
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Algorithm Selection in Optimization and Application to Angry Birds

Shahaf S. Shperberg
CS Department

Ben Gurion University
shperbsh@post.bgu.ac.il

Solomon Eyal Shimony
CS Department

Ben Gurion U., UMass Lowell
shimony@cs.bgu.ac.il

Avinoam Yehezkel
CS Department

Ben Gurion University
yehezavi@post.bgu.ac.il

Abstract

Consider the MaxScore algorithm selection problem: given
some optimization problem instances, a set of algorithms that
solve them, and a time limit, what is the optimal policy for se-
lecting (algorithm, instance) runs so as to maximize the sum
of solution qualities for all problem instances?
We analyze the computational complexity of restrictions of
MaxScore (NP-hard), and provide a dynamic programming
approximation algorithm. This algorithm, as well as new
greedy algorithms, are evaluated empirically on data from
agent runs on Angry Birds problem instances. Results show
a significant improvement over a hyper-agent greedy scheme
from related work.

1 Introduction
Algorithm selection is of significant interest to researchers
in AI, and other fields where more than one algorithm is
available to solve problems under computational resource
constraints (Rice 1976; Huberman, Lukose, and Hogg 1997;
Xu et al. 2008). This paper examines a variant of algorithm
selection (”MaxScore”) where one needs to solve a set of op-
timization problems, with computational resource (assumed
here to be time) limitation being over the entire set. This gen-
eralizes the standard setting handled in, e.g. SAT solver al-
gorithm portfolios, where the time limit is separate for each
individual problem instance.

Our original motivation for the MaxScore setting was
combining multiple programs that compete in the AI An-
gry Birds (Copyright Rovio Entertainment) competition, on
which we also base the empirical results of this paper. An-
gry birds is a physical simulation video game. In the AIbirds
competition, each agent program (or human) is presented
with N previously unseen game levels (problem instances).
The agents can select a level to play, where at each level the
agent is presented with a screen-shot representing a physi-
cal simulation. The agent is supposed to kill off all the pigs
with catapulted birds (shots), thereby completing (winning)
the level. Points for completed levels are gained for destroy-
ing objects (pigs and blocks), and for using as few birds as
possible. The agent may play any level as many times as
desired, until its overall allocated time (typically 10 or 30

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

minutes) expires. Level score is the maximum achieved in
all attempts, with total score being the sum of level scores
(typically 4 or 8 levels in past competitions).

Of the numerous AI techniques used in AI birds agent
programs, to-date none have achieved near-human perfor-
mance; each program has strengths and weaknesses in dif-
ferent areas of the game. Rather than attempting to create
a better AI for Angry Birds, our goal here is one of meta-
reasoning: use a portfolio of existing programs to play better,
an idea suggested originally by (Stephenson and Renz 2017)
with promising initial results. The focus of this paper is on
how to do this combination optimally given the available in-
formation, in a decision-theoretic sense, rather than on the
aspect of learning to fit the program to the problem instance.
In addition to the research interest of this meta-reasoning
problem, such an optimization might have an impact on al-
gorithm portfolio optimization in general.

Informally (see Section 2 for the formal definition) we are
given a set of problem instances (levels), to each of which
we can apply any of a set of given algorithms (agents). Each
such application uses up an unknown amount of time, and
results in a score for the level that can be observed after each
algorithm run terminates. Our meta-reasoning problem is to
find a policy for selecting which agent to apply to which
level, at any point in time, such that the sum of scores for
all the levels at timeout is maximized. Note that in order to
make this policy optimization well defined, one must specify
some prior knowledge about scores and runtimes. In this pa-
per we assume that these are specified by random variables
with known distribution models.

Following the formal problem statement (Section 2), we
analyze the computational complexity of restricted versions
of our score maximization problem (Section 3: NP-hard
even with known independent scores and runtimes). An ap-
proximation algorithm for one simple case is proposed, as
well as faster greedy heuristic-based algorithms (Section 3).
Empirical evaluation on scores and runtimes gathered from
actual agent program runs show that using greedy expected
improvement was near-optimal in practice (Section 4), and
much better than the greedy scheme based on just expected
score from (Stephenson and Renz 2017).

We then briefly examine the case of unknown indepen-
dent distributions. These we treat as a distribution over per-
formance profiles, i.e. a distribution over score and runtime

437

distributions (Section 5), with parameters that have to be
learned from previously observed problem instances. This
results in a model with induced dependencies, which makes
the meta-level decision problem harder, in addition to the
above learning problem. A naive learning method based on
features from (Stephenson and Renz 2017; Tziortziotis, Pa-
pagiannis, and Blekas 2016) is proposed, and an empirical
evaluation shows that our proposed greedy algorithm (cou-
pled with belief updating) still performs well despite the
low-quality learning.

2 Formal Problem Statement
This section describes the formal metareasoning MaxScore
problem. In order to make the statement as general as possi-
ble, we abstract away from Angry Birds programs and lev-
els, and present this as a sequential decision problem under
uncertainty.

