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Abstract

Nowadays,the manufacturing industry consumes almost half
of the energy produced on the planet. Within this industry,
sustainable scheduling represents a main issue due to the en-
ergy efficiency that it is able to achieve. Centralized or decen-
tralized approaches to sustainable scheduling can be found
in state-of- the-art techniques using both optimal or heuris-
tic methods. In this paper, a distributed system modelled as
a multi-agent framework is proposed to solve energy-aware
scheduling problems by applying it to a real case of the in-
jection air moulding industry, which has intense energy con-
sumption. In this proposal, a set of agents collaborate to reach
an agreement in order to minimize several objective functions
based on: total job weighted tardiness, total setup time, and
energy consumption. The proposed system is compared to
centralized and distributed approaches, highlighting advan-
tages and drawbacks and providing an interesting point of
view about how to tackle energy-aware scheduling with new
agreement techniques in a distributed environment.

1 Introduction
In recent years, the growth of sustainable industry has been
increasingly encouraged. Nowadays, one of the aspects that
is gaining strength in this area is the study of energy ef-
ficiency in the manufacturing industry (Seow and Rahimi-
fard 2011; Tonelli, Evans, and Taticchi 2013; Liu, Yang, and
Cheng 2017). Practically half of the energy consumed on the
planet is used by the industrial sector (Newman et al. 2012),
and energy-aware scheduling problems are considered to be
a fundamental issue in improving the efficiency of energy
inputs in the industrial environment (Bruzzone et al. 2012;
Dai et al. 2013; Plitsos et al. 2017). For this reason, there
is a growing need to perform multi-objective optimizations
in scheduling problems, which traditionally try to minimize
only measures related to process time, so that they also in-
clude among their priorities achieving energy efficient so-
lutions for sustainability purposes. Centralized or decentral-
ized approaches can be found in the state-of-the-art litera-
ture. Although most approaches found in the state of the art
can be classified as centralized, a few decentralized propos-
als that tackle scheduling problems can be found. (Agnetis
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et al. 2014) presents a multi-agent approach in which sub-
sets of jobs that share the same resources are evaluated with
different criteria for scheduling on one or more machines
(shared resources). In (Liu, Abdelrahman, and Ramaswamy
2007), a multi-agent framework is proposed for dynamic
job scheduling. This approach finds solutions by applying
solvers that are distributed in multiple agents to fix jobs in a
dynamic environment knowing minimal information about
the global state. (Martin et al. 2016) proposes a distributed
system based on agents, where each agent implements a dif-
ferent metaheuristic or local search and cooperates with the
other agents through peer-to-peer messages. However, each
agent works on the whole problem. (Behnamian 2016) stud-
ies a scheduling problem in a multi-factory environment,
where he presents a distributed and parallel approach ex-
ploiting a discrete particle swarm optimization algorithm. In
(Han et al. 2017), the authors present a system framework
with integrated multi-agent technology using a mathemati-
cal model that is proposed for solving a two-stage schedul-
ing problem. In (Tonelli et al. 2016), a simple multi-agent
system model is proposed to decompose an energy-aware
scheduling problem into smaller subproblems. In this ap-
proach, each agent solves a subproblem by using a Mixed
Integer Linear Programming (MILP) model and the results
are combined to obtain a global solution. A similar idea is
proposed in (Nicolò et al. 2017) where a set of solving tech-
niques are compared and job features are studied in order
to tackle energy-aware scheduling problems. Taking into ac-
count the proposals and results from (Tonelli et al. 2016;
Nicolò et al. 2017), in this paper, a multi-agent framework
is presented for solving energy-aware scheduling problems
where every task can be executed on a different set of ma-
chines with different processing times and energy consump-
tion on each machine. This framework uses a distributed
structure for allocating different agents that execute simul-
taneous local searches on previously found solutions. To
validate the proposed system, it is applied in a real indus-
trial case with intensive energy consumption. Specifically,
we applied it to one of the largest industries in the large-
scale production sector, plastic production by air injection
moulding, which is among the industries that consume the
most energy (2.06 · 108 GJ per year only in the USA). The
problem that we work with consists of scheduling a set of
job orders (or tasks) in a set of parallel moulding injection
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presses, where each order is characterized by a kind of prod-
uct to be produced and on which a penalty cost is to be paid if
the task finishes after a deadline. A set of alternative presses
is available for each job where both the energy consumption
and the time needed to finish the job directly depend on the
machine selected. Every time a task is finished, it is neces-
sary to carry out cleaning tasks and to change the mould for
the next job order. Therefore, a setup time between different
tasks must be taken into account. The setup time depends on
the pair of jobs that are executed sequentially and the ma-
chine that is used for the execution of those jobs. Thus, the
presented problem can be interpreted as a multi-objective
scheduling problem where the main goal is to minimize
three different factors: total tardiness, total energy consump-
tion, and total setup time between jobs (Lu et al. 2012;
Gong et al. 2017). This problem presents a structure that
is similar to other optimization issues in the manufactur-
ing industry consisting of the scheduling of independent
jobs on a set of unrelated parallel machines with different
setup or execution times, depending on the machine (Manu-
pati et al. 2017; Che, Zhang, and Wu 2017). Problems of
this kind are well-known cases of computation intractable
problems (Allahverdi 2015). It is worth noting how the sim-
plification of the analyzed scenario (the single machine to-
tal weighted tardiness problem) belongs to NP-hard prob-
lems (Lawler 1977), outlining the intrinsic difficulty of the
problem under consideration. In this paper, a distributed ap-
proach that includes an internal agreement system among
agents is presented as an alternative strategy to tackle multi-
objective scheduling problems. Additionally, the proposed
structure is independent from the search strategy used, so
it can be used to implement different search techniques as
presented in the further sections below. The evaluation sec-
tion presents a comparison between the different techniques
implemented in our system and a centralized approach that
models the problem as a mixed integer linear programming
in (Paolucci, Anghinolfi, and Tonelli 2015). Moreover, a
comparison with a multi-objective-based Genetic Algorithm
and with the MILP results obtained in (Tonelli et al. 2016)
is carried out in order to evaluate the gains of including col-
laborative reasoning in the search process.

