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Abstract

Planning under model uncertainty is a fundamental problem
across many applications of decision making and learning.
In this paper, we propose the Robust Adaptive Monte Carlo
Planning (RAMCP) algorithm, which allows computation of
risk-sensitive Bayes-adaptive policies that optimally trade off
exploration, exploitation, and robustness. RAMCP formulates
the risk-sensitive planning problem as a two-player zero-sum
game, in which an adversary perturbs the agent’s belief over
the models. We introduce two versions of the RAMCP al-
gorithm. The first, RAMCP-F, converges to an optimal risk-
sensitive policy without having to rebuild the search tree as the
underlying belief over models is perturbed. The second ver-
sion, RAMCP-I, improves computational efficiency at the cost
of losing theoretical guarantees, but is shown to yield empiri-
cal results comparable to RAMCP-F. RAMCP is demonstrated
on an n-pull multi-armed bandit problem, as well as a patient
treatment scenario.

Introduction
In many sequential decision making domains, from person-
alized medicine to human-robot interaction, the underlying
dynamics are well understood save for some latent parame-
ters, which might vary between episodes of interaction. For
example, we might have models for the evolution of a disease
of a patient under various treatments, but they may depend on
unobserved, patient-specific physiological parameters. Faced
with a new patient, the agent must learn over the course
of a single episode of interaction, as it simultaneously tries
to identify the underlying parameters while maximizing its
objective of improving the patient’s health.

Such challenges are commonplace, yet not well addressed
by standard episodic reinforcement learning, which assumes
no prior knowledge and learns over the course of repeated
interaction on the same system. These problems are better
addressed by a Bayesian approach to reinforcement learning,
in which the agent can leverage prior knowledge in the form
of a belief distribution over a family of likely models, which
can be updated via Bayes’ rule as the agent interacts with
the system (Ghavamzadeh et al. 2015). Incorporating this
prior knowledge enables effective learning within a single
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episode of interaction, and also allows the the agent to con-
sider how to balance identification of the latent parameters
with maximizing the objective.

While leveraging a prior distribution over models is pow-
erful, coming up with accurate priors remains a challenge. In
the contexts of human interaction scenarios like patient treat-
ment, these distributions might be obtained experimentally
from past interactions, or may be chosen heuristically by a
domain expert. Therefore, this prior over models is likely to
be inaccurate, and thus it is paramount that the agent plan
in a manner that is robust to incorrect priors, especially in
safety-critical settings.

Contributions The contributions of this work are three-
fold. First, we present (to our knowledge) the first mathe-
matical framework to incorporate robustness to priors in the
context of Bayesian RL. Second, we present Robust Adap-
tive Monte Carlo Planning (RAMCP), an sampling-based
tree search algorithm for online planning in this framework
for discrete MDPs and discrete priors over models. The ap-
proach fundamentally consists of an adversarial weighting
step on top of standard risk-neutral tree-search approaches
to Bayesian RL such as BAMCP (Guez, Silver, and Dayan
2013). In particular, we introduce two version of the RAMCP
algorithm, which we refer to as RAMCP-F and RAMCP-I.
For the first, we prove that this adversarial optimization does
not oscillate, and indeed converges to the optimal solution.
RAMCP-I, on the other hand, sacrifices convergence guar-
antees for empirical performance. Finally, we demonstrate
the algorithms through numerical experiments including a
patient treatment scenario, and compare the performance of
the two versions of the RAMCP algorithm.

Background
This work considers adding robustness to model-based
Bayesian reinforcement learning. In this setting, we wish
to control an agent in a system defined by the Markov Deci-
sion Process (MDP)M = (S,A, T,R,H), where S is the
state space, A is the action space, T (s′|s, a) is the transition
function,R(s, a, s′) is the stage-wise reward function, andH
is the problem horizon. We assume that the exact transition
dynamics T depend on a parameter θ, and denote this depen-
dence as Tθ. We assume that the agent knows this MDP, but
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is uncertain about the true setting of the parameter θ, and in-
stead maintains a belief distribution over this parameter. This
structured representation of the agent’s knowledge (and lack
of knowledge) of the planning problem allows considering
the objectives of exploration and robustness in addition to the
standard MDP objective of maximizing reward.

The Explore/Exploit Dilemma As the agent acts in the
true MDP, the observed state transitions will provide infor-
mation about the true underlying system parameters. An
agent might explore, i.e. choose actions with the aim of re-
ducing uncertainty over θ, or exploit, choosing actions to
maximize cumulative reward given its current estimates of θ.
The Bayesian setting allows optimally making this tradeoff.