A MaxScore problem is a 4-tuple (I, A, T, P): I is a set
of problem instances to be optimized (game levels in An-
gry Birds); A is a set of algorithms (or agent programs); T
is a time limit; and P is a known distribution model over
problems in I , agents in A, that describes the (non-negative)
score S(a, l, i) achieved by agent a ∈ A and the (positive
valued) runtime T (a, l, i) of a when applied to problem in-
stance l ∈ I during decision-making round i of the problem-
solving task (or game play). Distribution P (also known as
a performance profile (Zilberstein and Russell 1996)) can be
defined in various ways. We consider the following cases for
P :

1. P is deterministic.
2. P is a known distribution with independent variables.
3. P is a distribution with dependent variables (some of

which are unobservable).
A policy π is a mapping from process histories to ac-

tions. The process is to select, at each round i ≥ 1, an
agent program a(i) to apply to a problem instance (level)
l(i), given the past observations, according to π. The results
S(a(i), l(i), i) and T (a(i), l(i), i) are observed after the se-
lection at round i. Then i is incremented as we go to the next
round. The process stops when we reach the time limit, i.e.
at the first k such that:

k∑
i=1

T (a(i), l(i), i) > T

The score of the process is the sum of maximal achieved
scores for each problem instance, i.e.

S =
∑
l∈I

k−1
max
i=1

S(a(i), l(i), i)δ(l, l(i))

where δ(i, j) is the Kronecker delta (1 if i = j, 0 otherwise).
The problem is: find a policy (mapping from process history,
or alternately belief state and round number, to (agent, prob-
lem instance) pairs) that maximizes the expected value of S.
This is the sequential (adaptive) decision making version of
the problem.

We also consider, for computational complexity analysis,
simpler linear settings of MaxScore, where the decision on

which agents to run on which problem instances (and in
which order) is decided only once, in advance. A policy in
this setting is simply a sequence of (agent, problem instance)
pairs. The linear setting is the same as the batch setting (also
called non-adaptive) commonly used in the research litera-
ture (Shperberg and Shimony 2017), except that if the run-
times are not both known and deterministic, one must spec-
ify the ordering so as to have a well-defined policy (some of
the agents may not get to run at all, due to runtimes uncer-
tainty).

Performance Models
Assuming that the distribution model is Markov, the MaxS-
core problem is a POMDP with states defined by the current
maximum scores vector cR and the play time elapsed. As
the number of rounds is not known in advance, we define
the problem as an indefinite horizon POMDP with termi-
nal states being those where the sum of runtimes exceeds
T 1. The transition probabilities in this POMDP are triv-
ially (and deterministically) defined given the score and run-
time achieved in the current round (which in turn are de-
fined by distribution P). The reward function is 0 except
for transitions into terminal states. In general, POMDPs are
intractable (PSPACE complete even if the belief space is fi-
nite). The actual complexity of MaxScore depends on the
setting (sequential vs. linear/batch), on the performance pro-
files distribution model P , and on the size of sets I and A.

A major issue is the performance profile (distribution
model) P . Typically, exactly what scores and runtimes to
expect is unknown, except by running the programs on the
problem instances, which is too late to make the needed de-
cision. However, we can run the programs on similar in-
stances, collect statistics and learn a prediction model given
instance features. Related work involved learning to predict
the expected score of an agent in an unseen level (Stephen-
son and Renz 2017). However, as argued below, such infor-
mation is insufficient for optimal choice: one may need to
predict the whole score distribution (or equivalently, the ex-
pected improvement over each possible current score).

If the agent programs are effectively memoryless, i.e. at-
tempt to solve the level from scratch each time they en-
counter it, then the order of the observed scores and runtimes
is irrelevant. This behavior is reasonable for Angry Birds,
as the game is effectively stochastic. Additionally (unlike
search problems in most search domains), even if an agent
knows the optimal play, it must still wait for the simula-
tion to run its course, which usually takes on the order of
one minute of real time per level attempt. Finally, the cor-
relation coefficient between the actual score and time re-
sults measured over a few dozen instances was very small
(≈ −0.015). Although this does not preclude a more compli-
cated dependency between them, modeling score and time
as independent is a reasonable approximation. We thus con-
sider the agent scores and runtimes for a problem instance

1Because the timeout T is known, one could use a finite hori-
zon POMDP with T time-slices, but this would necessitate many
dummy transitions, for time points where an agent is running and
no decision is to be made, which is inefficient.

438

as i.i.d samples drawn from the distributions PS(a, l) and
PT (a, l), respectively. If these distributions are known, the
MaxScore problem is in fact an MDP, analyzed below.

3 Analysis: Known IID Case
We examine the computational complexity of some settings
of the MaxScore problem. We begin with the fully deter-
ministic case (scores and runtimes known in advance), and
proceed to the independent case.

Complexity: Restricted Versions
We show that the MaxScore problem is NP hard even in the
following extremely restricted cases:

1. Independent score distributions, deterministic runtimes,
and only a single problem instance (|I| = 1).

2. Deterministic scores and runtimes, with |A| = 1 (but with
|I| unbounded).

We begin with the latter instance, as proving NP-hardness
here is immediate through a straightforward mapping from
the Knapsack problem. Simply map Knapsack item values
to scores, item weights to runtimes, and the weight limit to
T . Note that as the scores and runtimes are deterministic, in
this case there is no difference between a linear setting, a
batch setting, and a sequential setting of the problem.

