
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Personalized Medication and Activity Planning in PDDL+

Fares K. Alaboud, Andrew Coles
Department of Informatics, King’s College London, UK

email: firstname.lastname@kcl.ac.uk

Abstract

The emergence of planners capable of reasoning with con-
tinuous dynamics, as expressed in PDDL+, has increased the
range of problems that fall within the capabilities of PDDL
planners. One such problem is planning patients’ activities
and medication regimes, considering non-linear medication
pharmacokinetics. In this paper we explore the application of
contemporary PDDL+ planners to this problem. To address
their performance limitations, we present a linearize–validate
cycle; tasks are solved by iterative refinement of a linear ap-
proximation of the domain, solved by a linear planner, then
validated at each stage against the full non-linear semantics.
In doing this we allow this domain to fall within the capabili-
ties of current planners; and in our evaluation we use OPTIC
to demonstrate this.

1 Introduction
One of the largest problems in healthcare is the incorrect
consumption of medication. It is estimated that half of pa-
tients that are prescribed medication for chronic conditions
do not consume their medication correctly (The Academy
of Medical Sciences 2014). Most medication is prescribed
in a way that expects the patient to follow a standard rou-
tine. This is done in order to help the patient stay compliant,
and at the same time to consume the medication in a way
that does not endanger the patient – often, when patients are
given a regular dose, it is to keep things simple. For exam-
ple, paracetamol (acetaminophen) is usually given in doses
of 500mg per pill. The standard dose is two pills to be taken
every four to six hours, with a maximum consumption of
eight pills per day. Higher levels may give more pain relief,
but the rate at which it is metabolized gives a risk of toxicity
if these limits are exceed – the spacing between doses, and
daily limit, avoid excess exposure.

To address the challenge of effectively managing patients’
medication usage, one option is to produce personalized
medication plans. Personalized medicine is defined as pro-
viding “the right patient with the right drug at the right dose
at the right time” (Sadee and Dai 2005). Historically, the
scope for this has been limited to where it is essential (for in-
stance, personalized insulin regimes for diabetics) but is re-
cently becoming more viable through the uptake of technol-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ogy – at one extreme, with the use of a drug dosage printer
to ‘print’ drugs with specific doses (Hirshfield et al. 2014).

In this paper we detail the application of PDDL+ to plan-
ning a patient’s daily routine, in terms of the consump-
tion of pain relief medication, and activities for the day;
including considering how different activities require dif-
ferent levels of pain relief, for the patient’s comfort. The
metabolism of medication is non-linear (negative exponen-
tial), and many otherwise-effective PDDL planners do not
support non-linear domains. To address the limited perfor-
mance of PDDL+ planners on the non-linear model, we de-
tail a linearize–validate cycle, where a solution to an initial
linear approximation is found using the planner; then vali-
dated against the non-linear version of the domain using the
plan validator, VAL (Howey, Long, and Fox 2004). If the
solution does not validate, we use the output from VAL to
refine the approximation, and plan again; repeating this pro-
cess until a solution plan that is valid when considering the
full non-linear pharmacokinetics is found. We consider two
ways to refine the linearization, with a trade-off between lin-
earized model accuracy in theory, and planner performance
in practice. We evaluate our approach on problems from the
application, developed through working with a physician.

2 Planning Background
The logical basis for temporal planning, as modeled in
PDDL2.1 (Fox and Long 2003), is a collection of propo-
sitions P , and a vector of numeric variables v. These are
manipulated and referred to by actions. Actions can be ap-
plied if their preconditions are satisfied. A single condition
is either a single proposition p ∈ P , ¬p, or a numeric con-
straint over v. For our domain, it suffices to assume all such
constraints are linear, and hence can be represented in the
form:

w.v{>,≥, <,≤,=}c
(w is a vector of constants and c is a constant). We assume
a precondition is a conjunction of zero or more conditions.

Each durative action A has three sets of preconditions:
pre`A, pre↔A, preaA. These represent the conditions that
must hold at its start, throughout its execution (invariants),
and at the end, respectively. Instantaneous effects can occur
at the start or end of A: eff+`A (eff−`A) denote propositions
added (resp. deleted) at the start; effnum` A denotes any nu-

492



meric effects. Similarly, eff+aA, eff−a and effnuma record ef-
fects at the end. We assume all such effects are of the form:

v{+=, -=,=}w.v + c where v ∈ v

Semantically, the values of these instantaneous effects be-
come available small amount of time, ε, after they occur.
Durative actions additionally have a duration constraint: a
conjunction of numeric constraints applied to a special vari-
able ?duration, denoting its duration.

PDDL+ augments PDDL problems with processes and
events which, too, have preconditions, and effects. Events
are discrete, like instantaneous actions: if an event’s precon-
ditions are satisfied, it occurs; and the event’s effects happen.
Processes are closer to durative actions, with pre↔A corre-
sponding to the process’ precondition; then, while pre↔A is
satisfied, its effects occur. These are continuous in nature,
each of the form:

dv/dt=w.v + c

If all the weights in w are 0, then the effect is linear (constant
gradient) with rate of change c. Otherwise, the effect is non-
linear, varying according to the specified first-derivative.

