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Abstract

We address the problem of propositional planning extended
with the class of soft temporally extended goals supported in
PDDL3, also called qualitative preferences since IPC-5. Such
preferences are useful to characterise plan quality by allow-
ing the user to express certain soft constraints on the state
trajectory of the desired solution plans. We propose and eval-
uate a compilation approach that extends previous work on
compiling soft reachability goals and always goals to the full
set of PDDL3 qualitative preferences. This approach directly
compiles qualitative preferences into propositional planning
without using automata to represent the trajectory constraints.
Moreover, since no numeric fluent is used, it allows many ex-
isting STRIPS planners to immediately address planning with
preferences without changing their algorithms or code. An
experimental analysis presented in the paper evaluates the
performance of state-of-the-art propositional planners using
our compilation of qualitative preferences. The results indi-
cate that the proposed approach is highly competitive with re-
spect to current planners that natively support the considered
class of preferences, as well as with a recent automata-based
compilation approach.

Introduction
Soft state-trajectory constraints are temporally extended
goals that in PDDL3 are also called preferences (Gerevini
et al. 2009). In planning with preferences, the quality of the
solution plans depends on the soft goals and preferences that
are satisfied by the plans.

PDDL3 supports an useful set of types of preferences ex-
pressed through certain modal operators, and in particular
the “qualitative preferences” of types at-end (soft goals),
sometime, sometime-before, at-most-once, and sometime-
after. One of the competition tracks of IPC-5 was centered
on qualitative preferences, and since then several systems
addressing this class of planning problems have been devel-
oped. Most of these systems represent state-trajectory con-
straints as automata, that are compiled into the problem op-
erators and states or are handled by the planning algorithm.

In this paper we study propositional planning with quali-
tative preferences through a compilation approach. In par-
ticular, we extend previous work on compiling soft goals
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(Percassi, Gerevini, and Geffner 2017) and soft always goals
(Ceriani and Gerevini 2015) to deal with the full set of
PDDL3 qualitative preferences that don’t involve explicit
numeric time. Differently from most other systems, our
method directly compiles qualitative preferences into propo-
sitional planning with action costs without using automata
to represent the state-trajectory constraints, and without us-
ing numeric fluents, as commonly done in other approaches.
Propositional planning with action costs is supported by
many powerful planners, and the proposed compilation
method allows them to immediately support (through the
compiled problems) qualitative preferences with no change
to their algorithms and code.

The paper also presents an experimental analysis evalu-
ating the performance of state-of-the-art propositional plan-
ners supporting action costs using our compilation of soft
state-trajectory constraints. The results indicate that the pro-
posed approach is highly competitive with a state-of-the-art
planner that natively supports qualitative preference, as well
as with a recent (automata-based) compilation approach.

We start with a brief description of the main related work;
then, after the necessary preliminaries, we describe the com-
pilation method in detail; finally, we present the experimen-
tal analysis and give the conclusions.

Related Work
The structure of the proposed compilation was inspired by
the work of Keyder and Geffner (2009) on compiling soft
goals into STRIPS with action costs (in the following denoted
with STRIPS+). Keyder and Geffner’s compilation scheme is
considerably simpler than ours because it does not consider
the different kinds of interference between actions and the
types of PDDL3 preferences treated in our compilation.

The most prominent existing planners supporting PDDL3
preferences are HPlan-P (Baier, Bacchus, and McIlraith
2009; Baier and McIlraith 2006), which won the “qualitative
preference” track of IPC-5, MIPS-XXL (Edelkamp 2006;
Edelkamp, Jabbar, and Naizih 2006) and the more re-
cent LPRPG-P (Coles and Coles 2011) with its variants
(Coles and Coles 2013). These planners represent prefer-
ences through automata whose states are synchronised with
the states generated by the action plans, so that an accepting
automaton state corresponds to preference satisfaction. For
synchronisation HPlan-P and LPRPG-P use planner-specific
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techniques, while MIPS-XXL compiles the automata by
modifying the domain operators and adding new ones mod-
elling the automata transitions of the grounded preferences.

Our computation method is very different from the one of
MIPS-XXL since, rather than translating automata into new
operators, the problem preferences are compiled by only
modifying the domain operators, possibly creating multi-
ple variants of them. Moreover, our compiled files only use
STRIPS+, while MIPS-XXL also uses numeric fluents.

The compilation of LTL goal formulas by Cresswell and
Coddington (2004) and Rintanen (2000) handle hard tempo-
rally extended goals, instead of preferences, i.e., every spec-
ified temporally extended goal must be satisfied in a valid
plan, and hence there is no notion of plan quality referred
to the amount of satisfied preferences. Rintanen’s compila-
tion considers only single literals in the formulae (while we
deal with arbitrary CNF formulas), and it appears that ex-
tending it to handle more general formulas requires substan-
tial new techniques. Bayer and McIlaraith (2006) observed
that Crosswell and Coddington’s approach suffers exponen-
tial blow up problems and is less efficient than HPlan-P.

Other works that are related to ours are the compila-
tion schema in (Ceriani and Gerevini 2015), which how-
ever supports only soft goals and always preferences, and
the recent schema by Wright, Mattmueller and Nebel (2018)
(here abbreviated WMN), which supports a class of soft
state-trajectory constraints richer than the PDDL3 qualitative
preferences. WMN compiles soft trajectory constraints into
conditional effects and state dependent action costs using
LTLf (De Giacomo, De Masellis, and Montali 2014) and au-
tomata. Besides the use of automata, other main differences
are the following ones. Our compilation has less additional
fluents (at most two for each preference against one for each
automaton state in WMN), and WMN use numeric fluents
while our compilation avoids them. Both WMN and our
compilations introduce additional conditional effects, that in
WMN are generated from the automaton transitions without
considering the structure (preconditions and effects) of the
operator to which they are added, and they are the same for
every operator. On the contrary, our compilation exploits the
operator structure to generate less conditional effects, each
of which with a condition specialized for the particular op-
erator where it is added. This leads to a more compact com-
piled problem, that hence can be easier to solve for a classi-
cal planner.