Writing the observed transitions so far, or the history in
an environment at time t as ht = (s0, a0, . . . , st) and given
a prior distribution over the model parameters bprior, we can
define optimal behavior in the Bayesian setting. LetH denote
the set of possible histories for a given MDP. Then, we will
write the set of stochastic history-dependent polices π : H×
A → [0, 1] as Π. Let

V (ht,π) =

Eπ,b

[
H−1∑
τ=t

R(sτ , aτ , sτ+1) | (s0, a0, . . . , st) = ht

]
denote the value function associated with policy π, for his-
tory h, and with model distribution b. A history-dependent
policy π∗ is said to be Bayes-optimal with respect to the
prior bprior if it has associated value function V ({s}, π∗) =
supπ∈Π V ({s}, π) (Martin 1967).

The problem is a special case of a Partially Observable
Markov Decision Processes (POMDP), where the hidden
portion of the state (here, the parameters θ) is fixed over
the course of an episode. As with all POMDPs, this prob-
lem can be cast into a belief-state MDP by augmenting the
state at time t with the posterior belief (or, equivalently,
the history up to that point ht). This is the Bayes-Adpative
Markov Decision Process (BAMDP) formulation, and the
optimal policy in this MDP is the Bayes-optimal policy (Duff
2002). In general, optimizing these policies is computation-
ally difficult. Information-state techniques (as in, e.g., Gittins
indices for bandit problems (Gittins, Glazebrook, and We-
ber 2011)) are typically intractable due to a continuously
growing information-state space (Duff 2002). Offline global
value approximation approaches, typically based on offline
POMDP solution methods, scale poorly to large state spaces
(Ghavamzadeh et al. 2015). Online approaches (Wang et al.
2005), (Guez, Silver, and Dayan 2013), (Chen et al. 2016)
use tree search with heuristics to either simplify the problem
or guide the search.

Robustness to Incorrect Priors While encoding model
uncertainty through a prior over model parameters enables
optimally balancing exploration and exploitation, it is likely
that these priors may be inaccurate. Previous work in pol-
icy optimization for BAMDPs has focused on optimizing

performance in expectation, and thus does not offer any no-
tion of robustness to misspecified priors (Guez, Silver, and
Dayan 2013). Robust MDPs are posed as MDPs with un-
certainty sets over state transitions, and approaches to this
problem aim to optimize the worst-case performance over
all possible transition models (Nilim and El Ghaoui 2005).
However, this minimax approach does not consider the be-
lief associated with a transition model, and thus is typically
over-conservative and can not optimally balance exploration
and exploitation.

Tools from risk theory can be used to achieve tunable,
distribution-dependent conservatism. Given a reward random
variable Z, a risk metric is a function ρ(Z) that maps the
uncertain reward to a real scalar, which encodes a preference
model over uncertain outcomes where higher values of ρ(Z)
are preferred. A key concept in risk theory is that of a co-
herent risk metric. These metrics satisfy axioms originally
proposed in (Artzner et al. 1999), which ensure a notion of
rationality in risk assessment. We refer the reader to (Ma-
jumdar and Pavone 2017) for a more thorough discussion
of why coherent risk metrics are a useful tool in decision
making. While expectation and worst-case are two possible
coherent risk metrics, the set of CRMs is a rich class of
metrics including the Conditional Value at Risk (CVaR) met-
ric popular in mathematical finance (Majumdar and Pavone
2017). The rationality of coherent risk metrics contrasts with
standard approaches (especially in stochastic control (Glover
and Doyle 1988)) such as mean-variance and exponential
risk metrics, for which there are simple examples of clearly
absurd decision-making (Rabin and Thaler 2001).

Applying risk metrics to the reward of a single MDP, yields
an optimization problem with strong connections to the Ro-
bust MDP formulation, with the choice of risk metric in the
risk-sensitive MDP corresponding to a particular choice of
uncertainty set in the Robust MDP formulation (Chow et al.
2015) (Osogami 2012). In contrast, in this work we apply
tools from risk theory to the Bayesian setting in which we
have a prior over MDPs to balance all three objectives of
robustness, exploration, and exploitation in a coherent math-
ematical framework. To our knowledge, this work represents
the first approach that considers all three of these objectives
in the context of sequential decision making.

Problem Statement
We aim to compute a history dependent policy π which is
optimal according to a coherent risk metric over model un-
certainty. To make this objective more concrete, let τ =
(s0, a0, . . . , sH−1, aH−1, sH) be particular trajectory realiza-
tion. Note that the probability of a given trajectory depends
on both the choice of policy π and the transition dynamics
of the MDP, Tθ. The cumulative reward of a given trajectory
J(τ) can be calculated by summing the stage-wise rewards

J(τ) =

H−1∑
t=0

R(st, at, st+1). (1)

Note that since the distribution over τ is governed by the
stochasticity in each environment as well as the uncertainty
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over environments, the distribution of the total cost of a tra-
jectory J(τ) is as well.

In this work, we focus our attention to risk-sensitivity
with respect to the randomness from model uncertainty only.
Concretely, we can write the objective as

Π∗ = arg max
π

ρ (E [J(τ)|θ, π]) , (2)

where the risk metric is with respect to the random variable
induced by the distribution over models. Note that Π∗ denotes
the set of optimal policies.

