Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

On Computational Complexity of
Automorphism Groups in Classical Planning

Alexander Shleyfman
Technion, Haifa, Israel
alesh@campus.technion.ac.il

Abstract

Symmetry-based pruning is a family of powerful methods for
reducing search effort in planning as heuristic search. Apply-
ing these methods requires first establishing an automorphism
group that is then used for pruning within the search process.
Despite the growing popularity of state-space symmetries in
planning techniques, the computational complexity of finding
the automorphism group of a compactly represented planning
task has not been formally established. In a series of reduc-
tions, we show that computing the automorphism group of a
grounded planning task is GI-hard. Furthermore, we discuss
the presentations of these symmetry groups and list some of
their drawbacks.

Introduction

Symmetry breaking is a method for search-space reduction
that has been well explored across several areas in computer
science, and in particular in classical planning (Starke 1991;
Emerson and Sistla 1996; Fox and Long 1999; Rintanen
2003; Pochter, Zohar, and Rosenschein 2011; Domshlak,
Katz, and Shleyfman 2012; Gnad et al. 2017). Symmetry-
based pruning divides the states in the search space into
orbit-based equivalence classes, which in turn allows for
exploring only one representative state per such class. Ap-
plication of this technique to forward search partially cur-
tails the exponential growth of the search space in the
presence of objects with symmetric behavior. Beyond the
state-space pruning, symmetries have been also success-
fully used in classical planning to enhance performance of
heuristics (Domshlak, Katz, and Shleyfman 2013; Sievers et
al. 2015b), prune redundant operators (Wehrle et al. 2015;
Fiser, Alvaro Torralba, and Shleyfman 2019), and even de-
compose planning tasks (Abdulaziz, Norrish, and Gretton
2015).

In the foundations of all these techniques lies computing
a subgroup of automorphisms of the state-transition graph
of the problem. Considering the complexity of finding auto-
morphism groups of state-transition graphs, Juntilla (2003)
showed that the problem of finding symmetry groups in
Petri nets is equivalent to the graph automorphism prob-
lem. Given the established connections between reachabil-
ity problem in Petri nets and classical planning (Bonet et al.

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

428

2008), a rather direct corollary of that result is that com-
puting the automorphism group of explicitly given state-
transition graphs of classical planning problems is reducible
to the Graph Isomorphism problem (GI-hard). However,
since the state-transition graph in classical planning is worst-
case exponential in the size of its compact representation,
and since the work on symmetries in planning is focused on
symmetries derived from such compact representations, the
relevance of this complexity result is rather limited.

The first notion of grounded symmetries for classical
planing was proposed by Pochter et al. (2011), and then re-
fined by Domshlak et al. (2012). The definitions presented
in these works, practical however they are, were based on
the notion of colored graphs, and thus are quite cuambersome
to reason about. Later on, Shleyfman et al. (2015) came up
with the notion of structural symmetries that captures pre-
viously proposed concepts, and which can be derived from
the syntax of a planning task in a simple declarative man-
ner. Still, to our knowledge, the complexity of computing the
automorphism group of a grounded planning task remained
open.

In this work, we present reductions to graphs that estab-
lish a “negative” result that computing automorphism groups
for grounded planning tasks (in both FDR and STRIPS for-
malisms) is as hard as for general undirected graphs. Along
this route, we also show a nontrivial connection between
the automorphism groups of a planning task and its causal
graph, and discuss the presentations of the groups of classi-
cal planning tasks, as well as the suitableness of group gen-
erators for representation of the group’s structure and size.

Background

To define a planning task we use the finite-domain repre-
sentation formalism (FDR) (Bickstrom and Nebel 1995;
Helmert 2006). Each planning task is given by a tuple
II = (V,A I,G), where V is a set of multivalued vari-
ables, each associated with a finite domain D(v). The sets
of variable/value pairs are written as (var, val), and some-
times referred as facts. A state s is a full variable assign-
ments which maps each variable v €) to some value in
its domain, i.e. s(v) € D(v). For V. C V, s[V] denotes
the partial assignment (also referred as a partial state) of
s over V. Initial state I is a state. The goal G is a par-
tial assignment. Let p be a partial assignment. We denote

by wvars(p) C V the subset of variables on which p is
defined. For two partial assignments p and ¢, we say that
p satisfies q, if vars(q) C wars(p), and p[v] = g[v] for
all v € wars(q), this is denoted by p E ¢. A is a fi-
nite set of actions, where each action is represented by a
triplet (pre(a), eff(a), cost(a)) of precondition, effect, and
cost, where pre(a) and eff(a) are partial assignments to V,
and cost(a) € R%T. In this work we assume all actions are
of unit-cost, unless stated otherwise. An action a is appli-
cable in a state s if s = pre(a). Applying a in s changes
the value of all v € vars(eff(a)) to eff(a)[v], and leaves s
unchanged elsewhere. The outcome state s’ is denoted by
sla]-

S denotes the set of all states of II. We say that action
sequence 7 is a plan, if itbegins in I, ends in s s.t. s¢ = G,
and each action in 7 is iteratively applicable, i.e. for each
a; € 7 holds that s;_1 |= pre(a;) and s;—1[a;] = s;. The
cost of a plan is defined as cost(m) = >, . cost(a;). An
optimal plan, is a plan of a minimal cost. Here, since we
assumed unit-cost domains, an optimal plan is a plan of the
shortest length. The state space of 11 is denoted Try.