2 Description of the Scheduling Problem
The problem to be solved consists of scheduling a set of or-
ders (each of which corresponds to a job) on a set of unre-
lated parallel machines (injection air molding presses). Each
job has two temporal features associated to it: a release date,
which is the earliest moment to start processing the job; and
a due date, which indicates the latest instant of time at which
the job has to be finished. When a job is delayed with re-
spect to its due date, for each unit of time exceeding the ex-
pected finishing time, there is a penalty cost expressing the
job priority. In other words, a delayed job with high prior-
ity will have greater penalties when it is than a job with a
lower priority. Each job must be processed on one machine
selected from among a set of eligible machines that are spe-
cific for each job. Jobs that can be executed on more than
one machine are called shared jobs (i.e., the set of eligible
machines for these jobs has more than one element). The

energy consumption and processing time of each job depend
on the machine selected to execute it. This means that differ-
ent machines may need different amounts of energy and time
to execute the same job; for example, a new machine can be
faster and energetically more efficient than an older one. Ev-
ery time a job finishes its execution, some physical actions
must be carried out on the machine before it can process an-
other job: the machinery must be cleaned, the mould must be
changed, etc. Therefore, a setup time between jobs must be
taken into account. The setup time directly depends on the
pair of jobs that are executed sequentially and also on the
features and particularities of the machine. Therefore there
is a different setup time for each pair of jobs on each ma-
chine. In the next section, the problem under observation is
formally described and its mathematical formulation is pre-
sented in a Mixed Integer Linear Programming model.

2.1 Mathematical formulation
From the problem description given in the introduction, the
following scheduling notation (Graham et al. 1979) is pre-
sented:
Rm|Mj , pjk, Ejk, rj , sijk|

∑
wjTj ,

∑
Ejk,

∑
Sijk

The problem is multi-objective since there are three mea-
sures to be minimized, which are expressed as objective
functions: the total weighted tardiness of the jobs TT (s), the
total energy consumption EN(s), and the total setup time
ST (s). The solution s∗ can be obtained by minimizing a 3-
dimensional objective function:

s∗ = arg min
s∈S

[TT (s), EN(s), ST (s)] (1)

where S denotes the feasibility space for the problem solu-
tion space. To represent the problem model and the objec-
tive function components to be optimized, a list of notations
extracted from (Paolucci, Anghinolfi, and Tonelli 2015) is
presented below.
Sets:
• J = {1, . . . , n}, the set of jobs, indexes 0 and n+1 denote

two fictitious jobs corresponding to the first and last job
on each machine

• M = {1, . . . ,m}, the set of machines (i.e., the presses)
• Mj , ∀j ∈ J , the set of machines that can execute job j
• Jk, ∀k ∈ M , the set of jobs that can be executed by ma-

chine k
Parameters:
• B, a sufficiently large constant
• Dj , ∀j ∈ J , the due date of job j
• Rj , ∀j ∈ J , the release date of job j
• Wj , ∀j ∈ J , the tardiness penalty of job j
• Pjk, ∀j ∈ J , ∀k ∈ Mj , the processing time of job j on