To help the planner search WMN’s “action penalty com-
pilation” introduces some artificial negative penalties (action
costs) in the compilation, which however are supported by
few planners. WMN’s “positively shifted costs” technique
allows to use only zero and positive costs, but it could loose
optimality guarantees since an optimal compiled plan might
not correspond to an optimal plan for the original problem.

Preliminaries, Background and Notation
A STRIPS problem is a tuple 〈F, I,O,G〉 where F is a set
of fluents, I ⊆ F and G ⊆ F are the initial state and goal
set, respectively, and O is a set of actions or operators de-
fined over F as follows. A STRIPS operator o ∈ O is a
pair 〈Pre(o),Eff(o)〉, where Pre(o) is a set of positive literals

〈s0, s1, ..., sn〉 |= (at end φ) iff sn |= φ

〈s0, s1, ..., sn〉 |= (always φ)
iff ∀i : 0 ≤ i ≤ n · si |= φ

〈s0, s1, ..., sn〉 |= (sometime φ)
iff ∃i : 0 ≤ i ≤ n · si |= φ

〈s0, s1, ..., sn〉 |= (at-most-once φ)
iff ∀i : 0 ≤ i ≤ n · if si |= φ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · sk |= φ and
∀k : k > j · sk |= ¬φ

〈s0, s1, ..., sn〉 |= (sometime-after φ ψ)
iff ∀i · 0 ≤ i ≤ n · if si |= φ then ∃j : i ≤ j ≤ n · sj |= ψ

〈s0, s1, ..., sn〉 |= (sometime-before φ ψ)
iff ∀i · 0 ≤ i ≤ n · if si |= φ then ∃j : 0 ≤ j < i · sj |= ψ

Figure 1: Semantics of the basic modal operators in PDDL3.

over F and Eff(o) is a set of literals over F . Eff(o)+ denotes
the set of positive literals in Eff(o), Eff(o)− the set of nega-
tive literals in Eff(o). An action sequence π = 〈a0, . . . , am〉
is applicable in a planning problem Π if all actions ai are in
O and there exists a sequence of states 〈s0, . . . , sm+1〉 such
that s0 = I , Pre(ai) ⊆ si and si+1 = si ∪ Eff(ai)+ \ {p |
¬p ∈ Eff(ai)−}, for i = 0 . . .m. Applicable action se-
quence π achieves a fluent g if g ∈ sm+1, and is a valid plan
for Π if it achieves each goal g ∈ G (denoted with π |= G).

A STRIPS+ problem is a tuple 〈F, I,O,G, c〉, where
〈F, I,O,G〉 is a STRIPS problem and c is a function map-
ping each o ∈ O to a non-negative real number. The cost
c(π) of a plan π is

∑|π|−1
i=0 c(ai), where c(ai) denotes the

cost of the ith action ai in π and |π| is the length of π.
PDDL3 introduced state-trajectory constraints, which are

modal logic expressions expressible using LTL that have to
be true in the state trajectory produced by the execution of
a plan. Let 〈s0, s1, ..., sn〉 be the sequence of states in the
state trajectory of a plan. Figure 1 defines PDDL3 qualita-
tive state-trajectory constraints, i.e., constraints that do not
involve numbers. Here φ and ψ are first-order formulae that,
without loss of generality, we assume are translated by a
preprocessing step into equivalent grounded CNF-formulae;
e.g., φ = φ1 ∧ φ2 ∧ ... ∧ φn where φi (i = 1 . . . n) is a
clause formed by literals over the problem fluents. These
constraints can be either soft or hard. When they are soft
they are called qualitative preferences.

We will use the following notation:A, SB, SA, ST ,AO,
G denote the classes of qualitative preferences of type al-
ways, sometime-before, sometime-after, sometime, at-most-
once and soft goal, respectively, for a given planning prob-
lem; Aφ, SBφ,ψ , SAφ,ψ , STφ, AOφ, Gφ denote a particular
preference over A, SB, SA, ST , AO, G, respectively, in-
volving formulae φ and ψ; if a plan π satisfies a preference
P , we write π |= P .
Definition 1. A STRIPS+ problem with preferences Π is a
tuple 〈F, I,O,G,P, c, u〉 where:
• 〈F, I,O,G, c〉 is a STRIPS+ problem;
• P = {PA ∪PSB ∪PSA ∪PST ∪PAO ∪PG} is the

set of the preferences of Π where PA ⊆ A, PSB ⊆ SB,
PSA ⊆ SB, PST ⊆ ST , PAO ⊆ AO and PG ⊆ G;

• u is an utility function u : P → R+
0 .
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STRIPS+ with preferences will be indicated with STRIPS+P.
Definition 2. Let Π be a STRIPS+P problem with prefer-
ences P . The utility u(π) of a plan π solving Π is the dif-
ference between the total amount of utility of the preferences
by the plan and its cost: u(π) =

∑
P∈P:π|=P u(P )− c(π).

The definition of plan utility for STRIPS+P is similar to
the one given for STRIPS+ with soft goals by Keyder and
Geffner (2009). A plan π with utility u(π) for a STRIPS+P
problem is optimal when there is no plan π′ such that
u(π′) > u(π). The violation cost of a preference is the value
of its utility.