In this work, we consider a finite collection of M possi-
ble parameter settings, Θ = {θi}Mi=1, and write our prior
belief over Θ as the vector bprior. While limiting ourselves
to discrete distributions over model parameters is somewhat
restrictive, these simplifications are common in, for example,
sequential Monte Carlo. Indeed, computing continuous pos-
terior distributions exactly is often intractable, making this
discrete approximation necessary (Guez et al. 2014).

The above objective differs from that typically used in the
risk-sensitive reinforcement learning literature, which applies
the risk metric ρ directly to the total reward random variable
J(τ) (Tamar et al. 2017). In contrast, we first marginalize
out the effects of stochasticity via the expectation, and then
apply ρ to the multinomial random variable E [J(τ)|θ = θi]
where each outcome corresponds to the expected value of
the policy π on model θi. The robustness provided by risk-
sensitivity protects against modeling errors in distribution. In
the BAMDP context, the primary error in distribution is in
the model belief: the true distribution over models has all its
mass on one model, so effectively any belief will be incorrect.
Furthermore, these beliefs will be updated online, and thus
are susceptible to noise. Comparatively, we assume that for
a particular model, the stochasticity in transition dynamics
is well characterized. Thus, we argue that the optimization
objective (2) is well-aligned with our goal of enabling robust-
ness to model uncertainty.

Approach
In this section we discuss the high-level approach taken in
RAMCP. We begin by reformulating (2) as a two-player,
zero-sum game. This game is played between an agent com-
puting optimal history-dependent policies with respect to a
belief over models, and an adversary perturbing this belief.
Armed with this problem reformulation, we describe Gener-
alized Weakened Fictitious Play (GWFP) (Leslie and Collins
2006), a framework for computing Nash equilibria of two-
player zero-sum games (as well as a collection of other game
settings). Finally, we outline application of GWFP to (2).

Reformulation as a Zero-Sum Game
Our reformulation of the objective stems from a universal rep-
resentation theorem which all coherent risk metrics (CRMs)
satisfy.

Theorem 1 (Representation Theorem for Coherent Risk Met-
rics (Artzner et al. 1999)). Let (Ω,F ,P) be a probability
space, where Ω is a finite set with cardinality |Ω|, F is a
σ−algebra over subsets (i.e., F = 2Ω), probabilities are

assigned according to P = (p(1), . . . , p(|Ω|)), and Z is the
space of reward random variables on Ω. Denote by C the set
of valid probability densities:

C :=

ζ ∈ R|Ω| |
|Ω|∑
i=1

p(i)ζ(i) = 1, ζ ≥ 0

 . (3)

Define pζ ∈ R|Ω| as pζ(i) = p(i)ζ(i), i = 1, . . . , |Ω|. A risk
metric ρ : Z → R with respect to the space (Ω,F ,P) is
a coherent risk metric if and only if there exists a compact
convex set B ⊂ C such that for any Z ∈ Z:

ρ(Z) = min
ζ∈B

Epζ [Z] = min
ζ∈B

|Ω|∑
i=1

p(i)ζ(i)Z(i). (4)

This theorem offers an interpretation of CRMs as a worst-
case expectation over a set of densities B, often referred to
as the risk envelope. The particular risk envelope depends on
the risk metric chosen, as well as the degree of risk-aversity
(which is captured by a parameter for most coherent risk
metrics). In this work we focus on polytopic risk metrics, for
which the envelope B is a polytope. For this class of metrics,
the constraints on the maximization in Equation 4 become
linear in the optimization variable ζ, and thus solving for the
value of the risk metric becomes a tractable linear program-
ming problem. Note that solving this linear program is at the
core of RAMCP. This computational step is why RAMCP
is restricted to discrete distributions over models, and can
not directly be extended to continuous beliefs. Polytopic risk
metrics constitute a broad class of risk metrics, encompassing
risk neutrality, mean absolute semi-deviation, spectral risk
measures, as well as the CVaR metric often used in financial
applications, with the choice of metric determining the form
of the polytope (Eichhorn and Römisch 2005).

Through the representation theorem for coherent risk met-
rics (Equation 4), we can understand Equation 2 as applying
an adversarial reweighting ζ to the distribution over models
bprior. Let badv(i) = bprior(i)ζ(i), i = 1, . . . ,M represent
this reweighted distribution. Thus, (2) may be written

Π∗ = arg max
π

min
ζ∈B

Eθ∼badv [E [J(τ) | θ, π]] , (5)

where again Π∗ denotes the set of optimal policies. We are
interested simply in finding a single policy within this set, as
opposed to the full set. Note that this takes the form of a two
player zero-sum game between the agent (the maximizer)
and an adversary (the minimizer). One play of this game
corresponds to the following three step sequence:

1. The adversary acts according to its strategy, choosing badv

from the risk envelope.
2. Chance chooses θ ∼ badv.
3. The agent acts according to its strategy, or policy, π(h) in

the MDP with dynamics Tθ.
The action of the adversary is to choose a perturbation to the
belief distribution from the polytope of valid disturbances
that minimizes the expected performance of the agent. The
agent seeks to compute an optimal policy under this perturbed
belief. The solution to Equation 5 is therefore the optimal
Nash equilibrium of the two player game, which we denote
as (b∗adv, π

∗).
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Computing Nash Equilibria
Having formulated (2) as a two-player zero-sum game, we
leverage tools developed in algorithmic game theory to effi-
ciently compute Nash equilibria. For two-player, zero-sum
games, a Nash equilibrium can be directly computed by solv-
ing a linear program of size proportional to the strategy space
of each player. In the context of our problem statement, the
agent’s strategy space is the space of all history dependent
policies, and thus solving for a Nash equilibrium directly is
computationally intractable. To compute the Nash equilibria
of the game defined by (2), we apply iterative techniques
which converge to equilibria over repeated simulations of the
game.

Fictitious Play (Brown 1949) is a process in which players
repeatedly play a game and update their strategies toward
the best-response to the average strategy of their opponents.
This process has been shown to asymptotically converge to a
Nash equilibrium. In (Leslie and Collins 2006), the authors
introduced Generalized Weakened Fictitious Play (GWFP),
which allows for computation of approximate best-responses
but maintains convergence guarantees, and thus has worked
well for large-scale extensive form games (Heinrich, Lanc-
tot, and Silver 2015). GWFP converges to Nash equilibria
in several classes of games, including two-player zero-sum
games such as (5). For the risk-sensitive BAMDP, the GWFP
updates to the adversary strategy b and agent strategy π are:

bk+1 = (1− αk+1)bk + αk+1BRε(πk), (6)
πk+1 = (1− αk+1)πk + αk+1BRε(bk) (7)

where BRε(σ) represents an ε-suboptimal best response1 to
strategy σ, and αk+1 is an update coefficient chosen such
that

∑∞
k=1 αk =∞ and limk→∞ αk = 0. While BRε(σ) is

typically used to refer to the set of ε-best responses, we will
use this to refer to a strategy within this set. In this work,
we set αk = 1/k and thus both strategies represent running
averages of the best-responses, a property we leverage in
our algorithm. Initial values of the belief and policy may be
chosen arbitrarily.

The adversarial best response BRε(πk) can be computed
by solving the linear program

min
b,ζ∈B

M∑
i=1

V̂πk(i)b(i)

s.t. bprior(i)ζ(i) = b(i), i = 1, . . . ,M,

(8)

where B is the polytopic risk envelope, and V̂πk(i) is an
estimate of Vπk(i) := E [J(τ) | θ = θi, π = πk]. The subop-
timality of the solution of this LP is bounded by the error in
V̂πk(i).

The agent’s best response BRε(bk) is a history dependent
policy π(h) = arg maxa Q̂bk(h, a), where Q̂bk(h, a) is an
estimator of Q∗bk(h, a), the value of taking action a at history
h, then acting optimally when θ is drawn from bk at the

1If an opposing player chooses strategy σ, then an ε-suboptimal
best response to σ is a strategy such that the player obtains a payoff
(or cumulative reward) within ε of that of an optimal response
(which is itself referred to as a best response).

Algorithm 1 RAMCP

1: function SEARCH(s0, bprior)
2: V̂π(i)← 0 for all i = 1, . . . ,M
3: k ← 0
4: badv ← bprior

5: while within computational budget do
6: k ← k + 1
7: w ←M · BRε(π)
8: for i = 1 to M do
9: w ←M · badv(i)

10: Vbr ← SIMULATE(s0, θi, w)
11: V̂π(i)← V̂π(i) + 1

k (Vbr − V̂π(i))
12: end for
13: { COMPUTEQVALUES(s0) }
14: badv ← solution to linear program (8)
15: end while
16: return πavg = AVGACTION(h) for all h
17: end function . Lines in {} for RAMCP-F only.

start of the episode. However, computation of this policy is
non-trivial, and a naı̈ve approach to value estimation would
involve substantial repeated computation that would result in
poor performance.

RAMCP Outline

Carrying out the GWFP process to solve (5) requires esti-
mates V̂πk(i) and Q̂bk(h, a) at every iteration k. To compute
V̂πk(i), we can average the total reward accrued on multi-
ple rollouts of policy πk on model θi, obtaining a Monte
Carlo estimate of E [J(τ) | θi, πk]. Computing Q̂bk(h, a) is
equivalent to approximately solving the BAMDP induced
by distribution bk. Many sampling-based methods exist to
estimate the optimal Q function in a BAMDP.