the eligible machine k
• Ejk, ∀j ∈ J , ∀k ∈ Mj , the energy consumption for pro-

cessing job j on the eligible machine k
• Sijk, ∀i, j ∈ J , ∀k ∈Mj ∩Mi , i 6= j, the setup time on

machine k between the completion of job i and the start
of the subsequent job j

• Πg , g = 1, 2, 3, the weights of the objective function com-
ponents (i.e., total weighted tardiness, total energy con-
sumption, and total setup time)
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Variables:
• cj , ∀j ∈ J ∪ {0}, the completion time of job j
• tj , ∀j ∈ J , tardiness of job j with respect to its due date
• xijk ∈ {0, 1}, ∀i, j ∈ J∪{0, n+1}, k ∈Mi∩Mj , i 6= j ,

binary sequencing variables (i.e., xijk = 1 denotes that
job i immediately precedes job j on machine k)

• yjk ∈ {0, 1}, ∀j ∈ J , k ∈ Mj , binary assignment vari-
ables (i.e., yjk = 1 denotes that j is processed by k)

2.2 Mixed integer programming model
In order to being able to evaluate a solution of the problem,
the three objective functions must be aggregated. Further-
more, the three factors to be combined have different dimen-
sions (energy and time), and the conversion to a common di-
mension may not always be practical because decision mak-
ers may have difficulty expressing preference information
through numerical weights, taking into account the original
dimension of the objective function components. The mixed
integer linear programming (MILP) model (Paolucci, Angh-
inolfi, and Tonelli 2015) combines the three factors into a
scalar function with a minimum deviation method, resulting
in the following scalar objective function F to be minimized:

min Π1 ·

∑
j∈J

Wj · tj − f
−
1

f+
1 − f−1

+ Π2 ·

∑
j∈J

∑
k∈Mj

Ejk

∑
i∈Jk
i6=j

xijk − f
−
2

f+
2 − f−2

+

Π3 ·

∑
k∈M

∑
i∈Jk

∑
j∈Jk
i6=j

Sijk · xijk − f
−
3

f+
3 − f−3

(2)

The quantity f−g , g ∈ {1, 2, 3} in (2) represents the best (i.e.,
minimum) value for the g-th component when this is opti-
mized individually; f+

g is an estimation of the worst value
for fg(s) that can be fixed as f+

g = maxh6=g fg(s∗h), where
(s∗h) is the optimal solution found when the objective fh(s)
is individually optimized. The weights Πg , g ∈ {1, 2, 3}
in (2) express the relative importance given by the decision
maker to the different objective components and are selected
such that

∑
g Πg = 1. The above function (2) is subject to:∑

i∈Jk
i 6=j

xijk = yjk ∀j ∈ J, k ∈Mj (3)

∑
j∈Jk
j 6=i

xijk = yik ∀i ∈ J, k ∈Mi (4)

∑
k∈Jk

yjk = 1 ∀j ∈ J (5)

∑
j∈Jk

x0jk ≤ 1 ∀k ∈M (6)

cj ≥ Rj +
∑
k∈Mj

Pjkyjk ∀j ∈ J (7)

tj ≥ cj −Dj ∀j ∈ J (8)

cj ≥ ci + Pjk + Sijk −B · (1− xijk)

∀k ∈M, ∀i, j ∈ Jk, i 6= j
(9)

c0 = 0 (10)
cj ≥ 0, tj ≥ 0 (11)
xijk ∈ {0, 1} ∀i, j ∈ J, i 6= j, k ∈Mi ∩Mj , (12)
yjk ∈ {0, 1} ∀j ∈ J, k ∈Mj (13)

Constraints (3) and (4) impose that each job assigned to a
machine must be sequenced on that machine. Specifically,
it must have a predecessor and a successor on the machine.
Constraint (5) guarantees that each job is assigned to a single
machine among the ones eligible to process it. Constraint (6)
imposes that, at most, a single job is the first one scheduled
on each machine. Constraint (7) defines the lower bound for
the job completion time, and Constraint (8) defines the job
tardiness. Constraint (9) controls the job completion times,
ensuring that each machine processes one job at a time and
the setup time between two successive jobs is satisfied. Con-
straint (10) fixes(sets) the completion time for the dummy
job0, and Constraints (11), (12) and (13) define the problem
decision variables.