A directed graph is a pair (N, E) where N is the finite
set of vertices, and F C N? is the set of edges, where each
edge is an ordered pair of vertices. Aloop (sometimes re-
ferred as self-loop) is a directed edge from a vertex to itself.
In what follows, we will consider only simple graphs, i.e.
graphs with no loops and no parallel edges. A directed graph
with no cycles will be called directed acyclic graph (DAG).

An undirected graph is a pair (N, E) where N, once
again, is the set of vertices, and E C {e C N | |e| = 2} is
the set of edges.

Let G = (N, E) be a (un-)directed graph, and let o be
a permutation over the vertices N. We say that o is a graph
automorphism (or just an automorphism, if this is clear from
the context) when (n,n’) € E iff (o0(n),o(n’)) € E. The
definition of a graph automorphism for an undirected graph
is almost the same, where {n,n'} € Eiff {o(n),o(n)} €
E. The automorphisms of a graph G are closed under com-
position, and for every automorphism there exists an inverse
permutation which is also an automorphism. Thus, automor-
phisms of a graph form a group. We call this group an au-
tomorphism group, and denote it by Aut(G). The identity
element e in this group will be denoted by idg.

Causal Graph

A planning task may often be structurally complex. One way
of capturing said complexity is via causal graphs. This idea
is mentioned in numerous papers, e.g. Knoblock (1994),
Bacchus and Yang (1994), Domshlak and Brafman (2002)),
however here we will follow the definition given by
Helmert (2004).

The causal graph of a planning task IT = (V, A, I,G) isa
directed graph CG(II) = (V, E), where (u,v) € Eifu # v
and there exists a € A, s.t. u € vars(pre(a)) Uvars(eff(a))
and v € vars(eff(a)).

In a nutshell, the causal graph contains an edge from a
source variable to a target variable, if changing the value of
the target variable may depend on the value of the source
variable, even if it is only a co-depending effect.

429

Structural Symmetries

The second ingredient we need was introduced by Shleyf-
man et al. (2015). This subsection defines the notion of
structural symmetries, which captures previously proposed
concepts of symmetries in classical planning. In short, struc-
tural symmetries are relabelling of the FDR of a given plan-
ning task II. Variables are mapped to variables, values to
values (preserving the (var, val) structure), and actions are
mapped to actions. In this work, we follow the definition of
structural symmetries for FDR planning tasks as defined by
Wehrle et al. (2015). For a planning task IT = (V, A, I, G),
let P be the set of IT’s facts, and let Py := {{(v,d) | d €
D(v)} | v € V} be the set of sets of facts attributed to each
variable in V. We say that a permutation o : PUA — PUA
is a structural symmetry if the following holds:

1. O'(Pv) = PV,

2. 0(A) = A, and, forall a € A, o(pre(a)) = pre(o(a)),
o(eff(a)) = eff(o(a)), and cost(co(a)) = cost(a).

3. 0(G) =G.

We define the application of o to a set X by o(X)
{o(z) | x € X}, where o is applied recursively up to the
level of action labels and facts. For example, let s be a partial
state, since s can be represented a set of facts. Applying o to
s will result in a partial state s’, s.t. for all facts (v, d) € s it
holds that o ((v,d)) = (v',d’) € s’ and s'[v'] = d'.

A set of structural symmetries > for a planning task II
induces a subgroup T of the automorphism group Aut(7r),
which in turn defines an equivalence relation over the states
S of II. Namely, we say that s is symmetric to s’ iff there
exists an automorphism o € T such that o(s) = s'. The
group of all structural symmetries of II will be denoted by
Aut(11).

Symmetries and Problem Description Graphs

The last mathematical object we would like to mention in
this section is the problem description graph (PDG) that was
introduced by Pochter ef al. (2011), and later on reformu-
lated for different purposes by Domshlak et al. (2012), and
Shleyfman et al. (2015). In this work we will use the defini-
tion of PDG for the FDR planning tasks. It is important to
point out that this structure has no direct use in the proofs in
the work below. However, since we want to illustrate some
of our claims by graphic examples, PDGs become quite
helpful, since in contrast to structural symmetries PDGs are
graphs, and hence can be presented in a picture.

Definition 1. Let IT be a FDR planning task. The problem
description graph (PDG) of 11 is the colored directed graph
(N, E) with nodes

N =NyU | Npw)yUNa
veY

where Ny = {n, | v € V}, Np@y = {ng.q | d € Dv},

and N4 = {n, | a € A}, node colors

0 ifn e Ny
1 ifn € U ND(,U) and <U,d> eG
col(n) = . vey
2 ifne€ |J Np)and (v,d) ¢ G
veV
3+ cost(a) ifng € Na
and edges

E=|JE Ul EruE"
veV acA
where E¥ = {(ny,nu.aq) | d € D)}, EF¢ =

{(nasngay) | (v,d) € pre(a)}, and BT = {(n(y.a), na) |
(v,d) € eff(a)}}.

In their work, Pochter er al. (2011) observed that PDG
symmetry is a symmetry of 7y that is induced by a graph
automorphism of the PDG of II. In what follows, we
will denote by Aut(PDG(II)) the automorphism group of
the PDG of the task II. Shleyfman er al. (2015), in turn
showed that every structural symmetry of II corresponds
to a PDG symmetry of II in the sense that they induce
the same transition graph symmetry, thus we will assume
Aut(PDG(IT)) = Auwt(II). The illustrative examples of
planning tasks will also be presented via PDGs.

Complexity

In this section we aim to prove that for each undirected graph
one may construct a planning task with a similar automor-
phism group. We show a simple reduction that will prove
that the computation of this automorphism group is at least
GI-hard.