In order to make the presentation of our compilation ap-
proach more compact, we introduce some further notation.
Given a preference clause φi = l1 ∨ l2 ∨ ... ∨ lm, the set
L(φi) = {l1, l2, ..., lm} is the equivalent set-based defini-
tion of φi and L(φi) = {¬l1,¬l2, ...,¬lm} is the literal
complement set of L(φi).

Given an operator o of a STRIPS+P problem,Z(o) denotes
the set of literals

Z(o) = (Pre(o) \ {p | ¬p ∈ Eff(o)−})∪Eff(o)+ ∪Eff(o)−.

Note that the literals in Z(o) hold in any reachable state re-
sulting from the execution of operator o.

The state where an operator o is applied is indicated with
s and the state resulting from the application of o with s′.
Definition 3. Given an operator o and a CNF formula φ =
φ1 ∧ ... ∧ φn, the set Cφ(o) of clauses of φ that o makes
certainly true in s′ is defined as:

Cφ(o) = {φi : |L(φi) ∩ Z(o)| > 0, i ∈ {1 . . . n}}.

Given a clause φi = l1∨ ...∨ lmi of φ, condition |L(φi)∩
Z(o)| > 0 in Definition 3 requires that at least a literal of φi
is in Z(o), and thus that clause φi is true in s′.
Definition 4. Given an operator o and a CNF formula φ =
φ1 ∧ ... ∧ φn, we say that o can make φ true if |Cφ(o)| > 0

and, for each clause φi of φ not in Cφ(o), L(φi) 6⊆ Z(o).
The first condition in Definition 4 requires that there is at

least a clause of φ that is certainly true in s′ independently
from s, while the second requires that the clauses that are not
certainly true in s′ are not falsified by o according to Z(o).
Definition 5. Given an operator o and a CNF formula φ,
we say that o can make φ false in s′ if there is a clause φi of
φ such that

1. |L(φi) ∩ Z(o)| > 0 ∧ L(φi) ⊂ Z(o)

2. |L(φi) ∩ Z(o)| = 0

3. L(φi) 6⊆ Pre(o).
The conditions of Definition 5 require that at least a clause

of φ (1) has some (but not all) literals which are falsified
after the execution of o, (2) has no literal that is certainly
true in s′, and (3) is not already false in s.

Operator-Preference interferences
Operators and preferences may have different kinds of in-
terference, that we have to deal with in their compilation.
We say that an operator o is neutral for a preference P if

its execution in a plan can not affect the satisfaction of P in
the state trajectory of the plan. Otherwise, depending on the
preferences type of P , o can behave as a violator, a threat
or a potential support of P . Informally, a violator falsifies
the preference, a threat may falsify it (depending on s), and
a potential support may satisfy it over the full state trajec-
tory of the plan. In the following, more formal definitions of
these interferences are given for each type of preference.

Operators Affecting Always Preferences
An always preference Aφ is violated if φ is false in any state
on the plan state trajectory. Hence, if φ is false in every state
s′ generated by an operator o, then o is a violator of Aφ.
Definition 6. Given an operator o and an always preference
Aφ of a STRIPS+P problem, o is a violator of Aφ if there
is a clause φi of φ such that: (1) L(φi) ⊆ Z(o), and (2)
L(φi) 6⊆ Pre(o).

Operator o is a threat of Aφ if it is not a violator, its effects
make false at least a literal of a clause φi of φ, and its pre-
conditions don’t entail ¬φi (otherwise Aφ would be already
false in s). Such clause φi is a threatened clause of Aφ.
Definition 7. Given an operator o and an always preference
Aφ of a STRIPS+P problem, o is a threat of Aφ if it is not a
violator and it can make φ false.

The set of clauses of a preference Aφ threatened by o is
denoted with TC(o, φ).

An operator is neutral for Aφ if it makes φ true, does not
falsify any clause of φ, or it can be applied only in states
where φ is false.
Definition 8. Given an operator o and an always preference
Aφ of a STRIPS+P problem, o is neutral for Aφ if:

1. for all clauses φi of φ, |L(φi) ∩ Z(o)| > 0 or |L(φi) ∩
Z(o)| = 0, or

2. there exists a clause φi of φ such that L(φi) ⊆ Pre(o).
Example. Operator o = 〈{}, {¬a,¬b}〉 is a threat for Aφ1 ,
a violator of Aφ2 and neutral for Aφ3 where φ1 = (b∨c)∧d,
φ2 = a ∨ b and φ3 = d.

Operators Affecting Sometime Preferences
A sometime preference STφ is violated if φ is never true on
the plan state trajectory. Hence, if the state s′ generated by
an operator o makes φ true, then o is a potential support of
STφ.
Definition 9. Given an operator o and a sometime prefer-
ence STφ of a STRIPS+P problem, o is a potential support of
STφ if o can make true φ, otherwise the operator is neutral
for STφ.
Example. Operator o = 〈{}, {¬b}〉 is a potential support of
STφ1 and neutral for STφ2 where φ1 = (c ∨ ¬b) ∧ a and
φ2 = c.

Operators Affecting Sometime-before Preferences
A sometime-before preference SBφ,ψ is violated if φ be-
cames true before ψ has been made true on the plan state
trajectory. Hence, if operator o can make ψ true in s′, then
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o is a potential support of SBφ,ψ . Depending on the state s
where such operator is applied, it can be an actual support
or neutral for SBφ,ψ .
Definition 10. Given an operator o and a sometime-before
preference P = SBφ,ψ of a STRIPS+P problem, o is a
potential support of P if o can make ψ true.