3 System Proposal
To find a solution to the problem introduced, a multi-agent
framework is developed as a decentralized solution to scale
up the search process and to reduce the computational bur-
den derived from the combinatorial explosion of the prob-
lem (Lawler 1977). The motivation to introduce a distributed
framework comes from the observation that the problem un-
der analysis can be optimally decomposed if each job could
only be executed on one machine (i.e., ∀j ∈ J : |Mj | = 1).
In this scenario, the search process can be optimally dis-
tributed over as many independent scheduling problems as
the number of machines m, achieving an optimal problem
decomposition in m independent single machine schedul-
ing subproblems, where each one of them is still NP-Hard.
Unfortunately, most jobs can be executed on different ma-
chines (i.e., shared-jobs). Therefore, another source of com-
binatorial explosion is how to optimally assign each shared
job to an appropriate machine in order to optimize the given
objective function, namely the job assignation subproblem.
Based on the above considerations, a Multi-Agent frame-
work is proposed to tackle the computational burden of both
subproblems through an iterative process that is composed
of agreements and distributed searches. The agreements are
meant to address the job assignation subproblem through
a search space reduction strategy that restricts the set of
eligible machines for a specific shared job, while the dis-
tributed searches solve the independent machine scheduling
subproblems that are obtained from the restricted sets. The
rest of this section presents a brief overview of the proposed
framework, while a formal description of its components is
reported in section 4. Before moving on to the framework
overview, definitions 1 to 9 are reported to establish unifor-
mity of notation.
Definition 1. A shared-job j is a job where the set of eligible
machines contains more than one element, formally: j ∈ J
is a shared-job↔ |Mj | > 1.
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Definition 2. A job assignment Y ∗jw is the assignation of a
specific job j to an eligible machine w, formally: Y ∗jw =
{ yjw

⋃
w 6=w′ yjw′ | w,w′ ∈ Mj}, where yjk are the prob-

lem decision variables with yjw = 1 ∧ yjw′ = 0.
Definition 3. A complete job assignation Y ∗ is the union set
of all job assignments for the problem, including both shared
and non-shared job, formally: Y ∗ = {

⋃
Y ∗jw | j ∈ J }.

Definition 4. A restricted set of eligible machines for a
shared job j, M∗j is any subset of the initial set of eligible
machines for the shared-job j, formally: M∗j ⊂ Mj . With-
out loss of generality, the same definition can be extended to
the case of a set of shared-jobs J ′.
Definition 5. A restriction over the set of eligible machines
for a shared-job j r(Mj , w) is a function returning the re-
stricted set of eligible machines for j such that machine w
is removed, formally: r(Mj , w) = Mj \ w. Without loss of
generality, the same definition can be extended to the case
of a set of shared-jobs J ′.
Definition 6. A complete job assignement Y ∗ is coherent
over the union of all restricted set of eligible machines:
Y ∗ �

⋃
M∗j if and only if, for each job assignment Y ∗jw

in Y ∗, the machine w assigned to job j is included in the
restricted set of eligible machines for j. Formally: Y ∗ �⋃
M∗j ⇔ ∀Y ∗jw ∈ Y ∗ : w ∈M∗j .

Definition 7. A partial problem instance over a specific
machine w, DataSet(w) is the projection of the prob-
lem instance to machine w, formally: DataSet(w) =
{ J∗w, Dj , Rj , Wj , Pjw, Ejw, Sijw, Πg | i, j ∈ J∗w },
where J∗w is the set of jobs assigned to machine w.
Definition 8. A local solution sw is the solution of the par-
tial problem instance on a specific machine w, formally:
sw = {

⋃
yjw

⋃
xijw

⋃
cj
⋃
tj | i, j ∈ Jw}.

Definition 9. A job property is a binary relationR between
a job j and its local or global schedule solution s. It is de-
fined by evaluating the job informations extracted from the
analysis of the job over the schedule (e.g., job position, most
energy consuming job, etc.).

3.1 Overview of the system
The proposed work is described as a multi-agent framework
rather than a usual system (Tonelli et al. 2016) in order to
create an abstraction that represents a general view of how to
confront the problem under analysis. Specifically, the frame-
work is composed of different entities, namely agents, that
are described in terms of their functionalities so that specific
interactions between them are meant to achieve/implement a
macro-functionality that we call a framework module. In or-
der to express the framework generality with respect to the
problem under analysis, both the agent functionalities and
modules are described in terms of their specifications rather
than concrete implementations. In this scenario, the concrete
implementation has the role of tuning the developed system
to fulfill its non-functional requirements (e.g., bounded com-
putational time, reactiveness over problem perturbation, etc
. . . ). To visualize the above idea, Figure 1 shows the search
process workflow of a problem instance solution. Specifi-
cally, there are two different type of agentsA = {As∪Aw}:

Figure 1: Framework workflow for the solution search.

supervisor (s ∈ As) and worker (wi ∈ Aw = {1, . . . ,m}).
Each module is represented by a rectangle that is included
in a larger figure with shaded lines indicating the group of
agents that is in charge of implementing the module. The so-
lution search process starts with the preprocessing of prob-
lem instance information via the Initializer module, which
is implemented by the supervisor. The main module’s ob-
jectives are to analyze the data in order to identify shared
jobs and to construct related sets of eligible machines, while
instantating as many worker agents as machines in the prob-
lem. After the initialization phase, the machine assignation
subproblem is tackled through the Centralized Solver mod-
ule implemented by the supervisor. Its objective is to pro-
duce a complete job assignation Y ∗ and an optional initial
solution (referred as global solution sI ) where both of them
have to be coherent with the union of currently agreed re-
stricted sets of eligible machines

⋃
M∗j . The outputs pro-

duced by the centralized solver are sent to the macro module
Collaborative Reasoner, which is composed of submodules:
Distributed Search and Agreement, both of which are imple-
mented by worker agents. The goal of this module is to solve
the single machine scheduling subproblems in a distributed
way. The first submodule receives the job assignation and
starts a distributed search to produce local solutions swi

with
related local job properties of the shared jobs. If an initial
global solution sI is received from the previous module, the
searching process has to guarantee the same or higher solu-
tion quality as the initial one (F (

⋃
sw) ≤ F (sI)). The so-

lutions swi with related shared-job properties are then used
in the Agreement module, whose main goal is to find an ini-
tial agreement over a shared-job j′ and a set of restrictions
M∗j′ . After the initial agreements, a reschedule procedure is
invoked as a particular case of the distributed search, whose
aim is to validate M∗j′ through the analysis of a distributed
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rescheduling for the agreed job j′ over all its current eli-
gible machines. Once the M∗j′ are validated for local solu-
tions swi

, the agreement terminates and the set of restric-
tions will be fixed, meaning that during the next iterations
of the workflow, the machines removed from the eligible set
won’t ever be analyzed for the agreed job. The outcome pro-
duced by the collaborative reasoner module is shared by the
worker agents with the supervisor in order to implement the
last module of the framework: Solution Builder. The goal of
the module is to collect swi and validate

⋃
M∗j′ to build a

final global solution sF . Moreover,
⋃
M∗j′ is propagated to

the centralized solver module in order to produce valid job
assignations for the next iterations (e.g., after the machine
w′ is removed from the eligible set of the chosen job j′, the
centralized solver does not have to produce any job assign-
ment of j′ to w′). After the final global solution sF is built,
the module checks the fulfilment of the stop criteria. If the
stop criteria is satisfied, the framework returns sF otherwise,
a new iteration of the framework is performed.

4 System Modules
This section presents an extensive description of the frame-
work components presented above. Each module descrip-
tion starts by introducing abstract specifications and then re-
porting the concrete implementation (with specific design
choices) that is used to build the systems for the evaluation.
The following subsections describe each of the modules, in-
troducing them in the same order as the workflow discussed
in section 3.1.

4.1 The initializer
The supervisor agent starts the framework through the im-
plementation of the initializer module. This module ana-
lyzes the problem data, instantiates the worker agents, and
distributes specific information about the problem to them.
To do this, the supervisor agent receives the problem in-
stance specification and generates as many worker agents
wi as unrelated parallel machines are involved in the prob-
lem, where wi will simulate machine ki ∈ M . Then,
it creates partial problem instances DataSet(wi) and as-
signs them to each worker wi. To do that, all of the sets
of jobs J1

wi
that can only be executed on machine ki are

calculated and used to build the DataSet(wi). Formally,
J1
wi

= {j ∈ Jki
||Mj | = 1} and DataSet(wi) =

{ J1
wi
, Dj , Rj , Wj , Pjwi

, Ejwi
, Sj′jwi

, Πg | j′, j ∈ J1
w }.