The critical distinction between processes and events, and
actions, is that a process/event must occur as soon as its pre-
condition is satisfied, whereas actions may occur when their
preconditions are satisfied. The task of planning is thus to
find time-stamped actions, with associated durations, such
that all actions’ preconditions are satisfied; and when exe-
cuted, accounting for any processes and events that may be
triggered, a state is reached in which the goals are satisfied,
and no actions are executing.

PDDL+ planners can be characterized by the form of con-
tinuous change that they support. OPTIC (Benton, Coles,
and Coles 2012; Coles and Coles 2014) relies on a Mixed
Integer Programming (MIP) solver to reason with the inter-
action between time and numeric variables, so can handle
only linear problems. SMTPLAN (Cashmore et al. 2016)
encodes the planning task in SAT Modulo Theories, using
a theory that can handle polynomial continuous numeric
change – this allows it to support a subset of non-linear do-
mains but not, for instance, negative exponential continuous
numeric change. UPMURPHI (Penna et al. 2009), Dino (Pi-
otrowski et al. 2015) and ENHSP (Scala et al. 2016) have no
restrictions on the form that continuous numeric change can
take. UPMURPHI (Penna et al. 2009) and Dino (Piotrowski
et al. 2015) use a discretize–validate cycle, where time is dis-
cretized; the problem is solved using a model checker; and if
the solution returned is not valid (according to VAL (Howey,
Long, and Fox 2004)), the discretization is refined, and the
planning cycle continues. This provides motivation for the
concept of iterative refinement that we will use as the basis
for the approach we set out in this paper.

3 Application Description
Our target application is a patient-support system to help
plan their daily routine, considering their daily goals, and
managing their medication levels; specifically pain relief.
These two are inter-dependent: different activities require

different levels of pain relief, to ensure the patient’s com-
fort. In this section we will describe the mechanics of our
application domain, and how a model of it is built in PDDL+.

3.1 Pharmacokinetics
When consumed, medication is metabolized in the body
over time, leading to a decay of the active medication level.
While pharmacokinetics are complex, a reasonable model is
to assume negative-exponential (i.e. first-order) decay, with
drug-dependent half-lives depending on the rate at which the
active ingredients are metabolized (Geenen et al. 2013). In
this paper we will focus on pain relief management with
a single painkiller as an exemplar problem, so can discuss
drug levels in terms of desired levels of pain relief (pr ). Re-
turning to the example of paracetamol, the half life is up to
3 hours. That means if someone takes 1000mg of paraceta-
mol at 12.00pm, there will be 500mg of the drug left in three
hours (i.e. at 3.00pm). In another three hours (i.e. 6.00pm),
there will be 250mg of the drug left, and so on.

Since these pharmacokinetics are non-linear, our decay
processes is modeled as a PDDL process with negative ex-
ponential change upon the level of pain relief the patient ex-
periences. Below is the decay process, where k represents
the decay constant and pr is the pain-relief variable that is
continuously changing:

(:process decay
:parameters ()
:precondition
(> (pr) 0)

:effect
(decrease (pr) (* #t (* (pr) (k))))

)

The precondition in the above process means that when
pr is greater than zero, the process is active. For a given
medication, with half-life t1/2, the decay constant k is:

k =
ln 2

t1/2

3.2 Consuming Medication
There is one action that changes pr : consume. This is a
durative action with duration gap and the following precon-
ditions and effects:

• To start the action, a proposition safe-to-consume (true
initially) must be true; and a variable doses (0 initially)
must be less than m (the maximum number of doses).

• When started, safe-to-consume is deleted; doses is in-
creased by 1; and the pain relief level pr is increased by
the dose of medication.

• At the end of the action, safe-to-consume is added

(:durative-action consume
:parameters ()
:duration (= ?duration (gap))
:condition (and
(at start (safe-to-consume))
(over all (can-do-normal-actions))

493



)
:effect (and

(at start (increase (pr) (dose)))
(at start (increase (doses) 1))
(at start (not(safe-to-consume)))
(at end (safe-to-consume))

)
)

Effectively, safe-to-consume and doses perform the req-
uisite book-keeping to enforce the constraints on maxi-
mum medication consumption. safe-to-consume acts as a
semaphore: no two consume actions can overlap; and the
duration gap serves to ensure the minimum specified time
between doses is respected. doses is a simple counter, with
a capped limit in the problem goal, to ensure that if doses
are repeatedly taken, the maximum safe limit for the period
over which we are planning cannot be exceeded.

We note that it is somewhat of a simplification to assume
the increase in pain relief occurs instantly at the start of the
action. For our application, this is sufficient as the margin
of error when humans execute their plans would be greater
than the minor difference to timings that would occur if the
model was refined.