The Graph Isomorphism problem (GI) is a well-known
problem that gave its name to a whole complexity class. This
problem is a decision problem of determining whether two
finite graphs are isomorphic. Another well-known problem
is the graph automorphism problem, that is a problem of test-
ing whether a graph has a nontrivial automorphism. This is
at least as hard as solving the decision problem of whether
automorphism group of a given graph is trivial or not. The
graph automorphism problem is polynomial-time many-one
reducible to the graph isomorphism problem (Mathon 1979)
(the converse reduction is unknown). Thus, given the re-
duction below, we can say that computing the automor-
phism group of a given planning task is at least GI-hard.
The latest result by Babai (2015) claims (most probably
rightfully) that GI can be solved in quasi-polynomial time,
i.e. in exp((logn)®™M). The best previous bound stood on
O(exp(v/nlogn)) (Babai and Luks 1983).

Morphisms

While discussing relations between the automorphism
groups of different structures, we should first introduce the
notation of structure preserving mappings and comparison
between these groups. In this section we will rely mostly on
the basic definitions of the group theory taken from “Topics
in algebra” by Herstein (1975). Let us start with some useful
mappings:

430

Definition 2. Let G and G’ be groups:

1. andlet ¢ : G — G’ be a mapping that satisfies p(ab) =
¢(a)p(b) forall a,b € G. Then, ¢ is a homomorphism of
GG

2. If, in addition to 1., ¢ is also a bijection, it is called an
isomorphism, this is denoted by G = G', or simply G =
G

3. If, in addition to 1., ¢ is also an injection, then there exist
a subgroup H < G, s.t. H = G. In this case we will
write simply G < G'.

Since we still would like to embed groups into groups,
we will need the following Definitions and Theorem (once
again taken from the book “Topics in algebra”).

Definition 3. Let H be a subgroup of G, and let x be an
element in G.

1. The set of elements Hx = {hx | h € H} is called a right
coset of H. A left coset defined similarly.

If for every x € G holds that Hx = xH, H is called a
normal subgroup.
3. Let H be a normal subgroup of a G. The set ¢ /y =

{zH | x € G} of all left cosets forms a quotient group of
G modulo H.

To establish additional relationships between homomor-
phisms, quotients, and subgroups we will need the following
theorem by Noether (1927).

Definition 4. Let H and G be two groups, and let ¢ : G —
H be a group homomorphism. The kernel of the map ¢, de-
noted by ker (), is the set 1 (id).

In some sense, the kernel of a homomorphism measures
how much “non-injective” the homomorphism is. This mea-
sure is especially important if we want to form a connection
between two subgroups that are not subgroups of each other.
The next Theorem shows how one can construct such a sub-
group (note that there is always at least one, trivial, homo-
morphism between two groups):

2.

Theorem 1 (First Isomorphism Theorem). Let G and H be

groups, and let ¢ : G — H be a homomorphism. Then:

1. The kernel of ¢ is a normal subgroup of G,

2. The image of ¢ is a subgroup of H, and

3. The image of ¢ is isomorphic to the quotient group
G/ker(¢)-

In particular, if ¢ is surjective then H is isomorphic to

G/ker(d))-

Note that the proofs that both ker(¢) < G and ¢(G) < H
subgroups are immediate. Now, fully equipped with these
abstract algebra tools, we can proceed to slaying our little
mathematical dragon.

Reduction to a Single Variable

As we mentioned before, Pochter er al. (2011) introduced
a method for deduction of the automorphism group for an
FDR representation of a planning task using PDGs. While
this representation is easy to visualize and understand, it is a
bit inconvenient as an algebraic model of representation. On

the other hand, structural symmetries, while having a much
simpler definition, lack the graphical appeal. Thus, while the
proofs in this section will be formulated in the language of
structural symmetries, the examples will be drawn as PDGs.

The first case we would like to examine is the case of a
planning task IT with an unbounded variable domain. Un-
der this condition only one variable per task is sufficient,
to show the reduction to undirected graphs, since Zemly-
achenko et al. (1985) showed that finding an isomorphism
of a connected graph is a GI-complete problem. We will use
this result to prevent the task from being reducible via stan-
dard reachability preprocessing. It is important to note that
this complexity result holds for a clearly polynomial-time
solvable task.

Proposition 1. Let G be a connected undirected graph.
Then, there exists planning task TI WV, A ILG), st
Aut(G) = Aut(Il) and |V| = 1.

Proof. Let (N, E) be the vertices and edges of G, corre-
spondingly, and let V = {v} be the single variable in the
task IT. We will define the domain of v to be D(v) := {v,, |
x € N} U {vy}, where v, is the goal value of the variable v
(G := {(v,v4)}). Now, since the structural symmetries ig-
nore the initial state, all is left to do is to define the actions of
this task. Since we have only one variable, we will use the
following notation a,, ., = ({(v,vz)}, {(v,vy)}). The
actions A of our task will be divided into two sets:

1. Ag := {avm—myyauy—mm | €= {z,y} € E}’ and
2. Ay :={ay, 50, | ¥ € N}.

For a graphical example see Figure 1. Now, let us look at the
map ¢ : N — {(v,d) | d € D(v)}, by construction 1 is
injective. Therefore the map ¢ : Aut(G) — Aut(II):

¢(U)(<’U,’Uz>) ¢(O—(¢_1(<U7vz>))) if v, # v,

- { (v, vy otherwise

is also injective, since it is easy to see that ¢ preserves the
relation on the edges, v : £ — Apg set-wise. The injection
follows from the observation that (v,v,) is a unique goal
fact which can be mapped by o only upon itself, and ¥ :
N — A, is a bijection. Thus we get the desired Aut(G) =
Aut(IT). O

The immediate corollary of this proof is that computing
the symmetry group of a planning task formulated in propo-
sitional STRIPS language (Fikes and Nilsson 1971) is also
GI-hard.