With only one problem instance, we need to be more care-
ful, but still get (see appendix for proof):

Theorem 1. The linear setting of the MaxScore prob-
lem with independent score distributions, deterministic run-
times, and |I| = 1, is NP-hard.

We believe that the complexity of sequential setting with
the same restrictions is at least as hard as the linear set-
ting, but have not proved it. Also note that the linear set-
ting MaxScore problem with |I| = 1 is non-trivial even if
we further restrict it to unit runtimes. For example, using a
natural greedy scheme that picks the agent with the best ex-
pected score can be suboptimal. Consider having agents A,
B, C, with time limit T=2. Suppose A always scores 100,
B scores 101 with probability 0.99 and 0 otherwise, and C
scores 200 with probability 0.001, and 99 with probability
0.999. A greedy scheme would first pick A, as it has the cer-
tain value 100, higher than the expected scores of B and C.
In fact the optimal policy is to pick B and C (expected score
just over 101, whereas anything containing A achieves less
than 101). The computational complexity of this setting of
MaxScore is, as far as we know, an open problem.

Approximation Algorithms
Using dynamic programming schemes it is possible to
achieve a pseudo polynomial algorithm for the case of
(known distribution) independent scores and runtimes, and
|I| bounded by a constant, using the following scheme. (The
assumption that |I| is bounded by a constant is reasonable
for e.g. AIbirds competitions, where |I| is 4 or 8.) Addition-
ally, we are assuming that score items (e.g. score for killing a
pig in Angry Birds) and runtimes are integer valued, and that
the time span and score items have a unary representation in

the input. The following dynamic programming value deter-
mination scheme (a variant of the Bellman equation) com-
putes the optimal policy, and has a time complexity linear
in the time span and the maximum score, and exponential in
|I|.

Let OPT (rT, cR) be the optimal solution value to
the MaxScore problem with rT remaining time, and cur-
rent maximum score vector cR = 〈cR1, . . . , cRm〉.
The value determination recursive equation for
OPT (rT, cR) appears in Figure 1, where R′ =
〈cR1, . . . ,max{cRl, r}, . . . , cRm〉, and sp(D) is the
support of distribution D. The value of OPT (T, 〈0, . . . , 0〉)
is that of the optimal policy at the initial state.

If the score distributions are continuous, or have too
many values, we can round them into bins, achieving a
(1 − ε)-approximation to the optimal policy. Likewise dis-
cretizing the runtime distributions is possible, but here
near-optimality is not guaranteed. Although the dynamic
programming approximation scheme can be computed in
pseudo-polynomial time, it is still too computationally de-
manding to be practical. We would thus like to use a greedy
scheme in practice, and the one that comes to mind immedi-
ately is to use the agent that has the best expected score, as
essentially done in (Stephenson and Renz 2017). A slightly
better scheme is to take into account the runtime, and use
the ratio of expected score over expected runtime. However,
it is easy to show that these schemes are far from optimal (as
verified by the empirical results).

For example, suppose we have only one problem in-
stance and two agents. We have already achieved a score
of 10,000, and have time for exactly one more run. Sup-
pose the first agent always scores 10,000. The second agent
scores 100,000 with probability 0.05, and otherwise fails and
scores 0, thus its expected score is 5,000. The above greedy
schemes would select the first agent and always get 10,000,
while the optimal policy would obviously select the second
agent, to possibly end up with 100,000 (with expected final
score 10,500). An improved greedy scheme instead looks at
the expected improvement to the score over the current score,
i.e. the value:

E[S(a, l, i)−max
a∈A

i−1
max
j=1

S(a, l, j)] (1)

rather than just the expected score E[S(a, l, i)]. (Consider
S(a, l, j) to be 0 if agent a was not selected in round j to be
run on problem instance l.) Although the improved greedy
scheme is suboptimal even for unit runtimes, in practice it
does well (Section 4).

4 Experiments: Known IID
Quality/runtime tradeoffs for the independent model were
examined for score and runtime distributions based on runs
of AIbirds algorithms on original Angry Birds game levels.
Each algorithm was run 10 times on each level to obtain the
empirical distributions, which were then treated as if they
were the true distributions. Levels that caused issues with
the agent’s vision module were filtered out.

We applied the meta-agent to the open source versions of
the following five existing agents: Naive, AngryBER, ihsev,

439

OPT (rT, cR) = max
a∈A
l∈I

 ∑
r∈

sp(PS(a,l))

∑
t∈

sp(PT (a,l))
∧t≤rT

OPT (rT − t, R′)× PT (a, l)[t]× PS(a, l)[r] +
∑
t∈

sp(PT (a,l))
∧t>rT

m∑
1
cRi × PT (a, l)[t]


Figure 1: Optimal Solution to the MaxScore problem

Eagle’s Wing and planA, which competed in past AIBirds
competitions. Note that these versions are not necessarily
identical to the versions submitted for the competition. All
tests were conducted on Windows 10 using a machine with
Intel(R) i7-4700HQ 2.40GHz processor and 12 GB RAM.
The evaluation process was performed using different num-
bers of levels and time budgets as described below:

1 for 1 to 50 do
2 for Every number of levels and time budget T

configuration in {2, 3, 4} × {200, 400, 600, 800, 1000}
do

3 Draw random levels uniformly from the level
pool.

4 for 1 to 10, 000 do
5 while Time budget was not exceeded do
6 Compute policy and choose a move

using collected statistics as true
distribution.