3.3 Activities
Alongside the consume action, we have several actions that
represent various activities that a patient would like to do
throughout the day; all of which would have some depen-
dence on the amount of pain relief the patient experiences.
These actions run independently of the consume action.

Activities include:
• eat – the act of consuming a meal. The goal of the prob-

lem sets how many times this needs to be achieved, ac-
cording to the patients needs.

• drive – driving between locations at which activities
need to be performed.

• exercise – that the patient gets some exercise. For our
purpose, we assume they need to be at a gym with suitable
facilities for their needs. The goal of the problem sets how
many times this needs to be achieved.
Each of these actions have a precondition set that requires

a minimum amount of pain-relief (or pr value). For exam-
ple, the exercise actions is modeled as follows, with the
fact free preventing two activities from occurring at the same
time:

(:durative-action exercise
:parameters (

?p - patient
?g - gym

)
:duration (= ?duration 90)
:condition (and

(over all (is-at ?p ?g))
(over all (>= (pr) 300))
(at start (free))

)
:effect (and

(at start (not (free)))
(at end (free))
(at end (went-to-gym))

)
)

3.4 Global constraint on pain relief
As a global constraint, we require that the patient has a min-
imum level of pain relief at all times – regardless of what
actions are executing. To capture this in PDDL+, we use an
event that deletes an auxilary fact if the pain relief thresh-
old falls below a prescribed minimum. As this fact cannot
be added by any other event or action in the domain, and is
required as a goal, it means any plan in which the event fires
is invalid; and hence the planner must respect the minimum
level of pain relief.

The event is written as follows:

(:event prfailure
:parameters ()
:precondition (and
(<= (pr) (min-pr))
(pr-check))

:effect (not (pr-check))
)

3.5 Planning for a given period
As described thus far, a valid plan would be one that per-
forms sufficient activities to satisfy the goals, then finishes.
As our application requires us to plan a patients activities
and medication for a given period, for instance a day, this is
not sufficient.

To insist that the plan must satisfy the global pain relief
constraint over a desired horizon finishing at time t, we use a
Timed Initial Literal (Hoffmann and Edelkamp 2005) (TIL)
that deletes can-do-normal-actions adds an auxiliary fact at
time t; with this fact then being a goal1. While the goal is
obviously trivial, this has the indirect effect of ensuring suf-
ficient consume actions are planned before time t, to avoid
the pain relief falling below the minimum acceptable level,
and hence the minimum-check event firing.

4 Initial Evaluation
Having defined the domain for our application, we consid-
ered which available planners could be used for it. Given it
has a negative-exponential process (decay) a limited range
were available: UPMurphi (Penna et al. 2009), DiNo (Pi-
otrowski et al. 2015) and ENHSP (Scala et al. 2016). As
ENHSP does not support durative actions, an equivalent for-
mulation had to be produced, where each durative action was
compiled into an instantaneous action to denote its start; a
process to mark the time since it started; and an event to
denote its end. For instance, consume became:

1Alternatively, with PDDL+ one could encode the TIL by using
a process that measures time elapsed, and an event that fires at the
appropriate time. We use a TIL model as it is a more intuitive
encoding, though we needed to use the PDDL+ alternative with
ENHSP in our evaluation.

494



(:action consume-start
:parameters ()
:precondition (and

(safe-to-consume)
(can-do-normal-actions)
(not (consume-running))

)
:effect (and

(increase (pr) (dose))
(increase (doses) 1)
(not (safe-to-consume))
(increase (executing-actions) 1)
(consume-running)
(assign (consume-tick) 0)

)
)

(:process consume-running-ticker
:parameters ()
:precondition (and
(consume-running)
(can-do-normal-actions))

:effect (increase (consume-tick)
(* #t 1))

)

(:event consume-end
:parameters ()
:precondition (and
(consume-running)
(= (consume-tick) (gap)))

:effect (and
(safe-to-consume)
(not (consume-running))
(decrease (executing-actions) 1)

)
)

Similarly, for timed initial literals, a process was used to
count the time that had elapsed; and an event created set to
fire at the appropriate time, whose effects were set to those
of the corresponding TIL.

Regardless of whether this reformulation was used, or the
PDDL model with durative actions described in Section 3,
neither UPMurphi, Dino, nor ENHSP were able to solve
any problem whose solution needed medication consump-
tion and activity actions. UPMurphi and Dino both returned
solutions, but the solutions were always invalid according
to the plan validator, VAL (Howey, Long, and Fox 2004).
ENHSP reported the problems to be unsolvable, even though
valid hand-written solutions were known to exist.