If an operator o can make φ true in s′, then o is a threat
of SBφ,ψ . Depending on the state s where it is applied, such
operator can be a violator or neutral for SBφ,ψ .
Definition 11. Given an operator o and a sometime-before
preference P = SBφ,ψ of a STRIPS+P problem, o is a threat
of P if o can make true φ.
Definition 12. Given an operator o and a sometime-before
preference P = SBφ,ψ of a STRIPS+P problem, o is neutral
for P if o is neither a potential support nor a threat for P .
Example. Operator o = 〈{}, {b}〉 is a potential support
of SBφ1,ψ1

, a threat of SBφ2,ψ2
and a operator neutral for

SBφ3,ψ3
where φ1 = c, ψ1 = (a ∨ b) ∧ d, φ2 = (c ∨ b) ∧ d,

ψ2 = e, φ3 = d and ψ3 = e.

Operators Affecting At-most-once Preferences
A preference AOφ is violated if φ if φ becames true more
than once in the state trajectory. Thus, if an operator o can
make φ true in s′, then o is a threat of AOφ.
Definition 13. Given an operator o and an at-most-once
preference P = AOφ of a STRIPS+P problem, o is a threat
of P if o can make true φ, otherwise o is neutral for AOφ.
Example. Operator o = 〈{}, {¬b}〉 is a threat of AOφ1

and
neutral for AOφ2

where φ1 = (c ∨ ¬b) ∧ d and φ2 = d.

Operators Affecting Sometime-After Preferences
A sometime-after preference SAφ,ψ is violated if φ becomes
true in a state without ψ becoming true in a succeeding state
on the plan state trajectory. Hence, if the state s′ generated
by an operator o can make φ true, then o threats SAφ,ψ be-
cause ψ could be false in s′; o threats the preference also if
it can make ψ false, because φ could be true in s′.
Definition 14. Given an operator o and a sometime-after
preference P = SAφ,ψ of a STRIPS+P problem, o is a threat
of P if o can make φ true or ψ false.

If an operator o can make ψ true in s′, then it is a potential
support of SAφ,ψ because if the preference is temporarily
violated in the plan state trajectory up to s, then o could
make it satisfied.
Definition 15. Given an operator o and a sometime-after
preference P = SAφ,ψ of a STRIPS+P problem, o is a po-
tential support of P if o can make ψ true.
Definition 16. Given an operator o and a sometime-after
preference P = SAφ,ψ of a STRIPS+P problem, o is neutral
for P if o is neither a threat nor a potential support of P .
Example. Operator o = 〈{}, {¬a, b}〉 is a potential support
of SAφ1,ψ1

, a threat of SAφ2,ψ2
and SAφ3,ψ3

and neutral for
SAφ4,ψ4

, where φ1 = c , ψ1 = ¬a∧c, φ2 = ¬a∧c, ψ2 = c,
φ3 = ¬d, ψ3 = ¬b ∨ c, φ4 = c and ψ4 = d.

Compilation of Qualitative Preferences
In this section we describing the general compilation scheme
of a STRIPS+P Π problem. First we compile Π into a prob-
lem with conditional effects (and possibly also disjunctive
preconditions), which can then be compiled away obtaining
a STRIPS+ problem equivalent to Π, where problem equiv-
alence is defined as in (Keyder and Geffner 2009). We will
use Oneutral to denote the set of the problem operators that
are neutral for all preferences, and Paffected(o) to denote the
set of all problem preferences for which o is not neutral.

Since the compilation of soft goals is the same as in (Key-
der and Geffner 2009), we omit its description, and we focus
on the other types of preferences. Moreover, we use a pre-
processing step to: (a) filter out from P all preferences of
type A and SB that are falsified in the initial state and all
preferences of type ST that are satisfied in it; (b) initialize
the plan cost as the sum of the costs of the removed unsatis-
fied preferences.

For a STRIPS+P problem Π = 〈F, I,O,G,P, c, u〉, the
compiled problem of Π is Π′ = 〈F,′ I ′, O′, G′, c′〉 where:

• F ′ = F ∪V ∪S ∪ C ′ ∪C ′ ∪{normal-mode, end-mode}
• I ′ = I ∪ C ′ ∪ VST ∪ VSA ∪ SAO ∪ {normal-mode}
• G′ = G ∪ C ′

• O′ = {collect(P ), forgo(P ) | P ∈ P} ∪ {end} ∪
{comp(o,P) | o ∈ O}

• forgo(P ) = 〈{end-mode, P -violated, P ′}, {P ′,¬P ′}〉
• collect(P ) = 〈{end-mode,¬P -violated, P ′}, {P ′,¬P ′}〉
• end = 〈{normal-mode}, {end-mode,¬normal-mode}〉
• comp(o,P) is the function translating operator o accord-

ing to Definition 17

• c′(o′) =

{
u(P ) if o′ = forgo(P )
c(o′) if o′ = comp(o,P)
0 otherwise

• V = {P -violated | P ∈P}
• S = {φ-seen |AOφ ∈PAO}∪{ψ-seen | SBφ,ψ ∈PSB}
• SAO = {φ-seen | AOφ ∈PAO ∧ I |= φ}
• VST = {P -violated | P = STφ, I |= ¬φ}
• VSA = {P -violated | P = SAφ,ψ, I |= φ ∧ ¬ψ}
• C ′ = {P ′ | P ∈P} and C ′ = {P ′ | P ∈P}.

The collect and forgo actions can only appear at the end
of the plan. For each preference P the compilation of Π into
Π′ adds a dummy hard goal P ′ that is false in the initial state
I ′; P ′ can be achieved either by action collect(P ), that has
cost 0 but requires P to be satisfied, or by action forgo(P ),
that has cost equal to the utility of P and can be performed
only if P is false (P -violated is true in the goal state). For
each P , exactly one of collect(P ) and forgo(P ) appears in
the plan.