4.2 The centralized solver
The centralized solver module is implemented by the super-
visor agent with the aim of producing a valid job assigna-
tion Y ∗ and an optional initial solution sI , both of which
have to be coherent with the currently agreed restricted sets
of eligible machines

⋃
M∗j . The main goal of this module

is to find a set of shared-job assignments that, together with
non-shared job assignments, produces a valid job assigna-
tion Y ∗. No specific functional requirements on Y ∗ are im-
posed, which means that any specific approach that satisfies
non-functional domain requirements could be used. More-
over, the possibility of producing a global solution sI that

is coherent with Y ∗ and
⋃
M∗j is left as optional. Thanks

to module generality, any implementation that generates a
global solution coherent with

⋃
M∗j can be used to extract

a valid Y ∗ from the analysis of its decision variables yjw.
A job assignation is considered to be valid if it is coher-
ent with the current restrictions on the eligible machine sets
that are generated by the collaborative reasoner during previ-
ous framework iterations. For our implementation, we used
a meta-heuristic solver that implements a genetic algorithm
(GA) proposed in (Nicolò et al. 2017).The reason behind
this is the fast convergence property of the genetic algo-
rithm and the possibility to reuse the current computation
(the produced population) for the next iteration of the work-
flow, where the supervisor agent is responsible for tuning
the genetic algorithm’s parameters depending on the non-
functional requirements (time constraints) and problem size.

4.3 The collaborative reasoner
The collaborative reasoner macro module is composed of
two submodules: Distributed Search and Agreement, both
of which are implemented by worker agents. The goal of the
module is to exploit centralized solver outcomes Y ∗ in order
to choose a set of shared-jobs J ′ and define restricted sets
over their eligible machine sets M∗J′ , while producing local
solutions that are coherent with defined restricted sets that
have to be fixed for the next framework iterations. This goal
is accomplished by exploiting the two submodules: first, a
distributed search is performed to find initial local solutions
and related job properties, and then an agreement process
is executed to select the shared-jobs J ′. Thus, a distributed
rescheduling of J ′ is performed to obtain rescheduled local
solutions that are analyzed to find an agreement on the re-
stricted setsM∗J′ . From the above brief description, it can be
noted that the number of shared jobs to be chosen and the
number of restrictions to be fixed in each iteration are not
specified (i.e., remove/fix one or more machines/restrictions
from the eligible sef of each job chosen). Moreover, these
parameters could be constant or variable during each of the
iterations. These design choices are left as implementation
choices. For our implementation, we decided to keep both
the parameters constant by limiting the number of shared
jobs to be chosen per iteration to one, but comparing two
choices regarding the number of restrictions to be fixed.
In this paper, two opposite values are analyzed: the fix of
only one restriction per iteration (i.e., removing one machine
from the eligible set) and the opposite, fixing the maximum
number of possible restrictions over the selected shared job
(i.e., leaving only one machine in the eligible set). The first
approach is called removing-one-machine (ROM ) and the
second one is called assign-one-machine (AOM ). In the fol-
lowing, each submodule is described in detail, introducing
the specification and our implementations.

The distributed search The distributed search module,
which is implemented by the worker agents, aims at pro-
ducing local solutions sw from the job assignation Y ∗ while
extrapolating job information regarding the solutions pro-
duced. If an initial global solution sI is received, the search
process has to guarantee the same (or a higher) solution
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quality from the initial one (F (
⋃
sw) ≤ F (sI)). Moreover,

the module has to implement a rescheduling functionality
when it is required to include a new set of shared-job J ′

to a local solution sw and produce the rescheduled solu-
tion sw,+J′ . To produce a local solution sw, each worker
agent builds its DataSet(w) from the Y ∗ and implements
a search strategy that best fits the time constraints and the
partial problem size. Then, each worker starts to analyze its
produced sw in order to identify the shared jobs that satisfy
local job properties. Both steps are executed asynchronously
by all of the worker agents w ∈ Aw. In our implementation,
the solution sw is calculated from the decomposition of sI ,
while the rescheduling functionality is implemented as a lo-
cal search procedure that inspects neighborhood solutions
close to sw that are generated from the insertion of a cho-
sen shared-job j′ over all the possible positions inside sw.
Without loss of generality, this implementation choice fixes
the J ′ to be a singleton set j′. The local job property Worst
Local Job (WLJ) proposed in (Nicolò et al. 2017) is used
for the shared-job analysis. To formalize it, the following
notation is introduced:
• sw,−J′ is the local solution sw after removing the set of

assigned shared-jobs J ′ from their scheduled positions.
• ∆F−sw,−J′ = F (sw) − F (sw,−J′) is the objective func-

tion variation once the jobs J ′ are removed from the local
solution sw.

From previous notation, WLJ of local solution sw is de-
fined as the total functions over the set of local solutions
{
⋃
sw}:

WLJ(sw) = arg max
j′∈J∗

∆F−sw,−j′(sw)

where J∗ is the set of shared jobs that satisfy the current
restrictions such that ∀j′ ∈ J∗ : w ∈M∗j′ ∧ |M∗j′ | > 1.