Guez et al. (Guez, Silver, and Dayan 2013) showed that
performing Monte-Carlo tree search where the dynamics pa-
rameter θ is drawn from bk at the root of the tree at each
iteration can accurately estimate the optimal value function
Q∗bk(h, a). These techniques suggest a naı̈ve approach to
solving for the optimal policy: at each iteration of the GWFP
process, one could compute BRε(bk) by running a tree search
algorithm on bk, and compute BRε(πk) by rolling out policy
πk on each model θi to get V̂πk(i), and then solving the linear
program (Equation 8). This is clearly impractical, as each
iteration requires solving a new BAMDP. Furthermore, in
order for the GWFP process to converge, the suboptimality of
the best responses must go to zero as k →∞. Thus, each it-
eration of this naı̈ve implementation would require a growing
number of samples, increasing the computational challenges
with this approach. Critically, we are able to leverage the
structure of the GWFP process to obtain an algorithm that
converges to the same result, iterating between performing
FP iterations and building the tree. This approach requires
growing only one tree, which results in substantial efficiency
improvement.
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Algorithm 2 Simulate

18: function SIMULATE(h, θ, w)
19: N(h)← N(h) + 1
20: W (h)←W (h) + w
21: Vbr ← 0
22: if LEN(h) >= H or h is terminal then
23: return Vbr

24: end if
25: for all a ∈ A do
26: N(h, a)← N(h, a) + 1
27: W (h, a)←W (h, a) + w
28: s′ ∼ Tθ(s, a)
29: r ← R(s, a, s′)
30: V ′br ← SIMULATE(has′,θ,w)
31: Qha ← r + V ′br

32: [Q(h, a)← Q(h, a)+ 1
N(h,a) (wQha−Q(h, a))

]
33: if a == arg maxa′ Q(h, a′) then
34: Vbr ← Qha
35: Wbr(h, a)←Wbr(h, a) + w
36: [ V (h)← V (h) + 1

N(h) (wVbr − V (h)) ]
37: end if
38: end for
39: return Vbr

40: end function . Lines in [] for RAMCP-I only.

Algorithm Overview
In this section, we present the RAMCP algorithm, which
combines simulation-based search with fictitious play itera-
tions to optimize the risk-sensitive, Bayes-adaptive objective
(5). We present two versions of this procedure: RAMCP-F, a
slower, but provably asymptotically optimal algorithm, and
the more efficient RAMCP-I, for which we do not provide a
proof of convergence, but observe good performance empiri-
cally. The algorithms share the same overall structure, which
is detailed in Algorithm 1. Lines specific to RAMCP-F are
enclosed in curly brackets, while those specific to RAMCP-I
are enclosed in square brackets.

To compute a risk-sensitive plan for belief bprior from state
s0, the agent calls the SEARCH function. The function iterates
between simulating rollouts on different transition models,
sampled from an adversarial distribution, and using the im-
proved value estimates from these simulations to improve the
agent policy and the adversarial distribution.

Employing ideas from conditional Monte Carlo, the algo-
rithm loops over each model θi, and computes a weighting
w proportional to the current adversarial belief badv. This
weighting is applied to the statistics recorded in the tree, al-
lowing the algorithm to estimate quantities as if the models
were sampled from badv rather than looped over deterministi-
cally.

The algorithm maintains a tree where each node is state or
action along a trajectory from s0. We denote nodes by the his-
tory leading to the node. If the node is a state we refer to this
history h, and those ending in an action, which we denote as
ha. For every node, we store visitation countsN(h), N(h, a),

Algorithm 3 ComputeQValues

41: function COMPUTEQVALUES(h)
42: if LEN(h) >= H or h is terminal then
43: V (h) = 0
44: return 0
45: end if
46: for all a ∈ A do
47: w, r, V ′ ← [ ], [ ], [ ]
48: for all s′ ∈ CHILDREN(ha) do
49: APPEND(w, W (has′))
50: APPEND(r, R(s, a, s′))
51: APPEND(V ′, COMPUTEQVALUES(has′))
52: end for
53: Q(h, a)← 1

W (h,a) SUM(w � (r + V ′))

54: end for
55: V (h)← maxaQ(h, a)
56: return V (h)
57: end function

cumulative visitation weights W (h),W (h, a), and value es-
timates V (h), Q(h, a) for every node in the tree.

The call to SIMULATE(h, θ, w) (Algorithm 2) simulates
all possible H-length action sequences starting at h under
the a given model θ, and increments the visitation weights
along the resulting trajectories by w. The function returns
Vbr, the reward sequence obtained when taking actions were
consistent with the greedy policy with respect to the current
Q values stored in the tree. By keeping a running average of
Vbr from s0 for every model θi in V̂π(i), V̂π(i) estimates the
performance of the agent’s average strategy (πk in GWFP)
on model θi.