Corollary 1. Let G be a connected undirected graph. Then,
there exists a delete-relaxed planning task 11" stated in the
STRIPS formalism, s.t. Aut(ITT) = Aut(G).

Proof sketch. Given that the paper, as it is, already overbur-
dened with definitions and notations, we skip the formal def-
inition of the STRIPS formalism.

Informally, a PDG for STRIPS will have a vertex of color
1 for each atom p, and two vertices for each action a, where
the first one corresponds to the precondition of this action,
and the second to both of the effects, i.e. del(a), and add(a).
We will also add an edge (pre(a), eff(a)) for each action,

431

Figure 1: [llustration of a mapping of a single edge in a graph
for Proposition 1: vertices x,y € N,and an edge e; 4
{z,y} € E are mapped to value vertices v, v, and two
dashed action edges (vg, vy), (vy,vs), correspondingly. in
addition, to preserve the PDG structure, each PDG graph
will have a single variable vertex v, a single goal value v,
and an edge (v, v,) foreachx € N.

and set pre(a) to be of color 2 , and eff(a) of color 3 (as-
suming unit-cost). Now, for an atom p € eff(a) we have
a directed edge (p,eff(a), if p € add(a) a directed edge
(p,eff(a)), and if p € del(a) the directed edge will be
(eff(a), p). Goal atoms will be of a color 4.

In the delete-relaxed case the eff vertex is redundant, since
we can represent each action with a single vertex a, s.t. if
p € pre(a) we have an edge (p,a) and if p € add(a) an
edge (a,p).

Thus, to convert the FDR PDG from Proposition 1 to
a PDG of a delete relaxed planning task, formulated in
STRIPS, all we need to do is to remove the variable vertex v,
by this removing the mutex condition on all values\atoms.
Since, by construction, v is a vertex fixed by every automor-
phism (this vertex has a unique color), Aut(IT*) will remain
the same as in Proposition 1.

Since both a precondition and an effect of each action in
the proof are single-valued, mapping each value to an atom
will produce a delete-relaxed STRIPS planning task, which
is a special case of STRIPS planning tasks. Thus, by the fact
that STRIPST C STRIPS we have:

Corollary 2. Computing the automorphism group of a plan-
ning task formulated in STRIPS is GI-hard.

It is also important to note that all the reductions presented
in this section have a linear time complexity in the size of the
task at hand.

Bounded Variable Domain

In their work Béackstrom and Klein (1991) defined D-
BOUNDED FDR PLANNING to be all tasks where |D(v)| <
D for all v € V. They also showed that this class of sub-
problems lie in PSPACE-complete, even for D = 2. We are
interested in this class since it is the minimal condition that
bounds the variable domain, and we would like to establish a
connection between the vertices of a given undirected graph
and the variables of the planning task constructed by the re-
duction. This relation is not necessarily unique, and may be
interpreted in numerous ways. As the middle ground, how-
ever, we chose to conduct our proof using causal graphs,
since they are already well-explored, and had been shown

to have direct connections to the complexity of planning
tasks (e.g. Giménez and Jonsson (2008), Katz and Domsh-
lak (2008)). Unfortunately, the next statement asserts that
there is no straightforward subgroup relation between the
automorphism group of the planning task and the automor-
phism group of its causal graph.

Observation 1. Exists a planning task 11, s.t. Aut(II) £
Aut(CG(II)) and Aut(CG(IT)) £ Aut(II).

Proof. Let II be a planning task with variables V' and ac-
tions .A. Consider a set of variables V = {v,u}, where
D(v) = {v1,v2,v3,v4} and D(u) = {uy,us}. Let A be
a set of actions, each with a single precondition and a single
effect. To improve the readability of this example, we will
use the following notation a, ., = ({(x,z:) }, {(y, y;)}),
for example the action a,,—,, = {({{v,v1)},{{v,v2)}).
Now, let us define a set of actions of II,

A :{(]"”'J*H}(i mod 3)+13 Qvi—vy ‘ (S [3]}U
{a’v4%u2 y Qug—vys Auy—ug s }

Since we don’t want our planning task to be redundant,
we will set G {{v,v4)}. Tt is easy to check that
Aut(IT) is generated by the cycle ((v,v1), (v, v2), (v, v3)),
i.e. for some o € Aut(II) holds that o((v,v1)) = (v, va),
o({v,v2)) = (v,v3), and 0 = id to complete the cycle,
and that o is fixed on all other facts. Thus, Aut(Il) = Zs,
a cyclic group! of order 3. The causal graph and PDG of II
are depicted in Figure 2.

OWORD

v U
o—0®

Figure 2: Illustration for Observation 1: The graph with the
white nodes represents the PDG of the task described in the
Observation in question. Since precondition and effect of
each action are single-valued, we annotated them via dashed
arrows. The goal fact is denoted by a double circle. Here it
is easy to see that the automorphism group of the PGD is
generated by the cycle (v1, ve, v3) (red, dashed arrows). The
filled dots represent the causal graph of the same task.

On the other hand, the causal graph of task II is (N =
{v,u},€ = {(v,u),(u,v)}), and has the automorphism
group that is isomorphic to Z,. Hence, since both Zs, Zo
have no nontrivial subgroups, the claim holds. O

Since the following sequence of proofs may seem a bit
cumbersome we provide this cheat sheet that follows the

!The definition of a cyclic group is given below, in the Group
Presentation section.