Scaling back the domain to contain just the consume ac-
tions – i.e. no activities were needed – gave problems that
were still not (validly) solvable by UPMurphi or Dino, but
were solvable by ENHSP. A problem where the goal was to
maintain a minimum pain relief level over a 21-hour period,
necessitating 4 consume actions, could be solved in 14.33
seconds. This suggests that ENHSP is in principle able to
handle the numeric dynamics of the domain, but has diffi-

culty scaling to plans that need more actions, with causal de-
pendencies. For consume, its preconditions are always satis-
fied once sufficient time has passed, so there is no need to ap-
ply other actions in order to support its application; whereas
if activities are included, where there are causal planning de-
cisions to be made to find a solution plan, it can no longer
find a solution.

5 Planning using a Linearize Þ Validate
Cycle

Due to the limited performance observed when using plan-
ners capable of reasoning natively with the negative expo-
nential decay process, we considered how we might be able
to use other PDDL+ planners – namely OPTIC and SMTPlan
– that can reason with a linear model. As the pharmacokinet-
ics are inherently non-linear, we devised a linearize–validate
cycle, the intuition being that if we iteratively refine a linear
approximation until a solution is found that validates – ac-
cording to the non-linear model – these other planners can
be used.

As a high-level overview, before going into the details,
our cycle proceeds as follows:

• An initial linearization of the PDDL+ model is made, fit-
ting a single line to each process, spanning between the
(specified) lower and upper bounds of the variables it af-
fects

• This linear model is solved by a planner; and the solution
found is validated by VAL

• If the resulting solution is valid, we return the solution.
• Otherwise, the diagnostic trace from VAL guides the re-

finement of the linearization – the incumbent process lin-
earizations are split into multiple pieces, whose bound-
aries are based on the values of variables as seen in the
diagnostic trace. The intuition here is that if the plan was
invalid, it must either have had an unsatisfied precondi-
tion, or an unanticipated event or process occurred. If
any of these happens, the diagnostic trace will report the
(calculated) values of variables at that time; so by using
these to refine the linearization, we aim for it to be accu-
rate around the values that appear to be relevant to plan
construction.

• The cycle continues, with the refined linear model passed
to the planner.

Assuming there is a solution plan to be found, then in the-
ory, the cycle is guaranteed to find one: the linearization is
a relaxation, as it over-estimates pain relief. After a num-
ber of iterations of finding successive plans that were invalid
according to the non-linear domain, leading to refinement of
the linearization, it will become closer and closer to the non-
linear domain. The planner used might struggle to scale to
a model with so many processes, but in theory at least, it is
complete.

5.1 Initial Linearization
As a starting point, we must devise an initial linear approx-
imation. For this, we refer to the given upper and lower

495



bounds – ubv and lbv on each variable v. Note these bounds
must be sensitive to the underlying mathematics: as the de-
cay process is negative-exponential, the lower bound cannot
be 0, as the time taken to go from ubv to 0 would be infinite.
For pain relief, the upper bound equates to the patient taking
all their medication at once. For each process, we calculate
rubv,lbv

, the average gradient on the change on v from ubv
to lbv as:

rubv,lbv
=

ubv − lbv

TGF (ubv,lbv)

...where TGF (ubv ,lbv ) is the time to go from ubv to lbv .
As the change by the decay process is a negative exponen-
tial, TGF (ubv ,lbv ) is:

TGF (ubv ,lbv ) =
−t1/2
ln 2

· ln(
lbv
ubv

)

...where t1/2 is the half life. In other cases, which are
outside the scope of this work, the figures could be derived
using the numeric analysis techniques provided as part of
VAL.

The initial approximation for the decay process is de-
picted in Figure 1. In the context of our application, the solid
line shows the negative-exponential change in pr , assuming
pr at time 0 is ub. The x-axis ranges from 0 until the time
at which pr would reach lb. The dotted line shows a linear
approximation spanning this time, with gradient rub,lb .

A substantial caveat is that the initial linear approxima-
tion substantially over-estimates pr . If there is a minimum
pr threshold (e.g. the dashed line in Figure 1), then the ac-
tual value of pr will fall below the threshold far sooner than
would be considered to be the case according to the linear
approximation. But, we have at least turned a negative expo-
nential into a simple linear process, with a constant (linear)
effect, that can be given to a suitable planner:

(:process decay_ub_lb
:parameters ()
:precondition
(and (>= (pr) lb) (<= (pr) ub))

:effect
(decrease (pr) (* #t r_ub_lb))

)

5.2 Refining the Linearization
Solving this linearized problem, then validating the plan
against the non-linear model using VAL (Howey, Long, and
Fox 2004), will identify where the inaccuracies inherent in
the linearization have caused issues. This arises in one of
two ways:

• A precondition on a continuously changing variable, or
a goal, was unsatisfied, and hence the solution plan is in-
valid. This would occur, for instance, if an activity needed
a minimum pain relief level, but this was not actually
available.

• An event or process occurred that did not occur when us-
ing the linear model; or vice versa. If we are lucky, the
solution plan is still valid regardless. But, the events and

0

500

1000

1500

2000

2500

3000
Non-Linear Decay Minimum Pain Relief

Initial Linear Approximation Example Linearization

pr = 515.509

Figure 1: Example Pain Relief Process & Linearizations

processes may change the propositions and the values of
variables in the solution state trajectory, making the solu-
tion plan invalid.