The P -violated literals in the compiled initial state I ′ are
used to consider each ST and SA preference that is not sat-
isfied in I violated until an operator supporting them is in-
serted into the plan; the φ-seen literals in I ′ are necessary
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to capture the violation of the correspondingAO preference
when an operator makes the preference formula true for the
second time in the state trajectory.

Function comp(o,P) transforms an original operator o
into the equivalent compiled operator o′ with an additional
precondition forcing it to appear before the forgo and collect
operators. Regarding the effects of o′, if o ∈ Oneutral, they are
the same of o; otherwise, comp(o,P) extends the effects of
o in o′ with a set of conditional effects for each preference
affected by o. The definition of such additional effects de-
pends on the type of the affected preference, and on how o
interferes with it; this is detailed below.
Definition 17. Given an operator o the corresponding com-
piled operator is defined using the following function:

Pre(o′) = Pre(o) ∪ {normal-mode}
Eff(o′) = Eff(o) ∪

⋃
P∈Paffected(o)

W(o, P )

where W(o, P ) is the set of conditional effects concerning
the affected preference P (if any).

In the following, φi denotes a clause of φ and ψi a clause
of ψ; a set of formulas is interpreted as their conjunction.

Conditional Effects for A Preferences
The conditional effects for a compiled operator affecting a
preference Aφ are defined as follows, where AA(o)φi is the
literal-complement of the subset of literals in L(φi) that are
not falsified by o, i.e., AA(o)φi = L(φi) \ {L(φi) ∩ Z(o)}.
Definition 18. Given a preference P = Aφ and an opera-
tor o affecting it, the conditional effect set W(o, P ) in the
compiled version o′ of o (according to Definition 17) is:

W(o, P ) =


{when (cond(o, P )) (P -violated)}

if o is a threat of P
{when (>) (P -violated)}

if o is a violator for P

where cond(o, P ) =
∨
φi ∈TC(o,P )(l1 ∧ . . . ∧ lq)

and {l1, . . . , lq} = AA(o)φi (TC(o, P ) is defined above).
For each affected preference P = Aφ, o′ has a (condi-

tional) effect P -violated with a condition depending on how
Aφ is affected: if o is a violator, then the condition is always
true; if o is a threat, the condition checks that there exists at
least a clause of φ that is certainly false in s′ – this is the
case if there is at least a threatened clause whose literals that
are not falsified in s′ are false in s.
Example. Consider the operator o = 〈{b}, {¬a,¬c}〉 and
preference Aφ with φ = (a ∨ b) ∧ (c ∨ d ∨ e). The sec-
ond clause of φ is threatened by o, and cond(o,Aφ) =

AA(o)c∨d∨e = {¬d,¬e}.

Conditional Effects for ST Preferences
The conditional effects for a compiled operator affecting a
preference STφ are defined as follows.
Definition 19. Given a preference P = STφ and an opera-
tor o that potentially supports it, the conditional effect set in
the compiled version o′ of o (according to Definition 17) is:

W(o, P ) = {when(cond(o, P )) (¬P -violated)}

where cond(o, P ) = {φi | φi 6∈ Cφ(o)}.
As described above, for each P = STφ, P -violated holds

in the compiled initial state, and a potential support o of P
makes φ true when all clauses of φ not in Cφ(o) hold in s,
where Cφ(o) is the set of clauses of φ that are certainly true
in s′. If this condition holds in s, then o′ falsifies P -violated.

Conditional Effects for SB Preferences
The conditional effects for a compiled operator affecting a
preference SBφ,ψ are defined as follows.

Definition 20. Given a preference P = SBφ,ψ and an oper-
ator o affecting it, the conditional effect setW(o, P ) in the
compiled version o′ of o (according to Definition 17) is:

W(o, P ) =


{when (condS(o, P )) (ψ-seen)}

if o is a potential support of P
{when (condT (o, P )) (P -violated)}

if o is a threat of P

where:

• condS(o, P ) = {ψi | ψi 6∈ Cψ(o)}
• condT (o, P ) = {¬ψ-seen} ∪ {φi | φi 6∈ Cφ(o)}.

An operator o affecting a preference P = SBφ,ψ can be-
have as a (a) potential support of P , (b) a threat of P , or (c)
both. These cases are captured by the two conditional effects
of o′ in Definition 20.

In case (a), if all clauses that are not certainly true in s′
(i.e., condS(o, P )) hold in s, then ψ is true in s′, and o′ keeps
track of this by making ψ-seen true. In case (b), if ψ has
never been true in the state-trajectory up to s and all clauses
of φ that are not certainly true (i.e., condT (o, P )) hold in s,
then P is violated by o and o′ makes P -violated true in s′.
In case (c), if the conditions of both conditional effects hold,
P is violated because ψ is made true simultaneously with φ.

Conditional effects for AO Preferences
The conditional effects for a compiled operator threatening
a preference AOφ are defined as follows.

Definition 21. Given a preference P = AOφ and an oper-
ator o that threats P , the conditional effect set W(o, P ) in
the compiled version o′ of o (according to Definition 17) is:

W(o,P ) = {when (condN (o, P )) (φ-seen))

when (condT (o, P ))) (P -violated)}

where:

• condN (o, P ) = {¬φ-seen} ∪ {φi | φi 6∈ Cφ(o)}
• condT (o, P ) = {φ-seen} ∪ {φi | φi 6∈ Cφ(o)} ∪

{
∨
φi∈Cφ(o)(¬l1 ∧ ... ∧ ¬lq) | {l1, ..., lq} = L(φi)}.