432

skeleton proof for what is presented below. Let I be an FDR

planning task, with PDG(II) and CG(II), as its problem

description and causal graphs, correspondingly.

0. Given a simple preprocessing Aut(PDG(II)) = Aut(II)
(Shleyfman et al. (2015)).

1. As we have just seen, Aut(II) is not a subgroup of
Aut(CG(II)), and vice versa (Observation 1).

2. However, and this is the main part of the proof, Aut(II)
modulo the automorphisms of the values is a subgroup
of Aut(CG(II)) (Lemma 1). Intuitively, we remove the
symmetries of the values, but keep the symmetry relations
between the variables in the sense that if the variables v
and u were not symmetric before the removal, they will
not be symmetric afterwards.

3. In the special case, where all variables are “the same”
using Lemma 1 we prove that Aut(CG(II)) = Aut(II)
(Theorem 2).

Note that CG(II) is a directed simple graph.

5. For any undirected graph G, we have a special case of
CG(II) (that is a DAG) s.t. Aut(G) = Aut(CG(II))
(Proposition 2).

6. For every undirected graph G there is a planning task IT
s.t. Aut(Il) = Aut(PDG(II)) = CG(II) = Aut(G)
(Corollary 3).

All the reductions in this chart have a linear time complexity.
Since we still would like to establish a connection be-

tween the automorphism groups of a planning task and its

causal graph, we will embed Aut(CG(II)) into Awut(IT)
while removing the ‘“undesirable” automorphisms. Intu-
itively, the next Lemma shows that if we strip all the au-
tomorphisms from Awut(IT), so that they do not affect the
variables of the task, the resultant subgroup can be embed-
ded into the automorphism group of C'G(II).

Lemma 1. Let ¢ : Aut(Il) — Aut(CG(1)) be a map s.t.
foreach o € Aut(Il) : ¢(o) = o, where oy, is o restricted
to V. Then, ¢ is a homomorphism, and A“t(n)/ker(cﬁ) <
Aut(CG(II)).

Proof. Once again, let II be a planning task with variables
V and actions A. First, let us prove that oy, is an auto-
morphism. Let (u,v) € & be an edge in CG(II). Hence
exists a € A, s.t. u € vars(pre(a)) U vars(eff(a)) and
v € vars(eff(a)). Therefore, for each o € Aut(II) it holds
that o (u) € vars(pre(o(a))) U vars(eff(o(a))) and o(v) €
vars(eff(a(a))), from which follows that (o (u), oy (v)) €
E. The converse is true, since each o~ ! is also an automor-
phism.

Second, ¢ is a homomorphism, since for each 0,0’ €
Aut(II), it holds that ¢(o)p(c’) = oyo}, = (o0’)y
¢(cc’), given that ¢ is a restriction to variables.

Now, ker(¢) = {o € Aut(Il) | oy = idy}, and by
the first isomorphism theorem it holds that A« /;) =
P(Aut(1l)) < Aut(CG(II)).

Following the intuition of Lemma 1, in the Theorem be-
low we construct a planning task that has no “inner” auto-
morphism. The automorphism group of such task should be

isomorphic to the automorphism groups of its causal graph.
This theorem is the main result of this section.

Theorem 2. Let G be a directed graph. Then, there exists a
planning task 11, s.t. G = CG(II), Aut(G) = Aut(II).

Proof. In this proof, given a directed graph G = (N, E),
we should construct a planning task II that satisfies the con-
ditions of the Theorem. First, it is clear that vertex x €
N should correspond a variable v € V. Now, since we
would like to use Lemma 1, the kernel of the homomor-
phism ¢ should be trivial. Thus, we set Dv {T, F},
and add an action a,.p—p.r = ({{v, F)}, {{(v,T)}), s.t.
for each 0 € Aut(II) holds o((v, F')) # (v, T). For each
(z,y) € E, let v and u be the corresponding variables in
V. To ensure that G = CG(II), we add a unique action
Ay F—o:r = {{{u, F)}, {{v, F)}), which, in turn, assures
that if 0(ay.p—sv:F) # Gu:F—sv.F, then either o(v) # v or
o(u) # w. In addition, we need to specify an initial state,
and a goal description. Let those two be full assignments
I={(v,F)|veV}tand G := {(v,T) | v € V}. Since,
by construction of II, o never maps 7' to F/, this leaves the
automorphism group Awut(IT) unchanged. To summarize, the
constructed planning task II = (V, A4, I, G) looks as fol-
lows:

1. V=A{v|v e N}, with D(v) = {T, F'} for each v,

2. A= {asz%v:T | v e V} U {Um:F%u:F | ('Uvu) € E}’
3. I ={{v,F)|veV} and

4. G={{(v,T)|veV}

Since the algebraic mapping can be hard to imagine, the
PDG structure of edge (u,v) is depicted in Figure 3.

Now, let ¢ be a homomorphism as defined is Lemma 1.
By construction of II, ¢ is surjective and ker(¢) = idg,
thus Aut(G) = Aut(I). O

i

@\j,»@/@\

v U
o—0

Figure 3: Illustration of a mapping of a single edge in a graph
for Theorem 2: Once again, the graph with the white nodes
represents the PDG of and edge (v, u) (depicted by filled
nodes). Here it easy to see that there no “inner” symmetries,
and the planning variable (v, D(v)) can be mapped into a
planning variable (u, D(u)) exactly in one way.