In both of these cases, VAL produces a diagnostic trace: a
time-stamped progression through the plan, including what
the value of each variable was at each happening in the plan,
as evaluated against the non-linear domain. With this in-
formation, we can refine the linearization: for a variable v,
instead of having a single-segment linear process spanning
the whole range ubv to lbv , we can have several processes
each covering one segment of this range.

Our motivation for refining the linearization to give the
right value of v at happenings is based on the observation
that the error in the linearization is acceptable, as long as it
gives the right value when it matters; i.e. when a precondi-
tion referring to v is checked, or when processes/events with
preconditions to v should occur/not occur. Hence, we en-
sure that on each iteration, the linearization is refined based
on the observed values of variables. This does not guarantee
that a solution to the non-linear model will be found on the
second iteration, but it does mean the model is iteratively re-
fined to exclude apparently attractive but actually infeasible
solutions.

We propose two approaches, the first of which is shown
in Algorithm 1. We begin by running the planner to find a
solution based on the initial approximation; i.e. starting with
the initial values of ubi and lbi for each variable vi. Hence,
at line 7, when the linearized model P ′ is generated, we have
only one pair of bounds in the set for each variable, and
for each non-linear process generate a single linear process
covering this range, with an effect with gradient rub,lb . A
solution Π to P ′ is then found.

As noted earlier, it is likely that when using the initial lin-
earization, Π will not be a solution to P . Hence, to refine the
linearization, we refer to the happenings in the diagnostic
trace from VAL, an example of which can be seen in Figure
2, and keep all calculated values of variables (in this case,
pr , marked in boldface); i.e. for the plan Π, what values
of pr were seen according to the model P . Each of these
is added to the set of bounds (line 11) for the variable con-

496



Algorithm 1: Linearize–Validate Cycle
Data: P , the non-linear planning domain and problem;

bounds = [{ub0, lb0}, .., {ubn, lbn}], the initial
bounds on variables v0..vn

Result: A solution plan, Π
1 Pbase ← P , with non-linear processes removed;
2 while true do
3 P ′ ← Pbase ;
4 foreach vi ∈ [v0..vn] do
5 sorted ←

[boundsi , sorted in descending order];
6 foreach process affecting vi do
7 add a linear process on vi to P ′ for each

successive pair in sorted ;

8 Π← solve P ′ using planner;
9 if Π is a valid solution to P then return Π ;

10 foreach vi = c ∈ VAL’s diagnostic trace for Π
using model P do

11 boundsi ← boundsi ∪ {c}

cerned. With these updated sets of bounds, the loop starts
again, generating an updated linear problem P ′, and once
again attempting to find a solution plan. For the updated
problem, the bounds are sorted, and processes generated for
each adjacent pair of bounds, each with its own rub,lb value.
This collection of processes uses a “stacked” model to gen-
erate a combined linear effect (Denenberg and Coles 2018;
2019).

5.3 Cherry Picking Bounds for the Linearization
When we initially look at the diagnostic trace from VAL,
we will initially find several values for each variable, and
following Algorithm 1 create an extensive well-refined lin-
earization with several segments for each process. However,
the more refined an approximation, the longer the planner
takes to find a solution.

We will demonstrate this with an example. Let us as-
sume that we have a domain with a value that experiences
non-linear continuous change. Our upper bound is 1000 and
our lower bound is 0. As described in Section 5.1, we de-
vise an initial linearization; solve it; validate the solution;
then find values from VAL’s diagnostic trace to create an
extensive linearization. If we found the values 460.512,
200 and 515.509 in the diagnostic trace, the refinement will
consists of segments that reflect the linear change between
each adjacent pair of of values (ub, 515.509, 460.512, 200,
lb). Switching between these processes carries overheads
for the planner; and even if the additional accuracy gained
by adding all the bounds was beyond what was needed to
find a solution, these overheads are still incurred.

Inspired by this, we present a second approach – Algo-
rithm 2 – that ‘cherry picks’ the values from VAL’s diagnos-
tic trace, aiming to add just a small subset of them to the
linearization, such that the solution obtained on the last iter-
ation is not a valid solution to this refined linearization. The
key detail is that at line 13, it loops through the power set

Checking next happening (time 240)
Updating (pr) (1300) by 515.905 assignment

Checking next happening (time 240)
Adding (safe-to-consume)

Checking next happening (time 486.079)
Updating (pr) (515.905) by 200 assignment

EVENT triggered at (time 486.079)
Triggered event (prfailure)
Deleting (pr-check)

Checking next happening (time 544.824)
Updating (pr) (200) by 159.509 assignment

...