The agreement The agreement module, which is imple-
mented by worker agents, aims to choose a set of shared-
job J ′ and define restricted sets over their eligible machine
sets M∗J′ . To achieve this, the worker agents start the agree-
ment process by sharing the information produced during
the distributed search, namely, the local solutions with their
job property analysis. After that, they agree on a set of cho-
sen shared-jobs J ′, which are included in a specific sw pro-
duced by worker w that satisfy global job properties that are
related to all of the local solutions produced. After that, they
agree on a set of chosen shared-jobs J ′ that are related to a
specific sw produced by worker w; these J ′ have to satisfy
the global job properties that are related to all of the local so-
lutions produced. For this set of shared-jobs J ′, a distributed
rescheduling procedure is invoked, where J ′ is included in
the sw′ produced by other eligible workers (w′ ∈MJ′ \w).
Thus, each worker starts a reschedule procedure to produce
rescheduled local solutions sw′,+J′ . If the whole set J ′ is
not eligible for a worker w′, just the subset composed of
shared-jobs j′ eligible for w′ are rescheduled. Once the dis-
tributed reschedule is carried out, the workers involved share
their rescheduled solutions sw′,+J′ so that a new agreement
procedure starts. From sw and sw′,+J′ , an analysis of global
job properties is performed in order to rank the eligible ma-
chines for J ′ with respect to the global properties. From this

ranking, a subset of workers is chosen and removed from
the set of eligible machines of J ′ through the definition of
restrictions M∗J′ . Once the M∗J′ is defined, the agreement
terminates and the set of restrictions becomes fixed. This
means that during the next iterations of the workflow, the
machines removed from the eligible sets won’t ever be ana-
lyzed for the set of agreed shared-jobs J ′. For the evaluated
implementations, the global job property Worst Global Job
(WGJ) (Nicolò et al. 2017) is used. To formalize it, the fol-
lowing notation is used:

WGJ = arg max
j′∈J∗

max
w∈Aw

∆F−sw,−j′(sw)

wWGJ = arg max
w∈Aw

max
j′∈J∗

∆F−sw,−j′(sw)

To describe the distributed rescheduling that is performed
after the global job analysis, the following notations are in-
troduced:
• sw,+J′ is the rescheduled local solution sw after job assig-

nation of the set of shared-jobs J ′
• ∆F+

sw,+J′ = F (sw,+J′) − F (sw) is the the objective
function variation over the local solution sw with respect
to its rescheduled local solution with shared-jobs J

After the distributed rescheduling, the analysis of global
properties ranks the eligible worker for WGJ with respect
to the global properties. Formally, a total order representing
the ranking is defined as follows:
Definition 10. The ranking of eligible workers for WGJ

is a total order (MWGJ ,
∆F
≤ ) over the set of eligible ma-

chines MWGJ , defined through the value ∆F−wWGJ ,−WGJ

for wWGJ and ∆F+
sw,+WGJ for w ∈ {MWGJ \ wWGJ}.

From the above defined total order (MWGJ ,
∆F
≤ ), the

M∗WGJ is the subset ofMWGJ that contains its first m̄work-
ers, with m̄ ∈ [ 1, . . . , |MWGJ − 1| ]. The value m̄ depends
on the implementations as follows:

m̄ =

{
|MWGJ − 1| if ROM is selected
1 if AOM is selected

Module overview As a general overview of the whole col-
laborative reasoner module, the pseudo-code in workflow
1 shows a workflow over the m̄ value resulting in a con-
cise way of reporting the two developed implementations of
the framework: removing-one-machine (ROM ) and assign-
one-machine (AOM ). The pseudo-code can be analyzed
by grouped lines representing the introduced modules as fol-
lows: the loop of lines 1 to 3 represents the distributed search
module for local solutions; the lines 4 to 6 represent the first
invocation of the agreement module for local properties; the
loop of lines 7 to 9 represents the distributed rescheduling;
and the lines 10 to 14 represent the final agreement over the
global job and set of restrictions.

4.4 The solution builder
The solution builder module is implemented by the super-
visor agent in order to collect the local solutions sw and
agreed

⋃
M∗J′ from the worker agents to build a final global
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Workflow 1: Collaborative Reasoner
input : Y ∗ , sI ,

⋃
M∗j

output: sw , M∗WGJ

1 forall w ∈ Aw do
2 sw ← w.Search(Dataset(

⋃
Y ∗jw), sI ,

⋃
M∗j )

3 WLJ(sw)← w.F indWLJ(sw)
4 forall w ∈ Aw do
5 w.SharingOf(sw ∧WLJ,Aw)
6 WGJ ← findWGJ(

⋃
WLG(sw))