Now all is left to show, that there is an automorphism
group preserving reduction from undirected graphs to di-
rected graphs.

433

Proposition 2. Let G be a undirected graph. Then, there
exists a directed simple graph G, s.t. Aut(G) = Aut(G).

The proof of this statement is not new, but we will use it
later on to show that even special cases of planning tasks are
difficult to solve, in the sense of finding the automorphism
group. But first, let us introduce yet another notation. Let
(V, E) be a directed graph. We denote the indegree and the
outdegree (correspondingly) of a vertex v € V by

degy,:(v) == {u € V| (v,u) € £}| and
deg, (v) = {u € V| (u,v) € E}].

Proof. Let G = (N, E) be an undirected graph. Let us de-
fine a directed graph G = (V, &) as follows:

1. V:=NUE,and
2. &:={(e,x),(e,y) | e = {w,y} € E}.

Note that for the vertices in V for x € N and e € F,
deg,,+(x) = deg;,,(e) = 0. The graphic example of this
construction can be seen if Figure 4. Hence, for each o €
Aut(G) holds that ¢(N) = N and o(E) = E, where N
and FE are both sets of vertices in . Moreover, for each
edge e = {z,y} in F correspond to edges (e,), (e,y) in
G. Thus, for o € Aut(G), e = {z,y} € E iff o(e)
{o(x),0(y)} € E which corresponds to (e, x), (e,y) € &
iff (o(e),0(x)), (o(e),o(y)) € €. Using this, we will define
¢ : Aut(G) — Aut(G):

o(v) ifveN,
¢(0)(v) = { €o(@)oly) LU =€ry
fore = {z,y} € E.

Now, to prove that ¢ is an isomorphism we need to prove
that ¢ is a surjection, and that ker(¢) = {idg}. First,
for each 7 € Aut(G), ¢7'(1) = 7|y € Aut(G). Sec-
ond, ¢~ !(idg) = idg|ny = idg. Thus, by the first iso-
morphism theorem it holds that 4*#(9) /¢, + = Aut(G) =

Aut(G). O
x €T
°
Y Y
° °

Figure 4: [llustration of a mapping of a single edge in a graph
for Proposition 2: edge e, , = {z,y} € F is mapped to a
vertex e, , € V and two edges (e, z), (e, y) € €.

The next Corollary is the immediate consequence of
Proposition 2 and Theorem 2.

Corollary 3. Given a planing task I1, computing Aut(II) is
equivalent to computing Aut(G) for some undirected graph

g.

Proof of Proposition 2 also shows that even planning tasks
that have a bipartite one-way directed causal graphs (fork
decomposition by Katz and Domshlak (2008)) may have an
arbitrary finite automorphism group, which follows from the
next theorem proven by Frucht (1949)

Theorem 3 (Frucht’s theorem). Every finite group is the au-
tomorphism group of a finite undirected graph.

To summarize, in this section we proved that for each con-
nected undirected graph one may construct a planning task
with the same automorphism group. This planning task may
be formalized using FDR or STRIPS, in the former case,
the task may have a single variable, or a variable domain
bounded of a size 2, but not both.

Group Presentation

In this section we discuss the presentation of symmetry
groups, show some trivial upper and lower bounds on the
size of these groups, and present some drawbacks of this
presentation.

Most of the tools for computing automorphism groups,
such as Bliss (Junttila and Kaski 2007), nauty (McKay and
Piperno 2014), and saucy (Darga, Sakallah, and Markov
2008), report the set of generators required to produce the
Aut(G) automorphism group of a given graph G. In some
works (Sievers et al. 2015a; 2017), the authors chose to re-
port these numbers for each group, or even for each planning
domain in the experimental benchmarks. This may lead to a
false impression that given the number of generators of the
group one may asses the size of the group, or even decide
that given two groups with a different number of genera-
tors, these two groups must differ in structure (Sievers et al.
2015a). In this section we will show some faults in this ap-
proach. One indeed may calculate a simple lower bound on
the size of the group. However, given the size of the gener-
ating set, one can neither approximate the upper bound on
the size of the group (even with the order of each generator
provided), nor can one decide whether two groups are not
isomorphic given that their generating sets differ in size.

To this aim, we need some standard definitions:

Definition 5. Let G be a group. We say that G has a presen-
tation (S | R), where S is a set of generators so that every
element of the group can be written as a product of pow-
ers of some of these generators, and R is a set of relations
among those generators.

Let F(S) be a free group on S, that is all finite words of
S with the relation vuu~'w = sw, where v,u,w € S. The
set of relations R is a subset of F'(S).

The group G is said to have the above presentation if it is
isomorphic to the quotient of F(S) by the minimal normal
subgroup that contains the set R.

We say that presentation (S | R) of group G is irreducible
if forno S" C S holds that G isomorphic to (S | R|s).

From the First Isomorphism Theorem follows that ev-
ery finite group has a presentation. As an easily obtained
corollary of this statement we have that every finite group
is finitely generated, since S can be taken to be G itself. To
get a better grip on this definition we will give a couple of
examples, that will be used further in this section.

434

Example 1. The cyclic group is a group generated by a
single element. The group Cy, can be presented as (S | R
where:

o S:={o};
o R:={o"}.

It is easy to see that for a given k& € N, it holds that |Cy,| =
k, and the group has exactly one generator. Example 1 yields
the fact that the number of generators does not provide the
upper bound on the size of the group. To calculate the lower

bound we will prove the following lemma?:

Lemma 2. Let G be a group with presentation (S | R), and
let S = {g1,...,9t} be a set of t irreducible generators.
Then, |G| > 2t.