7 Execute the selected move (agent and
level) by drawing score and time
according to the statistics.

We also evaluated some of the algorithms in AIBirds com-
petition settings: 8 levels with T = 1800 seconds.

The following optimization algorithms were compared:

1. Dynamic Programing (optimal): compute the recur-
rence relation in Figure 1, using memoization of the re-
sults from all recursive calls.

2. Binned Dynamic Programing(X ,Y): same as the opti-
mal solution, with scores rounded up to the next multiple
of X , and times rounded to the next multiple of Y . We
used this algorithmic scheme with X ∈ {1, 1000, 10000}
and Y ∈ {1, 10, 25}.

3. Score Greedy: choose the agent and level that maximize
the expected score.

4. Rate Greedy: choose the agent and level that maximize
the expected score divided by the expected time given that
the time is less than or equal to the remaining time, mul-
tiplied by the probability that the time is less or equal to
the remaining time.

5. Improved Score/Rate Greedy: same as the score/rate
greedy except for considering expected score/rate im-
provement instead of expected score.

6. Round Robin Score Greedy: the algorithm used by the
hyper-agent from (Stephenson and Renz 2017), which se-
lects a level using round-robin, and chooses the agent that
maximizes the expected score for that level, preferring
agents not selected in previous attempts.

7. Play Single Agent(A): select a level using round-robin,
always with agent A. This scheme was evaluated for each
of the 4 possible agents.

8. Random: draw a pair of level and agent uniformly.

The results appear in Figure 2. The scores in the plot
are normalized to the highest score for each setting. For
clarity, we show only a subset of the algorithms. In Play
Single Agent policies, we show only the maximum value
among them. The score greedy and improved score greedy
were dominated by the rate greedy and improved rate greedy
respectively, and are not shown. Finally, we showed the
Binned Dynamic Programing(10000,10) as a sole represen-
tative of its category, since it achieved the best balance be-
tween runtime and score. The optimal policy did not always
result in the best score, as the process is stochastic and thus
exhibits measurement noise. The results indicate that the op-
timal policy is indeed the best in terms of scores. However,
the binned version and the improved rate greedy achieved
near-optimal results. When considering runtime and space
usage, the optimal solution could not solve instances greater
than 4 levels with T = 400 time budget. The binned ver-
sion was able to solve all instances, with a maximal over-
head of 13.7 seconds and a maximal memory usage of 52
MB across all instances with 4 levels or less. However, it
required an average of 335 seconds and 270 MB of mem-
ory to handle the full competition setting (8 levels with 1800
seconds time budget). All the other algorithms ran in negli-
gible time (several milliseconds) and memory. This makes
the improved rate greedy the best algorithm in terms of bal-
ance between score and resources. The large gap in scores
between schemes that selected instances either randomly or
in round-robin fashion and those that attempted to optimize
instance selection (improved greedy and dynamic program-
ming) suggest that the multi-instance setting is very different
from the single instance setting, and that a good instance se-
lection scheme is crucial. The apparent increase in the gap
as the number of instances grows further supports this ob-
servation (Figure 2). Note that in the experiments we did not
include the optimization runtime in the total available run-
time T ; but in a competition it must be. Also, the simulation
runtime of the agents averaged roughly 90 seconds, so 1800
seconds consists of about 20 rounds (agent runs).

5 Unknown Distributions
A major point of competitions like AIbirds (as well as other
competitions, such as IPC, SAT-solving, etc.) is that they
are done with previously unseen problem instances, so the
score and runtime distributions are unknown. The latter is-
sue then becomes a learning problem, which can be modeled
by treating the agent performance quality as hidden random

440

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S
c
o
re

 O
p
ti

m
a
li
ty

 F
ra

c
ti

o
n

Setting

Dynamic programming
(optimal)

Binned Dynamic
programming(10000,10)

ImprovedRateGreedy

RateGreedy

RoundRobinGreedy

Max Single Agent

Random

Figure 2: Optimization Algorithms Score Evaluation

Figure 3: Dependency model (Bayes net fragment)

variables, with some assumed prior distributions based on
observing similar problem instances. We adopt a naive learn-
ing scheme (described briefly below for independent scores
and runtimes for simplicity, as implemented for the AIbirds
meta-agent).

Unknown IID Score and Runtime
In our naive learning scheme, we are assuming that agent
performance profiles of a previously unseen problem in-
stance are (almost) equal to their performance profile on
some problem instance(s) for which performance statistics
were already collected. Hence, we are essentially taking a
case-based reasoning (CBR) approach to predicting the per-
formance profile for an unknown instance. However, we do
not assume knowledge of which of the previously seen per-
formance statistics fits the current instance.