If an operator o affecting P = AOφ makes φ true for the
first time in the state trajectory (i.e., condN (o, P ) holds in s),
then the first conditional effect of o′ keeps track that φ has
become true. Otherwise, if (1) φ was true in any state before
s′, (2) the execution of o in s makes φ true , and (3) φ was
false before (i.e., the three condition sets in condT (o, P )),
then o violates P and o′ makes P -violated true.
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Conditional effects for SA Preferences
The conditional effects for a compiled operator affecting a
preference SAφ preference are defined as follows.
Definition 22. Given a preference P = SAφ and an opera-
tor o that affects P , the conditional effect setW(o, P ) in the
compiled version o′ of o (according to Definition 17) is:

W(o, P ) =


{when (condT (o, P )) (P -violated)}

if o is a threat of P
{when (condS(o, P )) (¬P -violated)}

if o is a support of P

where:
• condT(o, P ) = {R(o, φ), R(o,¬ψ)}
• condS(o, P ) = {R(o, ψ)}

• R(o, φ) =


> if ∀ clause φi of φ, |Z(o)∩L(φi)|>0,∧
φi 6∈Cφ(o)(l1 ∨ ... ∨ lq) where {l1, ..., lq}

is the set of literals ofφinot falsified by o
otherwise.

An operator o affecting P = SAφ,ψ can behave as (a) a
threat of P , (b) a potential support of P , or (c) both. In case
(a) the effect condition captures the fact that o generates a
state s′ where φ is true and ψ false, (temporarily) violating
P . In (b) the condition captures the fact that o generates s′ in
which ψ is true, and so s′ cannot violate P . In (c) only one
of the two conditional effects can hold in s′ because their
conditions are mutually exclusive. Note that R(o, φ) is the
condition that has to hold in s to have φ true in s′.

Compilation equivalence
It can be proved that the original STRIPS+P problem has a
solution plan with a certain total cost (sum of its action costs
and of the violated preference costs) if and only if the com-
piled plan has a solution with the same total cost.
Proposition 1. Let Π′ be the compiled problem with con-
ditional effects of a STRIPS+P problem Π. From any plan π
solving Π we can derive a plan π′ solving Π′, and viceversa,
such that the total costs of π and π′ are the same.

Proof. (Sketch). The proof has the same structure of the
plan-correspondence proof for Keyder and Geffner’s com-
pilation of soft goals (Keyder and Geffner 2009), with π′ =
〈π′′, end, π′′′〉 in which π′′ is obtained from π by replac-
ing the original operators with the compiled ones involv-
ing conditional effects, and the rest of π′ is defined as in
Keyder and Geffner’s proof (π′′′ involves only collect and
forgo actions). Since the conditional effects in π′′ affect only
the additional fluents of the compiled problem, all original
operator preconditions remain satisfied in the state trajec-
tory of π′′. Moreover, by construction of the conditional ef-
fects for the compiled operators, it can be proved that in the
state where end is applied, for each preference P , P -violated
holds if and only if P is violated in π. Viceversa, from a valid
plan π′ we can obtain a plan for π by replacing the compiled
operators with their original version, and removing end and
all collect/forgo actions. By construction of the conditional
effects in the compiled operators and of π and π′, π violates

a preference if and only if π′′′ contains the corresponding
forgo action. It follows that π and π′ have the same total
costs.

Compilation of Conditional Effects and Violators
In the literature, there are two main general methods for
compiling conditional effects away. In the first method, pro-
posed by Gazen and Knoblock (1997), each plan of the com-
piled problem preserves the length of the corresponding plan
for the original problem, but an exponential number of com-
piled operators are generated. In the second method, pro-
posed by Nebel (2000), a polynomial number of new opera-
tors are generated, but each plans for the compiled problem
increases polynomially the length.

In our context, we use Nebel’s method because, de-
pending on the operators’ structure and the input prefer-
ences, many conditional effects can be generated, mak-
ing Gazen and Knoblock’s method impractical. Moreover,
Nebel’s method can be optimised for our conditional effects
because of their particular structure. Specifically, the effects
of our conditional effects concerning different preferences
can never conflict, while those referring to the same pref-
erence can be resolved in the compilation by imposing a
particular order of evaluation for their conditions. This al-
lows us to simplify the compilation by omitting the so called
“copy-operators” of Nebel’s method. Another optimisation
concerns the ordering of the set of operator pairs “activating”
the conditional effects, which in Nebel’s original compila-
tion is unordered, while in our context they can be ordered
as a sort of macro operators. For lack of space, in this paper
we don’t give a detailed description of these optimisations,
which leads to a revised method for compiling conditional
effect away similar to the technique described in (Ceriani
and Gerevini 2015) for always constraints, but extended to
deal with every class of PDDL3 qualitative preferences.

Another optimization that we implemented is the follow-
ing one. For a compiled action that is a violator of a pref-
erence P , we assign the violation cost of P to this action,
instead of to the forgo action for P , that is removed from the
compilation together with goal P ′ in G′.

Experimental Analysis
We implemented the proposed compilation scheme, and we
compared the performance (plan quality) of several propo-
sitional planners using it and of LPRPG-P, a the state-state-
of-the art system for satisficing planning that “natively” sup-
ports PDDL3 preferences.1 Moreover, we have evaluated the
effectiveness of using our compilation for optimal planning
with preferences against an alternative recent compilation
based on automata.

We used a selection of the best performing planners from
IPC8 and IPC9: LAMA (Richter and Westphal 2010), Mer-
cury (Katz and Hoffmann 2014), MIPlan (Núnez, Borrajo,
and Linares López 2014), IBaCoP2 (Cenamor, De La Rosa,

1For our benchmarks we observed that LPRPG-P performs bet-
ter than the other available systems supporting PDDL3 preferences.
OPTIC (Benton, Coles, and Coles 2012) and the best variant of
LPRPG-P in (Coles and Coles 2013) often gave runtime errors.
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and Fernández 2014), Fast Downward Stone Soup 2018
(Seipp and Röger 2018), abbreviated FDSS, and Fast
Downward Remix (Seipp 2018), abbreviated FDRemix.
In addition, we used a recent version of LAMA, called
LAMAP(hR), exploiting admissibile heuristic hR for testing
soft goals reachability during search (Percassi, Gerevini, and
Geffner 2017).