Proof. Let G™ be a subgroup of G that has a set of gen-
erators {g1,...gm}, for 1 < m < t. Since the set S is
irreducible with respect to G, every subset of S is also ir-
reducible with respect to the subgroup of G it generates,
thus g,, 11 ¢ G™. Therefore, G™*1 has at least two cosets
eG™ = G™ and ¢,,+1G™. By definition of cosets it holds
that G™ N g, +1G™ = (). Which leads to |G™ 1| > 2|Gm|
Thus, by induction on m we have that G* > 2.

The equality for the Lemma above is achieved on the
group Cy = 7 = [[i_, Zo. This means, the amount of
elements (order) of a finite group is at least exponential in
the size of group generators.

To show that group structure is not defined by the number
of generators we will need at least one other group that is
not cyclic. To this end we will define the symmetric group.
Note that in the literature, symmetry group is often used as a
synonym to the automorphism group of some mathematical
object, where the symmetric group (used here) is the group
of all permutations of some n identical objects.

Example 2. The symmetric group S,, on a finite set of n
symbols is the group whose elements are all the permuta-
tions on n distinct symbols. The group S,, can be written as
(S| R) where:

o S:={o;|ie[n—-1]}

e R:={0?|ic [n—l]}u{oiajai_laj_l |[i#j£1}U

{(0i0;)% 3,5 € [n— 1]}

Note that the cyclic notation is the natural representation
of the structural symmetries group of a planning task, where
each number ¢ € [n] represents a fact used for state repre-
sentation. It is also important to point out (and easy to check)
that S,, has n! elements. Using the cyclic notation, each el-
ement in the presentation can be written as o; = (4,7 + 1),
which means that o; maps the element ¢ to element ¢ + 1,
element ¢ + 1 is mapped to ¢, and other elements are mapped
to themselves. This presentation is irreducible (Alperin and

Bell 1995), meaning that none of the permutations can be
excluded from the set S, where |S| =n — 1.

2This result is well known in group theory, but unfortunately
we haven not found any citing source.

As we showed a bit earlier in this section the group C%
also has n generators, each of order two>. At the same time,
we have C§ 2 S,,41, since 2™ # (n + 1)1, forn > 1.

By this example, reporting the number of generators per
domain, or even for a specific group (even including the or-
der of these generators) is not very informative, since these
numbers basically tell us nothing about the size and/or struc-
ture of the group. For example, the group (a, b | a2, b?) with
only two generators both of order 2 is of an infinite size:
{a, ab, aba, abab, ...}

Another way to write the cyclic group S,,, may be given
with only two cyclic generators (1,2) and (2, ...,n), which
are also irreducible (Alperin and Bell 1995). Note that in the
first cyclic presentation of S,, each generator has an order of
2, and in the second presentation the first cycle is of order
2, and the second cycle is of order n — 1. As one can see,
each group may have more than one presentation, while cal-
culating the minimal number of these generators per group
is known to be at most O(log® n) space (Arvind and Toran
2006). The size of the group, however, can be calculated in
polynomial time. Recall the famous Cayley’s theorem (Her-
stein 1975).

Theorem 4 (Cayley’s theorem). Every group G is isomor-
phic to a subgroup of the symmetric group acting on G.

A direct corollary of this theorem is that every finite group
is isomorphic to a subgroup of the symmetric group S,,. Let
II be a planning task given either in FDR or STRIPS for-
malism. Given that structural symmetries provide us with a
natural embedding of Aut(II) into S,,, where n is the num-
ber of facts (in FDR) or atoms (in STRIPS) of the planning
task, one can deduce that the immediate bound on the size of
the group Aut(II) is n!. This bound does not depend on the
size of the generating set, and it is almost sharp, since for K,
a clique graph on n vertices, we have that Aut(K,) = S,.
Hence, by the proof of Proposition 1, there is an FDR plan-
ning task s.t. Aut(II) C S, and II has exactly n + 1 facts,
if this planning task is not trivial (i.e., it must have exactly
one goal fact, which is not symmetric to all others, by defi-
nition). Given the formalism STRIPS one may transform the
clique K, into a non-trivial planning task with exactly n
atoms (where each atom of the task is a goal atom).

To obtain the exact size of the group G < §,, with a gener-
ating set S here given in a cyclic notation, one may chose to
use the Schreier-Sims algorithm, developed by Sims (1970),
with time-complexity O (n° +|S|n?), and later on improved
by Jerrum (1986) and Knuth (1991) — O(n® + |S|n?). Cur-
rently, the state-of the-art in the terms of time-complexity is
the randomized algorithm developed by Babai et al. (1995).
The Monte Carlo time-complexity of the later is O~ (n?),
which is considered near to optimal for general groups.
Given all that, it remains unclear how the size of the auto-
morphism group can be employed in the setting of classical
planning.

3Order of an element g is the minimal number m s.t. g™ = e.

435

Acknowledgements

The work was supported by the Adams Fellowship Program
of the Israel Academy of Sciences and Humanities. The au-
thor would like to thank Carmel Domshlak, Ilya Shitov, and
the anonymous reviewers for their helpful and constructive
comments that greatly contributed to the improvement of the
final version of the paper.

References

Abdulaziz, M.; Norrish, M.; and Gretton, C. 2015. Exploit-
ing symmetries by planning for a descriptive quotient. In
IJCAI 2015, 1479-1486.

Alperin, J. L., and Bell, R. B. 1995. Groups and represen-
tations. Graduate texts in mathematics. Springer.