Therefore, if we need to predict an agent performance
Q(a, l, i) for round i of the current problem instance l
(which we model as the score and runtime iid PS(a, l) and
PT (a, l)) it makes sense to condition on the (unknown)
agent performance profile Q(a, l) for the current problem
instance. Essentially, what we need is a mapping from fea-
tures to agent performance (i.e. distributions over score and
runtime distributions), as we do in this paper.

The mapping we adopt here is simply a smoothed version
of the performance profiles of the K most similar instances.
(Smoothing is done in by assigning scores and runtimes into
bins.) That is, for every problem instance l in the training
set, and every agent program a, collect and store the score
and runtime distributions estimate as Q(a, l) indexed by the
feature values (vector F (l)) for problem instance l.

When a new problem instance l is encountered online,
compute its feature vector values F (l), and find the K most
similar instances l1, ..., lK according to some appropriately
defined similarity measure s(li, l). Now we assume that the
agent performance for instance l has a distribution over per-
formance profiles, and that it is equal to the (smoothed ver-
sion) of its performance profile for some instance li, with
probability proportional to s(li, l). That is, denote byB(a, l)
a K-valued random variable, with integer values denoting
the respective Q(a, li) profile. Then we have: P (B(a, l) =

i) = s(li,l)∑K
j=1 s(lj ,l)

.

The performance profiles describe both score and run-
time distributions, and additionally we assumed that these
are drawn i.i.d. given the value of B(a, l). The distribution
model topology is summarized in Figure 3, for each prob-
lem instance l (shown for one agent program). We have an
observable feature vector variable F (l). Belief updating for
this conditionally i.i.d. model is straightforward, as this is a
naive Bayes model.

In the conditionally i.i.d. model, since B(a, l) is un-
observable, but its current distribution (thus belief state)
changes given new observations of T (a, l, i) and S(a, l, i),
we now have a POMDP that we cannot hope solve optimally,
especially in real time. Instead, we can solve an MDP where
the T (a, l, i) and S(a, l, i) are assumed to be i.i.d. as before,
but based on the current belief state of B(a, l).

That is, we can do the belief updating given the new ob-
served scores and runtimes, but in the policy computation

441

act as if future updates are not observed. Then one can re-
compute the MDP policy after each observation and belief
update. However, the MDP solution was also quite compu-
tationally intensive, and re-computation makes it even more
so. As the improved greedy scheme performed almost as
well as the MDP solution w.r.t. optimality, we no longer con-
sidered using the MDP solution, for practical reasons.

Obtaining a reasonable s(l, l′) is a learning problem,
which was tackled by normalizing all feature values to [0, 1],
and taking the inverse of the Euclidean distance as the sim-
ilarity. Despite the naive nature of our method for defining
prior probability of unobserved levels, our algorithms, pro-
vided with such priors, showed a major improvement over
existing methods according the the results presented below.

Experiments: Unknown IID
We normalized each level’s score by maxScorel, an up-
per bound on achievable score in each level, that can
be computed using the features. We used the following
subset of features, described in (Stephenson and Renz
2017; Tziortziotis, Papagiannis, and Blekas 2016): #Blocks,
targetWidth, targetHeight, closestObjDist, farthestObjDist,
density, #Objects, iceObjects, woodObjects, stoneObjects,
#Pigs, helmetPigs, noHelmetPigs, #Birds, #RedBirds, #Yel-
lowBirds, #BlueBirds, #BlackBirds, #WhiteBirds, variety-
OfBirds, feasibleObjects, feasiblePigs, roundObjectsNot-
Pigs, icedTerritory, woodenTerritory, stonedTerritory, aver-
agePigsInBlocks, blocksWithPigs and #TNTs.

We tested the optimization algorithms using the same pro-
cess as in Section 4, where the algorithms had to rely on the
predicted distribution based on the naive learning scheme.
We incorporated the resulting distribution in the following
algorithms: (1) the improved rate greedy defined in Section
4, using the distribution of distributions with K neighbors
(denoted by IRG(K)) without belief updating; (2) a binned
version of the improved rate greedy with Bayesian belief up-
dating, using a zero value bin and 10 additional bins uniform
in (i ·maxScorel, i+0.1 ·maxScorel], 0 ≤ i ≤ 9 (denoted
as BIRG). We usedK = 128 in the learning process for both
algorithms as a default value. We also tested IRG with other
K values, specified in parenthesis.

Table 1 shows the solution quality achieved by the dif-
ferent algorithms, relative to the quality achieved by an im-
proved rate greedy algorithm acting on known distributions
(denoted ”omniscient”). The projected standard deviation σ′
of the results was at most 0.013, small enough to maintain
the performance ordering between the algorithms as pre-
sented below. 2

In most cases, IRG (using unknown distributions) shows
a major improvement over the baseline methods: choosing
agent and level at random; choosing the post-facto best per-
forming agent (denoted MSA, with the first letter of agent
achieved that score in parenthesis); and the round robin
greedy algorithm (denoted as RRG) with known expectation.
BIRG (using unknown distributions), further improved the

2The projection σ′ was based on the standard decviation σ mea-
sured over averages of sets of 35 random runs. To project to the
1000 runs per instance actually used we have σ′ = σ√

1000
35

.

results, achieving an average solution quality of 0.75 despite
using a naive learning scheme. Note that when BIRG had
sufficient time to perform updates (600 seconds and above)
it achieved the best score out of all tested algorithms. We
also tracked the improvement due to Bayesian updates by
comparing the Wasserstein distance (also known as ”earth
mover’s distance” (EMD)) between the predicted and true
distributions. As expected, results improved as the above
EMD decreased, which also explains the improved results
for BIRG in the longer sequences. With Bayesian updating,
the EMD has improved from the beginning to the end of
each test setting, with an average improvement of 17.2%
(not shown).