In RAMCP-F, the value estimates in the tree are updated
by calling COMPUTEQVALUES (Algorithm 3). This func-
tion recurses through the entire simulated tree, and computes
value estimates starting at the leaf nodes, via dynamic pro-
gramming according to the empirical transition probabilities

Q(h, a) =
∑
s′

p̂(s′|h, a)(R(s, a, s′) + V (has′)) (9)

V (h) = max
a

Q(h, a) (10)

Here, we only sum over visited states, and use p̂(s′|h, a) =
W (has′)/W (ha) as the empirical transition probability. It
can be shown that this probability converges to the transition
probability corresponding to a BAMDP with θ ∼ b̄adv, where
b̄adv is the average adversary strategy over the iterations of the
algorithm, see the extended version for a proof (Sharma et al.
2019). Since this average strategy is exactly bk in the GWFP
algorithm, this step corresponds to computing BRε(bk).

Finally, the procedure computes badv = BRε(πk) by solv-
ing the LP (8) given the current estimates of agent perfor-
mance in V̂π .

Critically, in contrast to the naı̈ve approach, RAMCP
avoids performing a separate simulation-based search un-
der a new model distribution bk at every iteration of of
the GWFP. Instead, it performs simulations according to
badv = BRε(πk) combines the averaging of GWFP with the
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averaging used in the Monte Carlo estimation of the value
estimates. Note that the proposed approach does not com-
pute the running averages πk and bk directly. However, since
the mixed strategy πk is what converges to the Nash equi-
librium in GWFP, we keep counts Wbr(ha), corresponding
to whenever action a matches BRε(bk). The mixed strategy
corresponds to sampling actions at history h with probability
proportional toWbr(ha). Procedure AVGACTION(h) samples
actions in this fashion. Thus, RAMCP-F implicitly carries
out the GWFP process, and therefore converges to a Nash
equilibrium. More formally, we have the following result:

Theorem 2 (Convergence of RAMCP-F). Let πk denote the
output of RAMCP-F (Algorithm 1) after k iterations of the
outer loop. Then, limk→∞ πk ∈ Π∗ in probability.

The proof of this result is given in the appendix of the
extended version of the paper (Sharma et al. 2019).

Separating Q value estimation from updating visitation
counts through simulation is more convenient for analysis,
but requires iterating through the entire tree at each step of the
algorithm. Many tree search algorithms, such as UCT (Kocsis
and Szepesvári 2006), use stochastic approximation to esti-
mate the Q values via iterative updating, avoiding this recom-
putation. RAMCP-I is an incremental version of RAMCP-F,
which does not call COMPUTEQVALUES, and instead adds
the incremental updates toQ(h, a) and V (h) into SIMULATE
(see Algorithm 2, lines 32 and 36).

While tools from stochastic approximation can be used
to prove convergence when the underlying distribution is
stationary, this is not the case in the incremental setting, as
the adversarial distribution over models is being recomputed
at every iteration of GWFP. We observe that in practice, this
incremental version also performs well. Popular techniques
for Monte Carlo tree search based on non-uniform sampling
such as UCT interact with the constantly updated adversarial
distribution in a way that is hard to theoretically characterize.
However, the added step of solving the LP to compute the
adversarial belief is only a minor increase in computational
effort for most reasonably-sized problems. Thus, analysis
on the interaction of these tree search methods on the non-
stationary tree is a promising but mathematically complex
avenue of future work, that may result in algorithms that
further increase robustness at little computational cost.

Experiments

We present experimental results for an n-pull multi-armed
bandit problem, as well as for a patient treatment scenario.
The bandit problem is designed to show the fundamental fea-
tures of the RAMCP algorithm, while the patient treatment
example is a larger scale example motivated by a real-world
challenge. In both experiments, we use the CVaRα risk met-
ric, which at a given α-quantile corresponds to the expec-
tation over the α fraction worst-case outcomes. For α = 1,
this corresponds to the risk-neutral expectation, and in the
limit as α→ 0+, this corresponds to the worst-case metric.
For CVaR, the risk polytope B may be stated in closed form
(Majumdar and Pavone 2017).

Multi-armed Bandit

We consider a multi-armed bandit scenario to illustrate sev-
eral properties of the RAMCP algorithm. Given a finite nnum-
ber of ”pulls” of the bandit, and a finite number of reward
realizations, we can represent this scenario as an BAMDP.
There is one initial state, in which the agent has four possi-
ble actions, which each have different stochastic transition
models to 6 possible rewarding states. The rewarding states
transition deterministically back to the decision state, where
the agent must choose another arm to pull.

We define two possible models, each with different tran-
sition probabilities that are known in the planning problem.
For illustrative purposes, we chose the transition probabilities
to highlight the trade-off between exploitation, exploration
and risk. Actions 1 and 2 are exploratory: deterministic un-
der each model, and therefore reveal the true model. The
actions differ in terms of risk: action 1 gives low but similar
rewards in both models, while action 2’s reward is higher in
expectation but varies drastically between the two models.
Actions 3 and 4 have more stochastic outcomes under both
models, and thus reveal less about the true model. However,
these actions serve as choices for exploitation, with action 3
offering the highest reward in expectation in θ1, and action
4 in θ2. The prior belief is (0.6, 0.4) for θ1 and θ2, respec-
tively. An episode consists of two pulls (or two actions) in
the environment.