Checking next happening (time 784.824)
Updating (pr) (1159.51) by 460.152 assignment

Figure 2: Example Diagnostic Trace from VAL

of all additional bounds values that were seen in the last di-
agnostic trace. Importantly, these are sorted into ascending
size order, according to set cardinality, thereby trying to find
a small set of additional bounds that is sufficient to reject the
previous candidate solution plan. As soon as such a set of
bounds is found, these are kept as the bounds for the next
iteration (line 23) and the outer loop starts again, calling the
planner using a linearization based on these updated bounds.
As an example, Figure 1 shows a linearization derived from
a cherry-picked bound of 515.509, added to the bounds set
alongside the initial upper and lower bound.

6 Evaluation
Having defined our linearize–validate cycle, we are now able
to evaluate its efficacy using as a kernel PDDL+ planners
capable of reasoning with linear processes: OPTIC (Coles,
Coles, and Benton 2012) and SMTPlan (Cashmore et al.
2016). Of these, only OPTIC could solve any problems –
SMTPlan could not – so we will use this in our evaluation.

6.1 Consume-only problems
We begin with consume-only problems, i.e. there are no ac-
tivities to be planned, and the task is to maintain a minimum
pain relief level across the day, over some specified horizon
(denoted by a Timed Initial Literal). These have less propo-
sitional causal reasoning, but can be solved by ENHSP (as
noted in Section 4).

We first evaluate the scalability of the linearize–validate
cycle when using the extensive linearization, i.e. no cherry
picking, described in Section 5.3. The results of this can be
seen in Table 1. The planning horizons tested started at 540
minutes (i.e. 9 hours), and increased by 60 minutes each
time; extending the horizon necessitates consuming more
doses of medication. ‘total’ gives the total planning time;
and ‘tinitial’ and ‘trefined’ the planning time for the first and

497



Algorithm 2: Linearize–Validate Cycle with Cherry
Picking

Data: P , the non-linear planning domain and problem;
bounds = [{ub0, lb0}, .., {ubn, lbn}],
sublists = [[]], the initial bounds on variables
v0..vn

Result: A solution plan, Π
1 Pbase ← P , with non-linear processes removed;
2 while true do
3 P ′ ← Pbase ;
4 foreach vi ∈ [v0..vn] do
5 sorted ←

[boundsi , sorted in descending order];
6 foreach process affecting vi do
7 add a linear process on vi to P ′ for each

successive pair in sorted ;

8 Π← solve P ′ using planner;
9 if Π is a valid solution to P then return Π ;

10 newbounds ← ∅;
11 foreach vi = c ∈ VAL’s diagnostic trace for Π

using model P do
12 if c 6∈ boundsi then

newbounds ← newbounds ∪ {〈vi, c〉} ;
13 foreach nb ∈ P(newbounds) in increasing size

order do
14 bounds ′ ← bounds;
15 foreach 〈vi, c〉 ∈ nb do
16 bounds ′i ← bounds ′i ∪ {c};
17 P ′ ← Pbase ;
18 foreach vi ∈ [v0..vn] do
19 sorted ′ ←

[bounds ′i , sorted in descending order];
20 foreach process affecting vi do
21 add a linear process on vi to P ′ for each

successive pair in sorted ′;

22 if Π is not a valid solution to P ′ then
23 bounds ← bounds ′;
24 break;

second iteration respectively. Where the solution found by
the initial approximation was incidentally a valid solution to
the non-linear model, ‘trefined’ figures are not given. No
more than two iterations were needed on any problem.

As a headline observation, the planning time here is
strongly correlated with the number of doses to be taken
– this is shown more clearly in Figure 3, where the plan-
ning time (left Y-axis) tracks the number of doses needed
(right Y-axis). This happens due to the planner needing to
switch the linear process segments on when medication is
consumed; and then off, one by one, as the pain relief level
falls; until the next dose is taken and they are switched on
again. Although not part of the explicit solution returned by
the planner, these process switches are part of the planner’s
search space, increasing the size of the search space. On the

1

20

400

8000

0

1

2

3

4

5

780 840 900 960 1020 1080 1140 1200 1260

Doses Planning Time (s)
Duration

Figure 3: Comparison Between Doses Needed and Planning
Time (in seconds), when using the Extensive Linearization

harder problems in particular, the time taken is much longer
than would be reasonable in practice.

We next evaluate our ‘Cherry Picking’ algorithm, de-
scribed in Section 5.3, again using consume-only problems.
The results of this, compared to the Extensive refinement
(keeping all bounds) can be seen in Table 2. As can be seen,
cherry picking bounds leads to a dramatic reduction in plan-
ning time compared with the Extensive refinement. This is
due to the Cherry Picked refinement having fewer bounds
– as can be seen on the largest problem, even a modest re-
duction in the size of the bounds set (from 5 to 4) leads to
a dramatic reduction in overall planning time. As an aside,
we note this was also able to out-perform starting with a
hand-coded ‘best guess’ initial set of bounds, as the right
bounds needed for a good linearization varies from problem-
to-problem – the Cherry Picking approach provides an effi-
cient way of determining where these should be.