In IRG performance seems to improve with increased K,
up to a point where this trend peters off and even reverses.
We believe that including too few cases is insufficient to pre-
dict the performance profile well, but too many cases leads
to overfitting. This phenomenon does not occur in BIRG due
to the Bayesian updating which quickly disregards irrelevant
cases, and improves monotonically with K.

Experiments: Angry Birds Game

After experimenting using data collected from the game, we
implemented a full version of the meta-agent, which inter-
faces with the AIBirds server and plays the actual game.
Our meta-agent implementation starts by collecting infor-
mation on all levels using the provided vision module. Based
on this, the meta-agent constructs an objects-tree for each
level, extracts features from the objects-trees, and predicts a
performance profile for each level and agent pair. Then, the
meta-agent applies the BIRG scheme to select a pair of agent
and a level to play. The meta-agent sends the selection to the
server and observes the results of the run. The observations
are used for belief updating. The select-and-play process re-
peats until the time limit is reached.

Our evaluation was based on past competition levels (be-
tween 2014 and 2016), a total of 72 levels (8 at a time with
a 30 minutes time budget). The results are shown in ta-
ble 2. The improved-greedy based meta-agent achieved an
average score of 441, 752, compared to PlanA (357, 468),
ihsev (321, 280), AngryBER (303, 166) and Eagle’s Wing
(323, 099). Note that the above 4 agents were the ones actu-
ally used by the meta-agent, and all of them contributed to
its score. The hyper-agent of (Stephenson and Renz 2017)
achieved an impressive average score of 424, 740; However,
the authors, which are the organizers of the AI-Birds com-
petition, had access to a total of 8 agents as opposed to our 4
open-sourced agents. We strongly believe that using the full
set of 8 agents would have further improved the performance
of our algorithm, as in auxiliary experiments (not shown)
our scheme was relatively robust to adding agents (includ-
ing dummy, useless agents). This belief is further supported
by Stephenson and Renz (2017) which showed that each in-
dividual agent actually contributed to the score of the hyper-
agent, meaning that the agents to which we had no access
were actually not useless.

442

Algorithm
Number Of Levels

AVG2 3 4
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

IRG 0.71 0.72 0.70 0.75 0.78 0.66 0.71 0.63 0.67 0.69 0.55 0.63 0.62 0.63 0.67 0.67
BIRG 0.69 0.76 0.81 0.84 0.85 0.67 0.75 0.73 0.76 0.83 0.54 0.68 0.77 0.75 0.79 0.75
IRG (1) 0.60 0.60 0.64 0.63 0.59 0.57 0.54 0.52 0.52 0.54 0.54 0.53 0.46 0.44 0.47 0.55
IRG (50) 0.70 0.73 0.74 0.75 0.78 0.72 0.73 0.65 0.70 0.72 0.57 0.69 0.64 0.70 0.71 0.70
IRG (100) 0.70 0.70 0.71 0.75 0.76 0.68 0.69 0.64 0.67 0.70 0.59 0.65 0.62 0.63 0.68 0.68
Random 0.38 0.50 0.56 0.64 0.68 0.31 0.40 0.45 0.52 0.59 0.24 0.34 0.36 0.47 0.50 0.46
RRG 0.45 0.56 0.63 0.71 0.75 0.32 0.48 0.52 0.60 0.66 0.28 0.40 0.42 0.55 0.57 0.53
MSA 0.53(p) 0.80(e) 0.66(p) 0.72(i) 0.75(i) 0.48(p) 0.57(i) 0.60(p) 0.66(p) 0.65(i) 0.38(e) 0.60(p) 0.61(p) 0.64(p) 0.63(i) 0.62

Table 1: Solution qualities as a fraction of the solution quality obtained by the ”omnicient” improved rate greedy scheme

Round Naive PlanA ihsev A-BER E-Wing Hyper Meta
Q 2014 187,180 314,540 109,920 188,710 282,110 332,270 418,210
S 2014 400,980 541,220 439,520 429,680 442,800 524,400 602,050
F 2014 209,130 193,110 257,410 90,110 250,970 338,330 231,480
Q 2015 68,020 316,850 163,790 367,000 346,760 351,300 372,260
S 2015 145,910 288,870 166,750 143,270 299,220 375,670 369,130
F 2015 131,660 452,860 458,030 392,420 191,970 483,610 490,050
Q 2016 251,080 313,440 444,560 310,600 252,100 336,840 426,570
S 2016 436,870 372,330 562,820 445,030 420,170 610,280 593,020
F 2016 390,050 423,990 288,720 361,670 421,790 469,960 471,380
Average 246,764 357,468 321,280 303,166 323,099 424,740 441,572