As benchmarks we used all (100) original problems of the
qualitative preference track of IPC-5 (Gerevini et al. 2009),
which has five domains: Rovers, TPP, Trucks, Openstacks
and Storage. The problems in Storage and TPP have no hard
goal. In these benchmarks there is no preference of type
sometime-after. The propositional planners were run on the
compiled problems, while LPRPG-P was run on the original
problems. All experiments were conducted on a 2.00GHz
Core Intel(R) Xeon(R) CPU E5-2620 machine with CPU-
time/memory limits of 30 minutes/8GB, respectively. The
average compilation time was from 0.2 to few seconds for
all domains except Trucks for which it was 86 seconds.

The compared planners are evaluated using the IPC qual-
ity score (introduced in IPC-6). Given a planner p and a
planning instance i, if p solves i, the following score is as-
signed to p: score(p, i) = costbest(i)

cost(p,i) , where costbest(i) is the
cost of the best known solution for i found by any planner,
and cost(p, i) is the cost of the best solution found by p, us-
ing at most 30 CPU minutes. If p does not find a solution,
then score(p, i) = 0. We also consider another metric for
plan quality evaluation, that we call αcost: if planner p solves
instance i, we assign the following score to p

αcost(p, i) = cost(p,i)
costtotal(i)

=
∑
P∈P(i) : π 6|=P c(P )∑

P∈P(i) c(P )

where P(i) is the set of the preferences in i. If for two
planners p and p′ we have αcost(p, i) < αcost(p

′, i), then
p performs better than p′ for i, and the difference between
these metric values quantifies the performance discrepancy.
The α-cost is minimum when the plan π found by p for i is
(preference-wise) optimal.

Concerning optimal planning, similarly to what done by
WMN (Wright, Mattmüller, and Nebel 2018), we tested our
scheme using Fast Downward (Helmert 2006) with three ad-
missible heuristics: hblind, assigning zero to goal states and
1 to every other state, hmax (Bonet and Geffner 2001), and
hcpdb (Haslum et al. 2007). For this analysis we generated
a set of benchmarks using the same methodology of WMN.
Starting from the IPC-5 problems, we created simpler in-
stances by randomly sampling subsets of the soft trajectory
constraints in the original instances: from each original in-
stance, five additional instances are generated, each of which
has, respectively, 1%, 5%, 10%, 20% and 40% of the orig-
inal (grounded) soft trajectory constraints; the hard goals
are all unchanged, if they exist. Since the sampled instances
used by WMN are not available, we generated, for each sam-
pling percentage (except for 100 %), 3 sampled instances
and considered the average performance over them.

Experimental Results
Tables 1 and 2 give the performances of the compared plan-
ners in term of IPC quality score aggregated by domain. The

Planner Rovers TPP Trucks Openstacks Storage TOTAL
LAMAP(hR) 16.98 8.34 15.43 19.28 18.48 78.51

FDRemix 17.89 7.1 17.8 18.99 16.21 78.0
FDSS 2018 17.6 7.03 17.21 18.7 17.12 77.66

LAMA(2011) 17.01 7.53 13.16 18.42 17.83 73.94
IBaCoP2 19.62 9.68 10.0 17.85 15.73 72.88
LPRPG-P 11.36 18.74 7.1 19.71 12.88 69.78

MIPlan 17.65 8.8 9.23 17.35 14.42 67.46
Mercury 16.07 6.57 7.84 18.06 14.51 63.04

Table 1: IPC scores of the compared planners using the orig-
inal plan metrics of the IPC-5 benchmarks. The best scores
are indicated in bold.

PA
Planner Rovers TPP Trucks Openstacks Storage TOTAL

LAMAP(hR) 14.91 20.0 15.0 20.0 19.0 88.91
FDSS 2018 14.75 17.0 18.0 17.83 20.0 87.59

MIPlan 15.27 20.0 12.0 19.0 20.0 86.27
LPRPG-P 15.02 7.0 0.0 19.5 11.0 52.52

PG
Planner Rovers TPP Trucks Openstacks Storage TOTAL

LPRPG-P — 19.45 16.48 19.57 14.96 70.47
FDSS 2018 — 14.66 16.49 18.55 18.46 68.16

LAMAP(hR) — 14.82 14.36 18.85 18.92 66.94
MIPlan — 15.08 9.85 16.84 19.32 61.09

PAO
Planner Rovers TPP Trucks Openstacks Storage TOTAL

FDSS 2018 17.22 18.0 20.0 — 19.0 74.22
LAMAP(hR) 15.33 19.0 20.0 — 19.0 73.33

MIPlan 14.76 17.0 15.0 — 20.0 66.76
LPRPG-P 14.11 2.0 19.0 — 12.0 47.11

PSB
Planner Rovers TPP Trucks Openstacks Storage TOTAL

LAMAP(hR) 18.6 20.0 18.0 — 19.0 75.6
MIPlan 18.66 20.0 12.0 — 20.0 70.66

FDSS 2018 17.92 17.0 16.5 — 19.0 70.42
LPRPG-P 8.63 14.0 15.5 — 7.0 45.13

PST
Planner Rovers TPP Trucks Openstacks Storage TOTAL

LAMAP(hR) 15.3 10.0 — — 19.0 44.3
FDSS 2018 17.2 8.0 — — 19.0 44.2
LPRPG-P 10.42 17.0 — — 14.0 41.42

MIPlan 15.86 9.0 — — 14.0 38.86

Table 2: IPC scores of a selection of the tested planners
whose plans are evaluated considering each kind of pref-
erences separately. “—” means that no preferences of this
class are present. The best scores are indicated in bold.

results in Table 1 concerns plan quality considering all pref-
erences (i.e., the original plan metrics in these benchmarks),
while those in Table 2 concerns plan quality when only the
class of preferences indicated in each subtable is considered
for the plan metric (using the original violation costs).