On this small scale example, we test both RAMCP-F and
RAMCP-I, and demonstrate that both converge to empiri-
cally similar solutions. Figure 1 shows the performance of
RAMCP under varying values of α. The top row shows the
adversarially perturbed belief over iterations of the outer loop
of RAMCP-F. The purple points show the solution to Equa-
tion 8. These may switch rapidly, as the adversary will aim
to place as little probability mass on the high value models
as possible, to minimize the expected value of a given pol-
icy. This behavior can be seen for α = 0.25. Indeed, this
demonstrates the necessity of the averaging in the GWFP
process. While the best response beliefs change rapidly, the
running average of the adversarially perturbed belief con-
verges, shown in orange. In the second row of Figure 1, the
estimated values V̂πk for each θi are plotted. The dotted line
denotes the expected value of these estimates with respect
to the prior belief. As the CVaR quantile α decreases, the
expected reward with respect to the prior belief over models
decreases, but the performance for the worst-case model im-
proves. This illustrates how by choosing the risk metric used
by RAMCP-F (here by tuning the α-quantile of the CVaR
metric), the user can obtain policies that meet their standards
for robustness. The last row of Figure 1 compares the value
under the prior belief as estimated by RAMCP-F against that
estimated by RAMCP-I. We see that RAMCP-I converges to
similar values as RAMCP-F, suggesting that it is a reasonable
approximation to the asymptotically optimal algorithm.

Figure 2 shows the mean performance of the policies ob-
tained through both RAMCP-F and RAMCP-I on the bandit
problem. We plot the mean performance of the algorithm as
the distribution over underlying models is allowed to shift ad-
versarially away from the prior distribution used for planning,
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Figure 1: Convergence of the RAMCP-F algorithm for different CVaR quantiles (α). The upper row shows best response belief
perturbations (blue) and the running average adversarial belief perturbation (orange) for various CVaR quantiles, α. The second
row shows the value function for the policy generated by RAMCP-F operating in an environment with dynamics parameterized
by θ1, and by θ2 (blue and orange respectively). The dotted line denotes the expected value of the policy under the prior belief
over models. The bottom row compares the estimated value under the prior belief as computed by RAMCP-F against that
computed by RAMCP-I. We see that the two algorithms converge to similar values.

denoting distance from the prior via the Kullback-Leibler
divergence. We see that RAMCP is able to sacrifice expected
performance under the provided prior in exchange for ro-
bustness to an incorrect prior distribution. Further, we see
that both RAMCP-F and RAMCP-I have the same perfor-
mance, which further supports RAMCP-I as a practically
useful modification of RAMCP-F.

Patient Treatment
The problem of developing patient treatment plans is one
where being robust yet adaptive to model uncertainty is criti-
cal. Each individual patient may respond in different ways to
a given treatment strategy, and therefore exploratory actions
for model disambiguation are often required. There are many
such problems in medicine that have been formulated under
the BAMDP or POMDP framework, including choosing drug
infusion regimens (Hu, Lovejoy, and Shafer 1996), or HIV
treatment plans (Attarian and Tran 2017). With human lives
at stake, being robust towards this model uncertainty is also
critical, and thus RAMCP offers an attractive solution ap-
proach. We demonstrate the effectiveness of RAMCP in such
a domain by developing a simplified problem which captures
the complexity of such tasks.

We consider a model where the state is the patient’s health:
s ∈ S = {0, 1, . . . , 19}, where s = 0 corresponds to death,
and s = 19 corresponds to a full health level. The patient
starts at s = 3. The action space isA = {1, 2, 3}, correspond-
ing to different treatment options. We randomly generated 15

possible response profiles to each treatment option. Each re-
sponse profile assigns a probability mass to a relative change
in patient health. Under the different response profiles, this
change may be positive or negative, so rapid model iden-
tification is important. The exact method used to generate
the transition probabilities is provided in the supplementary
materials. We consider a prior which assigns a weight of 0.25
to the first response profile, and 0.0536 to the remaining 14.

Figure 3 shows the performance of the RAMCP algorithm
on this problem, run for 12500 iterations with a search hori-
zon H = 4, 500 times for each α-quantile. As can be seen
in the figure, the choice of the CVaR quantile α controls the
robustness of the resulting plan to an incorrect prior. The
risk-neutral setting (α = 1.0) yields the highest expected per-
formance assuming an accurate prior, but its performance can
degrade rapidly as the distribution that the model is sampled
from changes. Rather than force a practitioner into this trade-
off, RAMCP allows them to encode a preference towards
robustness by altering the risk metric. The more robust set-
ting of α = 0.2 yields a policy with performance that is less
sensitive to the underlying distribution over models, at the
cost of a worse reward under the prior distribution. Notably,
α = 0.6 offers the practitioner an attractive middle ground,
offering improved robustness compared to the risk-neutral
policy at a small cost to performance on the prior.