Table 2: Actual game results using past competitions setting

6 Discussion
In this paper we defined the MaxScore optimization prob-
lem, analyzed its computational complexity (NP-hard even
under extreme restrictions), and suggested approximation al-
gorithms for known independent distributions. In practice,
based on empirical evaluation on AI birds, it turns out that
a greedy algorithm based on expected improvement is near-
optimal. Despite the latter having no theoretical guarantees,
it currently seems to be the only viable alternative for real-
time computation. Applying these results to unknown distri-
butions requires learning performance profiles given prob-
lem instance features. A naive learning scheme applicable
to the AIbirds application was proposed. This results in im-
perfect predicted distributions, which degrades the meta-
reasoning results. Nevertheless, the greedy algorithm is still
the better option, especially if the distribution model is up-
dated using scores and runtimes observed during the run.

The MaxScore problem is closely related to algorithm se-
lection, as originally defined by Rice in 1976 (Rice 1976).
Algorithm portfolios (Gomes and Selman 2001; Huberman,
Lukose, and Hogg 1997) are a natural and popular exten-
sion of the idea of algorithm selection. Such techniques are
based on minimizing risk in economics. This approach de-
fines a collection of algorithms (a portfolio) and establish
a resource allocation to the algorithms in the portfolio in
order to solve a given problem instance (instead of choos-
ing a single algorithm for a given problem instance). This
field has been studied extensively in the last decades, includ-
ing works on different computational settings (parallel, se-
quential or in-between), many applications with outstanding
results (Xu et al. 2008; Hoos, Lindauer, and Schaub 2014;
Kadioglu et al. 2010; 2011) and even meta-level techniques
for choosing a selector (Lindauer et al. 2015). Most common
settings of algorithm portfolios focus on finding a solution to
a single given problem instance. Our setting generalizes the
meta-level decision problem solved in algorithm portfolios

to choosing which problem instance to work on, as well as
selecting algorithms to use at any given time. A paper on
dynamic restart policies (Kautz et al. 2002) proposes an op-
timal restart scheme in a decision-theoretic sense, similar to
that defined in our paper, and with a scheme for learning
a runtime distribution. Since our setting allows non-binary
scores, where it is important to get a good score on a problem
instance, rather than just solve it, the optimization scheme
used in the restart policies paper is not directly applicable
here. The scheme they use to learn runtime distributions may
be applicable to our setting, but must be extended to predict
score distributions as well before it can be used here. Maxi-
mizing the number of instances solved is also mentioned in
(Kautz et al. 2002), but their instances are drawn randomly
and independently, so there seems to be no allowance for the
capability of choosing to return to a previously run instance
as in our setting, in addition to there being no notion of in-
stance score in (Kautz et al. 2002).

The MaxScore problem is also loosely related to multi-
armed bandit (MAB) problems (Auer, Cesa-Bianchi, and
Fischer 2002). Much of the related work on MABs does not
assume a known distribution, or even a distribution over dis-
tributions as done in this paper. Rather, bounds on regret are
analyzed, both asymptotic and finite. However, the fact that
the reward in MaxScore is the maximum rather than the sum
makes it unclear how such techniques might carry over. Ad-
ditionally, in the motivating application of AIbirds, the num-
ber of rounds is small, further complicating such attempts.
In fact, if we tried to apply an MAB scheme directly, we
would get a random selection of problem instance, against
which we did compare in the Angry Birds domain (random
did poorly, as expected).

A significant part of the research on algorithm portfolios
and multi-armed bandits focuses on learning issues. E.g. in
(Kotthoff 2016), the focus is on analyzing problem features
and applying different varieties of machine learning tech-
niques in order to find scheduling policies for the portfolios.
In this paper we achieved good results despite using a rather
naive learning scheme to obtain a mapping from features to
score and runtime distributions. Note that the relative per-
formances in Table 1 still leave much room for improvement
by better predicting the distributions: these performance fig-
ures are still well below the 1.0 value obtained by the an
”omnicient” rate-greedy scheme that has access to the true
distributions. Introducing better learning schemes for bet-
ter prediction of the distributions should thus result in better
performance.

443

Another issue for future work is learning the distribution
models with time-score and inter-round dependencies, thus
extending MaxScore solutions to more general settings of
algorithm portfolios over optimization problems. Fully test-
ing such generalized scenarios would require changing the
rules of the competitions to maximizing total score over a
global time limit, rather than the current setting where the
time limits are per-instance.

Acknowledgements
Supported by ISF grant 417/13 and the BGU Frankel Center.
Meta-agent implemented by: Lior Schachter, Dor Bareket,
Ori Zviran.

Appendix: Proof of Theorem 1
Theorem 1. The linear setting of the MaxScore problem with
independent score distributions, deterministic runtimes, and
|I| = 1, is NP-hard.