As ENHSP is able to solve consume-only problems, as
a final test here we can compare OPTIC with the cherry-
picking wrapper, with ENHSP. The results for this can be
seen in Table 3. The time taken to find plans shows that
our approach is competitive with ENHSP on consume-only
problems, with neither planner dominating the other.

6.2 Problems with Activities
Having shown our linearize–validate cycle, with OPTIC, is
competitive on consume-only problems, we turn our atten-
tion to more interesting problems that require both activity
planning (as per Section 3.3), and medication consumption
planning – i.e. the problems that could not be solved at
all with existing planners in Section 4. We use only the
‘Cherry Picking’ algorithm in these tests, as using the ex-
tensive linearization (keeping all bounds) could not solve a
single problem.

As there is nothing to which we can compare our per-
formance, we perform a sensitivity analysis on our perfor-
mance. As a baseline configuration:
• The patient needs to have at least one meal;
• The patient needs to exercise;
• There are only two locations on the map.

498



Planning Horizon (seconds)
540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260

tinitial 0.05 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.06 0.06 0.06 0.09 0.09
trefined 0.71 - - - 11.72 164.19 162.99 161.29 160.09 110.05 111.2 654.77 649.86
total 0.76 0.03 0.03 0.04 11.75 164.23 163.04 161.32 160.15 110.11 111.26 654.83 649.95
doses 2 2 2 2 2 3 3 3 3 3 3 4 4

Table 1: Planning times (seconds) when using the Extensive Linearization, increasing Plan Horizon

Horizon Extensive Cherrypick

540 Total Bounds 2 2
Planning Time 0.76s 0.76s

900 Total Bounds 6 3
Planning Time 163.04s 0.21s

1260 Total Bounds 5 4
Planning Time 649.95s 16.48s

Table 2: Performance of the Extensive and Cherry Picked
Linearizations on Consume-Only Problems

Horizon OPTIC ENHSP
540 Planning Time (s) 0.76 5.42
900 Planning Time (s) 0.21 9.25
1260 Planning Time (s) 16.48 14.33

Table 3: Performance Comparison on Consume-Only Prob-
lems: Cherry-Picked Linearized Domain with OPTIC vs
Non-linear Domain with ENHSP

Varying these parameters within ranges requested by a
physician, we considered planning for one or two meals; and
considering the number of locations a patient might need to
visit in the day, we increased the number of locations from
two to four.

The results of this scalability analysis can be seen in Ta-
ble 4. As a summary observations: we can solve within
no more than 30 seconds problems that were unsolvable by
prior PDDL+ planners; over a range of parameter values that
are flexible enough to meet the needs of patients.

To make some more scientific observations, first, com-
paring the performance in the Baseline problem, with the
consume-only performance from Table 3, it can be seen that
adding activities does not dramatically affect the time taken
to solve the problems. Looking at OPTIC’s explored search
space, its heuristic was effective for the propositional causal
reasoning needed to plan these activities (as one would see
in PDDL2.1); but was relatively less effective for resolving
the PDDL+ constraints. Hence, adding activities had mini-
mal impact on planning time, compared with consume-only
problems.

Observing the effect of changing the number of meals,
planning for two meals is slightly quicker than planning for
one meal. This is due to a quirk of search. Because ‘eat’
actions have preconditions on pain relief, this strengthens
the planner’s causal reasoning that medication consumption
is needed. In the two-meal case, this is sufficient to allow
the heuristic to include a consume action in the relaxed plan.
For a single meal, this is not the case, so the heuristic is less
informative, increasing planning time.

Varying the number of map locations varies planning
time, due to the increased planning branching factor. The

Horizon Results # Meals # Map locations Baseline
1 2 2 3 4

600 # VAL Calls 3 4 3 3 3 3
Planning Time 9.48 8.38 9.48 10.02 10.60 9.48

840 # VAL Calls 3 4 3 3 3 3
Planning Time 16.07 8.25 16.07 16.89 18.96 16.07

1080 # VAL Calls 3 4 3 3 3 3
Planning Time 16.36 12.57 16.36 20.26 26.35 16.36

Table 4: Sensitivity analysis of planning time, varying prob-
lem parameters and planning horizon. Baseline has 1 meal
and 1 gym location. Planning times are in seconds.

effect of this increases as the planning horizon goes up, as
there is a longer period of time over which redundant drive
actions can be planned. Finally, we note that Table 4 shows
the number of VAL calls made as part of the cherry-picking
process. In practice, very few calls were needed to identify
an additional bound that made the previous solution invalid
– all problems were solved with just two iterations, and a
handful of VAL calls that allowed just a single bound to
be cherry-picked. Although not observed in our application
problems, in theory, if a pathological case was generated –
generating a large set of candidate bounds, so that looping
over the power set was prohibitively expensive – a fall-back
option would be to keep all bounds and use a linear-time
algorithm to consider their removal one-by-one, keeping a
bound if its removal makes the plan found using the previ-
ous linearization be a valid solution to the new linearization.
In any case, obtaining a large number of candidate bounds
would require a large number of happenings, well beyond
the scale of prior state-of-the-art work in the area.