We compared the policies obtained by optimizing the
coherent CVaR objective through RAMCP against poli-
cies optimized with an exponentially weighted objective
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Figure 2: Expected total reward obtained in the bandit prob-
lem if the prior is inaccurate. Note that by tuning the CVaR
quantile (α) used in the RAMCP algorithm, the resulting
policy sacrifices expected performance under the prior to
become more robust against distributions over θ that differ
from the prior. Error bars denote 90% confidence bounds
on the mean total reward. We observe that on this problem,
the RAMCP-I algorithm matches the performance of the
asymptotically optimal RAMCP-F

r̃ = exp(−γr), a common heuristic for incorporating risk-
sensitivity into optimization. While reweighting the reward
in this way allows using standard BAMDP algorithms and
avoids the game-theoretic formulation, the exponential risk
formulation is not a coherent risk metric. Furthermore, it does
not allow addressing the model uncertainty separately from
the transition stochasticity. Experimentally, this is evident
in Figure 3. While using exponential reward shaping to add
robustness to the BAMDP objective does give resulting poli-
cies that are somewhat less sensitive to the underlying prior,
the expected performance drops under all possible model
distributions.

Related Work
This work aims to optimally trade off between exploration,
exploitation, and robustness in the problem of planning un-
der model uncertainty. This problem has been approached
in the bandit setting (Galichet, Sebag, and Teytaud 2013),
but little work has been done in the MDP setting. Generally,
RAMCP can be seen as an extension of the Bayes-Adaptive
MDP literature toward safety and robustness. In the discrete
MDP case, approaches toward the BAMDP problem are of-
ten applications of efficient search techniques for MDPs and
POMDPs (Wang et al. 2005) (Guez, Silver, and Dayan 2013).
Approaches in the continuous case often use heuristics (Bai,
Hsu, and Lee 2013) or leverage tools from adaptive control
theory (Slade et al. 2017), (Yu, Liu, and Turk 2017). However,
while tools from adaptive control are capable of guaranteeing
safety while optimizing performance, they typically do not
consider the value of information in performance optimiza-
tion (Aström and Wittenmark 2013).

Robust MDPs (Nilim and El Ghaoui 2005) are a popular
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Figure 3: Expected total reward obtained in the patient treat-
ment problem if the prior is inaccurate. As in the bandit prob-
lem, tuning the CVaR quantile (α) enables the RAMCP-I
algorithm to choose plans that are more robust against distri-
butions over θ that differ from the prior. A naı̈ve approach
to add risk sensitivity to the BAMDP via exponential cost
shaping yields policies that perform consistently worse, as
shown in the dashed-dotted curves. Error bars denote 90%
confidence bounds on the mean total reward.

tool for planning under model uncertainty, however they have
several features which produces undesirable behavior. First,
these problems are typically computationally intractable for
general uncertainty sets (Bagnell, Ng, and Schneider 2001).
Additionally, this framework often leads to extremely conser-
vative policies. Finally, in the BAMDP setting, information
gain that simply reweights the probability of elements in an
uncertainty set would not change the robust objective, and
so the interaction with Bayes-adaptive models is poor. Sev-
eral of the weaknesses of the robust MDP framework are
mitigated by risk-averse approaches to policy optimization
(Howard and Matheson 1972), which allow a more naturally
tunable notion of conservatism (Chow et al. 2015). However,
both the risk-sensitive and robust MDP frameworks do not
generally consider that the uncertainty over dynamics models
may be reduced as the agent interacts with the environment,
still leading to unnecessarily conservative policies that do not
consider the value of information gathering actions. We ad-
dress this problem by introducing notions of risk-sensitivity
to BAMDPs.

Discussion & Conclusions
This paper has introduced RAMCP, which marks what we be-
lieve to be a first attempt toward efficient methods of comput-
ing policies that optimally balance exploration, exploitation,
and robustness. This approach has demonstrated good experi-
mental performance on discrete MDPs, typically requiring
only minor increases in computation over standard BAMDP
solution approaches. There are several clear directions for
future work in the effort to bring this tradeoff between safety
and performance to more complex domains. First, further
analysis into the RAMCP-I formulation of RAMCP are
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promising, as the algorithm achieves good performance in
practice. Second, through the use of value function approxi-
mation, the algorithm could be applied to larger, even contin-
uous MDPs. Such approaches have shown good performance
for risk-neutral BAMDPs (Guez et al. 2014). Another promis-
ing direction for future work is to investigate if the algorithm
can be modified to maintain convergence guarantees with
more advanced sampling strategies such as UCT (Kocsis and
Szepesvári 2006). Finally, this work focused on planning
over a discrete distribution over models. Future work may
investigate whether sampling strategies such as sequential
Monte Carlo can be used to extend RAMCP to continuous
beliefs over models parameters.
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