2005, Ed-
inburgh, Scotland, UK, July 30 - August 5, 2005, 1529–1530.
Musliu, N. 2006. Heuristic methods for automatic rotating
workforce scheduling. International Journal of Computa-
tional Intelligence Research 2(4):309–326.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck,
G. J.; and Tack, G. 2007. MiniZinc: Towards a standard
CP modelling language. In Bessière, C., ed., Principles
and Practice of Constraint Programming - CP 2007, vol-
ume 4741 of Lecture Notes in Computer Science, 529–543.
Springer Berlin Heidelberg.
Restrepo, M. I.; Gendron, B.; and Rousseau, L.-M.
2016. Branch-and-price for personalized multiactivity tour
scheduling. INFORMS Journal on Computing 28(2):334–
350.
Triska, M., and Musliu, N. 2011. A constraint programming
application for rotating workforce scheduling. In Develop-
ing Concepts in Applied Intelligence, volume 363 of Studies
in Computational Intelligence. Springer Berlin / Heidelberg.
83–88.
Van den Bergh, J.; Beliën, J.; De Bruecker, P.; Demeule-
meester, E.; and De Boeck, L. 2013. Personnel schedul-
ing: A literature review. European Journal of Operational
Research 226(3):367–385.

527