Arvind, V., and Toran, J. 2006. The complexity of quasi-
group isomorphism and the minimum generating set prob-
lem. In ISAAC.

Babai, L., and Luks, E. M. 1983. Canonical labeling of
graphs. In STOC 1983, 171-183.

Babai, L.; Cooperman, G.; Finkelstein, L.; Luks, E.; and Ser-
ess, A. 1995. Fast monte carlo algorithms for permutation
groups. In Selected Papers of the 23rd Annual ACM Sympo-
sium on Theory of Computing, 296-308. Orlando, FL, USA:
Academic Press, Inc.

Babai, L. 2015. Graph isomorphism in quasipolynomial
time. CoRR abs/1512.03547.

Bacchus, F., and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. A1J 71(1):43—
100.

Béckstrom, C., and Klein, I. 1991. Planning in polyno-
mial time: the SAS-PUBS class. Computational Intelligence
7(3):181-197.

Bickstrom, C., and Nebel, B. 1995. Complexity results

for SAS™ planning. Computational Intelligence 11(4):625-
655.

Bonet, B.; Haslum, P.; Hickmott, S. L.; and Thiébaux, S.
2008. Directed unfolding of petri nets. Trans. Petri Nets
and Other Models of Concurrency 1:172—-198.

C. Sims, C. 1970. Computational methods in the study of
permutation groups. In Computational Problems in Abstract
Algebra, 169-183.

Darga, P. T.; Sakallah, K. A.; and Markov, I. L. 2008. Faster
symmetry discovery using sparsity of symmetries. In DAC
'08, 149-154. New York, NY, USA: ACM.

Domshlak, C., and Brafman, R. I. 2002. Structure and com-
plexity in planning with unary operators. In AIPS 2002, 34—
43.

Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In ICAPS 2012.

Domshlak, C.; Katz, M.; and Shleyfman, A. 2013. Symme-
try breaking: Satisficing planning and landmark heuristics.
In ICAPS 2013.

Emerson, E. A., and Sistla, A. P. 1996. Symmetry
and model-checking. Formal Methods in System Design
9(1/2):105-131.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. AlJ 2:189-208.

Fiser, D.; Alvaro Torralba; and Shleyfman, A. 2019. Opera-
tor mutexes and symmetries for simplifying planning tasks.
In AAAI 2019.

Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI 1999, 956-961.

Frucht, R. 1949. Graphs of degree three with a given abstract
group. Canadian Journal of Mathematics 1:365-378.

Giménez, O., and Jonsson, A. 2008. The complexity of
planning problems with simple causal graphs. JAIR 31:319—
351.

Gnad, D.; Torralba, A.: Shleyfman, A.; and Hoffmann,
J. 2017. Symmetry breaking in star-topology decoupled
search. In ICAPS 2017., 125-134.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS 2004, 161-170.

Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191-246.

Herstein, I. N. 1975. Topics in algebra. Xerox College Pub.

Jerrum, M. 1986. A compact representation for permutation
groups. J. Algorithms 7(1):60-78.

Junttila, T., and Kaski, P. 2007. Engineering an efficient
canonical labeling tool for large and sparse graphs. In Ap-
plegate, D.; Brodal, G. S.; Panario, D.; and Sedgewick, R.,
eds., Workshop on Algorithm Engineering and Experiments,
ALENEXO07, 135-149. SIAM.

Junttila, T. 2003. On the symmetry reduction method for
Petri nets and similar formalisms. Helsinki University of
Technology; Teknillinen korkeakoulu.

Katz, M., and Domshlak, C. 2008. Structural patterns
heuristics via fork decomposition. In ICAPS 2008, 182-189.

Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. ALJ 68(2):243-302.

Knuth, D. E. 1991. Efficient representation of perm groups.
Combinatorica 11(1):33-43.

Mathon, R. 1979. A note on the graph isomorphism count-
ing problem. Information Processing Letters 8:131-132.
McKay, B. D., and Piperno, A. 2014. Practical graph iso-
morphism, {II}. Journal of Symbolic Computation 60(0):94
-112.

Noether, E. 1927. Abstrakter aufbau der idealtheorie in
algebraischen zahl- und funktionenkorpern. Mathematische
Annalen 96:26-61.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing problem symmetries in state-based planners. In AAAI
2011.

Rintanen, J. 2003. Symmetry reduction for SAT representa-
tions of transition systems. In ICAPS 2003, 32-41.

436

Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and symmetries in classical
planning. In AAAI 2015, 3371-3377.

Sievers, S.; Wehrle, M.; Helmert, M.; and Katz, M. 2015a.
An empirical case study on symmetry handling in cost-
optimal planning as heuristic search. In K1 2015, 166—180.

Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015b. Factored symmetries for merge-and-shrink
abstractions. In AAAI 2015, 3378-3385.

Sievers, S.; Roger, G.; Wehrle, M.; and Katz, M. 2017.
Structural symmetries of the lifted representation of classi-
cal planning tasks. In HSDIP 2017.

Starke, P. 1991. Reachability analysis of petri nets using
symmetries. Journal of Mathematical Modelling and Simu-
lation in Systems Analysis 8(4/5):293-304.

Wehrle, M.; Helmert, M.; Shleyfman, A.; and Katz, M.
2015. Integrating partial order reduction and symmetry
elimination for cost-optimal classical planning. In IJCAI
2015, 1712-1718.

Zemlyachenko, V. N.; Korneenko, N. M.; and Tyshkevich,

R. 1. 1985. Graph isomorphism problem. Journal of Soviet
Mathematics 29(4):1426-1481.