7 Discussion and Future Work
As discussed in the Evaluation, our linearize–validate cycle,
with OPTIC as its kernel, is able to solve realistic problems
generated for our application, following the advice of the
physician with whom we are working.

Having made a contribution to the case of managing a
single medication, for future work we will progress to look
at polypharmacy. As almost a quarter of the UK population
are on at least three prescriptions (Scholes, Faulding, and
Mindell 2014), this is a substantial area of interest.

In the case of painkillers, these are often complementary.
If a patient was only on one drug, it may be difficult to give
adequate pain relief due to the constraints of the drug it-
self. For example, paracetamol is an effective painkiller, but
the dosage restrictions mean it cannot always be used as a
monotherapy to give sufficient pain relief. Thus, using mul-
tiple painkillers (for example paracetamol and ibuprofen)
gives greater potential for pain management (taking both at
the same time), and greater flexibility (taking them at dif-
ferent times). The modifications to the model to support
this are relatively straightforward: rather than using a sin-

499



gle pr variable, use multiple such variables (one for each
painkiller) and define conditions on pain relief to refer to a
weighted sum of these.

A more challenging case is where there are interactions
between medication. Ideally, two adversely interacting med-
ications would not be taken concomitantly, but it is some-
times unavoidable. To handle pharmacokinetic interactions
(one drug affects the rate of metabolism of another), the drug
decay processes would need to be updated. How to do this
well remains an open challenge.

8 Conclusions
In this paper, we described an application of planning to a
patient’s medication needs and daily activities. Modeled in
PDDL+, the problems for this application were unsolvable
by previous state-of-the-art planners. Hence, we devised a
linearize–validate approach for solving these problems, iter-
atively refining a linear approximation of the domain using
the diagnostic trace returned by the plan validator, VAL.

Our wrapper, when used as a wrapper around the plan-
ner OPTIC, was shown to be an effective solution to the
problems in this domain. This is an exciting result, opening
the range of applications amenable to PDDL+ planning, and
hence for planning to make a contribution to this important
area.

References
Benton, J.; Coles, A. J.; and Coles, A. I. 2012. Tempo-
ral planning with preferences and time-dependent continu-
ous costs. In Proceedings of the Twenty Second Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
Proceedings of the Twenty-Sixth International Conference
on International Conference on Automated Planning and
Scheduling (ICAPS).
Coles, A. J., and Coles, A. I. 2014. PDDL+ Planning with
Events and Linear Processes. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS).
Coles, A. J.; Coles, A. I.; and Benton, J. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling.
Denenberg, E., and Coles, A. 2018. Modelling Sequences
of Processes in PDDL+ for Efficient Problem Solving. In
Proceedings of the Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS) at the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Denenberg, E., and Coles, A. 2019. Mixed Discrete Contin-
uous Non-Linear Planning Through Piecewise Linear Ap-
proximation. In Proceedings of the Twenty-Ninth Inter-
national Conference on International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Fox, M., and Long, D. 2003. PDDL2.1 : An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research.
Geenen, S.; Yates, J. W. T.; Kenna, J. G.; Bois, F. Y.; Wil-
son, I. D.; and Westerhoff, H. V. 2013. Multiscale mod-
elling approach combining a kinetic model of glutathione
metabolism with pbpk models of paracetamol and the poten-
tial glutathione-depletion biomarkers ophthalmic acid and 5-
oxoproline in humans and rats. Integrative Biology 5:877–
888.
Hirshfield, L.; Giridhar, A.; Taylor, L.; Harris, M.; and
Reklaitis, G. 2014. Dropwise additive manufacturing of
pharmaceutical products for solvent-based dosage forms.
Journal of Pharmaceutical Sciences 103:496–506.
Hoffmann, J., and Edelkamp, S. 2005. The Deterministic
Part of IPC-4: An Overview. Journal of Artificial Intelli-
gence Research.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Auto-
matic Plan Validation, Continuous Effects and Mixed Initia-
tive Planning using PDDL. In The 16th IEEE International
Conference on Tools with Artificial Intelligence, 294–301.
Penna, G. D.; Magazzeni, D.; Mercorio, F.; and Intrigila,
B. 2009. UPMurphi: A Tool for Universal Planning on
PDDL+ Problems. In Proceedings of the Nineteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2015. Heuristic Planning for Hybrid Systems. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI).
Sadee, W., and Dai, Z. 2005. Pharmacogenetics/genomics
and personalized medicine. Human Molecular Genetics.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
Proceedings of the European Conference on Artificial Intel-
ligence, 655–663.
Scholes, S.; Faulding, S.; and Mindell, J. 2014. Use of
prescribed medicines. In Health Survey for England – 2013.
NHS Digital.
The Academy of Medical Sciences. 2014. Patient Adher-
ence to Medicines.

500