The analysis in Table 2 considers a subset of the plan-
ners in Table 1. Overall the compilation approach performs
better than LPRPG-P, with five planners obtaining better to-
tal IPC scores. The comparison considering each preference
class separately shows good performance as well for every
preference class except for soft goals.

In Rovers, Trucks and Storage each considered planner
performs better than, or at least similarly to, LPRPG-P (ex-
cept for Mercury in Trucks); IBaCoP2 performs particularly
well in Rovers, FDRemix in Trucks and LAMAP(hR) in
Storage. Also MIPlan works well in Trucks, but it is penal-
ized due to its inferior coverage (it solves only 15 instances
out of 20). The tested planners from IPC9, FDRemix and
FDSS 2018, perform overall better than those from IPC8,
and LAMAP(hR) is better than everyone else (it improves
the performance of LAMA in all the considered domains
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Figure 2: αcost analysis for Rovers and TPP domain.

except Rovers, where there is no soft goal and hR cannot be
exploited by LAMAP(hR)).

On the other hand, LPRPG-P performs similarly to
LAMAP(hR) in Openstacks and much better than the other
planners in TPP. The observed poor performance of the com-
pilation approach in TPP is mainly due to presence of many
soft goals. This is not very surprising since, as shown in
(Percassi, Gerevini, and Geffner 2017), compiling soft goals
through Keyder and Geffner’s method can sometimes give
poor planning performance. Indeed Table 2 shows that for
soft goals LPRPG-P has higher IPC score than all others
planners. We can also observe that, compared to LPRPG-
P, the classical planners achieve better results for prefer-
ences of classes always, sometime-before and at-most-once;
however, but this has not a crucial impact of the overall
plan quality, because, according to the plan metrics speci-
fied in these problems, violating the soft-goals is more costly
than violating the other preferences (or equivalently they are
more useful to satisfy than the other preferences).

The comparison of the planners’ performance using the
αcost helps to further understand the behaviour of the plan-
ners. For lack of space, we will focus this analysis on two
selected domains: Rovers, one of the considered domains
where the proposed compilation approach works better, and
TPP, the only domain where we observed poor performance
compare to LPRPG-P. Figure 2 shows, for each preference
class, the planners’ αcost values obtained by adding the rela-
tiveαcost for every instance of the two considered benchmark
domains. Each level of the stacked histograms represents the
aggregated αcost restricted to a specific class of preferences,
which indicates how much each class of the (violated) pref-
erence contributes to the total preference violation cost.

For Rovers, the IPC score gap between the classical plan-
ners and LPRPG-P is mainly due to LPRPG-P’s violation
of the sometime-before preferences. Regarding other pref-
erences classes, the violation costs in the generated plans
are similar except for IBaCoP2. This planner satisfies more
sometime-before and sometime preferences than the others
planning, and violates more at-most-once preferences, gen-
erally obtaining better quality plans.

For TPP, indeed Figure 2 shows that the most important
preferences are the soft goals, which are better satisfied by
LPRPG-P. The search pruning technique in LAMAP(hR)
exploiting hR slightly helps LAMA to achieve more soft
goals, but not enough to reach the performance of LPRPG-P.

Domain hblind hmax hcpdb

WMN Our WMN Our WMN Our
Storage 24.78 57.0 29.2 45.0 23.01 57.0
Rovers 17.14 24.0 21.43 25.0 15.17 23.0
Trucks 18.84 24.0 23.19 25.0 n/a 25

TPP — 47.0 — 45.0 — 40.0

Table 3: Problem coverage of our compilation and WMN’s
compilation for the IPC-5 benchmarks set augmented with
additional problems that have sampled soft-trajectory con-
straints. “n/a” means that the considered heuristic was not
applicable; “—” means that no data are reported in (Wright,
Mattmüller, and Nebel 2018).

Table 3 gives results about our compilation scheme for
optimal planning. For each of the three considered admis-
sible heuristics, the table indicates the percentage of solved
problems. The results are compared with those reported in
(Wright, Mattmüller, and Nebel 2018) for the “goal action
penality compilation”.2 Domain Openstacks here is not con-
sidered because no one of the considered heuristics solved
any instance. Also note that results for TPP are missing for
WMN because they are not reported in WMN’s paper.

According to these results, for the considered bench-
marks, our compilation approach seems quite preferable, be-
cause an higher coverage is obtained in all three considered
domains. This is the case even though the machine that we
used for our experiments if less powerful (CPU and memory
wise) than the one used by WMN, and moreover our CPU-
time limit was half of that used by WMN.

Conclusions
We have proposed a new compilation schema for solving
propositional planning augmented with PDDL3 soft state-
trajectory constraints. Our work significantly extends the
original approach of Keyder and Geffner that deals only soft
goals. The results of an experimental analysis show that, de-
spite the compilation of only soft goals may be less effective
than other approaches such as the LPRPG-P planner, for the
considered class of soft state-trajectory constraints our com-
pilation is quite competitive with the state-of-the-art. More-
over, since the planning language of the compiled problem
is very simple, many available planners can use it.

2A more detailed experimental comparison with WMN’s ap-
proach is very difficult because, at the time of writing, WMN’s
compiler, compiled files and solution plans are not available.
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