Proof: by reduction from the optimization version of
knapsack ((Garey and Johnson 1979), problem number
[MP9]), re-stated below. Given a set of items S =
{s1, ...sn}, each with a positive integer weight wi and a pos-
itive integer value vi, a weight limit W , find a sub-multiset
S of S with a maximal total value, subject to: total weight
of S at most W .

In the reduction, each agent represents an item in the
Knapsack problem, where PT (ai, l) = [1 : wi] and
PS(ai, l) = [ε : vi, 1 − ε : 0]. As this is a simple one-
to-one mapping, we abuse the notation and treat the agents
as if they are actually the respective elements from S in the
Knapsack problem. In the MaxScore problem, let:

T =W, H = max
si∈S

vi, M =
W

min
si∈S

wi
, ε =

1

M2H + 1

Let S be a candidate solution to the MaxScore problem,
with m = |S| ≤ n. Assume w.l.o.g. that S = {s1, ..., sm}
and that the items are sorted in non-descending order of val-
ues vi. Denote by P (S) expected value from selecting the
items in the sequence S as a policy. Then:

P (S) =

m∑
i=1

viε(1− ε)m−i ≤
m∑
i=1

viε

On the other hand, we have:

P (S) =

m∑
i=1

viε(1− ε)m−i ≥
m∑
i=1

viε(1− ε)m

≥
m∑
i=1

viε(1− ε)M

From Bernoulli’s inequality, we have:

(1− ε)M ≥ 1−Mε = 1− M

M2H + 1
> 1− 1

MH

Therefore:

P (S) >

m∑
i=1

viε(1−
1

MH
) =

m∑
i=1

viε−
∑m

i=1 viε

MH

≥
m∑
i=1

viε− ε = ε(

m∑
i=1

vi − 1)

Now let S be an optimal solution to the MaxScore problem.
Since S satisfies the time constraint, we have

∑m
i=1 wi ≤

T = W , so S satisfies the weight constraint in the Knap-
sack problem and is thus a solution therein. Assume in
contradiction that there exists a legal solution S′ to Knap-
sack s.t.

∑
si∈S′ vi >

∑
si∈S vi. Since the values of the

items in knapsack are integers, we know that
∑

si∈S′ vi ≥
(
∑

si∈S vi) + 1. Thus, as |S′| ≤ 1
e :

P (S′) > ε(
∑
si∈S′

vi − 1) ≥ ε(
∑
si∈S

vi) ≥ P (S)

As S′ satisfies the timing budget in the MaxScore problem,
it is a solution better than S, a contradiction. So S is also an
optimal solution to the Knapsack problem. �

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the Multiarmed bandit problem. Mach. Learn.
47:235–256.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artif. Intell. 126(1-2):43–62.
Hoos, H.; Lindauer, M. T.; and Schaub, T. 2014. claspfolio
2: Advances in algorithm selection for answer set program-
ming. TPLP 14(4-5):569–585.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(5296):51–54.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC –Instance-Specific Algorithm Configuration. In
Proceedings of the 2010 Conference on ECAI 2010: 19th
European Conference on Artificial Intelligence, 751–756.
Amsterdam, The Netherlands, The Netherlands: IOS Press.
Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. In CP (LNCS6876), 454–469.
Kautz, H. A.; Horvitz, E.; Ruan, Y.; Gomes, C. P.; and Sel-
man, B. 2002. Dynamic restart policies. In Dechter, R.;
Kearns, M. J.; and Sutton, R. S., eds., Proceedings of the
Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of
Artificial Intelligence, July 28 - August 1, 2002, Edmonton,
Alberta, Canada., 674–681. AAAI Press / The MIT Press.
Kotthoff, L. 2016. Algorithm selection for combinatorial
search problems: A survey. In Bessiere, C.; Raedt, L. D.;
Kotthoff, L.; Nijssen, S.; O’Sullivan, B.; and Pedreschi, D.,

444

eds., Data Mining and Constraint Programming - Founda-
tions of a Cross-Disciplinary Approach, volume 10101 of
Lecture Notes in Computer Science. Springer. 149–190.
Lindauer, M. T.; Hoos, H. H.; Hutter, F.; and Schaub, T.
2015. Autofolio: An automatically configured algorithm se-
lector. J. Artif. Intell. Res. 53:745–778.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65 – 118.
Shperberg, S. S., and Shimony, S. E. 2017. Some properties
of batch value of information in the selection problem. J.
Artif. Intell. Res. (JAIR) 58:777–796.
Stephenson, M., and Renz, J. 2017. Creating a hyper-agent
for solving angry birds levels. In Magerko, B., and Rowe,
J. P., eds., Proceedings of the Thirteenth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE-17), October 5-9, 2017, Snowbird, Little Cot-
tonwood Canyon, Utah, USA., 234–240. AAAI Press.
Tziortziotis, N.; Papagiannis, G.; and Blekas, K. 2016. A
bayesian ensemble regression framework on the angry birds
game. IEEE Trans. Comput. Intellig. and AI in Games
8(2):104–115.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: Portfolio-based algorithm selection for SAT. J.
Artif. Intell. Res. 32:565–606.
Zilberstein, S., and Russell, S. J. 1996. Optimal composition
of real-time systems. Artif. Intell. 82(1-2):181–213.

445