7 forall w ∈MWGJ \ wWGJ do
8 sw,+WGJ ← w.Reschedule(sw,WGJ)

9 ∆F+
sw,+WGJ ← w.Calculate∆(sw, sw,+WGJ)

10 forall w ∈MWGJ \ wWGJ do
11 w.SharingOf(sw,+WGJ ∧∆F+

sw,+WGJ′ ,MWGJ)

12 (MWGJ ,
∆F
≤ )← constructOrder(MWGJ ,

⋃
∆F )

13 MORD
WGJ ←MWGJ .Sort(

∆F
≤ )

14 M∗WGJ ←MORD
WGJ .KeepF irst(m̄)

solution sF , while restricted sets
⋃
M∗j′ are propagated to

the centralized solver module. For the proposed implemen-
tation, the building of global solutions is straightforward,
while the restriction propagation for the centralized solver
is implemented as the removal of elements from the eligible
machine set that is embedded in the chromosome of the GA.
In this way, the module can reuse the previously calculated
individuals from the population of the GA.

5 Evaluation
In this section, an empirical evaluation of the Multi-Agent
system is performed by analyzing the behavior of frame-
work implementations in terms of efficiency, scalability, and
solution quality. The evaluation is performed on a set of
instances that is generated from a statistical study of real
data acquired from a large plastic injection moulding fac-
tory of a leading company in the sector of supplying plas-
tic trigger sprayers and pump dispensers (Paolucci, Angh-
inolfi, and Tonelli 2015). These instances are grouped by
the number of jobs n and involved machines m for a total
of 4 classes, each of which contains 125 problem instances.
For the evaluation, all of the instances were executed on a
2.4 GHz Intel Core 2 Duo, limiting the computational time
to 600 seconds, as imposed by the case study requirement.
The weights expressing the relative importance of the ob-
jectives in (2) were fixed to Π1 = 0.6, Π2 = 0.35, and
Π3 = 0.05 according to the preference elicitation method
introduced in (Paolucci, Anghinolfi, and Tonelli 2015). The
average values obtained from the two framework implemen-
tations, ROM and AOM , were compared against two cen-
tralized approaches: the MILP model proposed in (Paolucci,
Anghinolfi, and Tonelli 2015) (MILP) and the Genetic Al-
gorithm (GA) proposed in (Nicolò et al. 2017), which is
also used in the centralized solver module. Furthermore, our
approaches were compared against the Multi-Agent System
(MAS) proposed in (Tonelli et al. 2016). Section 5 shows

Instances Multi-objective value

n m Centralized Distributed
MILP GA MAS ROM AOM

30 4 0,01997 0,03320 0,02663 0,03286 0,03284
50 6 0,01585 0,02811 0,02056 0,02752 0,02753

100 10 0,01305 0,02698 0,01780 0,02576 0,02559
250 20 0,05677 0,01428 0,03982 0,01197 0,01012

Table 1: Average multi-objective values reached in the dif-
ferent classes of instances in the 600-second timeout.

Objectives GA MAS Framework
ROM AOM

MO -74,85% -29,85% -79,08% -82,18%
TWT -40,59% -12,55% -41,27% -41,13%
EN -2,92% -4,95% -2,47% -2,42%
ST 60,11% 16,48% 48,6% 40,48%

Table 2: Percentage variation from MILP for the average ob-
jective functions values reached in the largest instance class.

the results with best values shaded in grey. It can be ob-
served that the MILP model maintained the best behavior for
small instances (30, 50, and 100 jobs), while the Multi-agent
framework had better behavior for the largest instances (250
jobs). This is due to the fact that th eMILP model was able
to obtain the optimal solution within the given timeout (600
seconds) in most of the small instances. However, as the
problem dimension increased, both implementations of the
Multi-Agent framework were able to achieve a better aver-
age optimized solution. It must be taken into account that
the class of instances that is the closest to real problems is
the largest one with n = 250 and m = 20. In fact, real in-
stances in the injection air moulding industry scenario are
composed of more that 500 jobs and 90 machines (Paolucci,
Anghinolfi, and Tonelli 2015). Moreover, it can be observed
that the values were close to 0, since (2) uses a minimum
deviation method, where each of the three single objectives
is compared with the best solution found by solving each
one individually. Section 5 shows the percentage variation
of each evaluated approach versus the MILP in the largest
instance class of all the objectives (MO, TWT, EN, and
ST). These results motivated the adoption of the proposed
Multi-Agent framework for energy-aware scheduling due to
its overall improvements while decreasing the energy con-
sumption. It must be taken into account that each single
objective is weighted by Πi values according to the pref-
erences given by experts. Therefore, the total setup time is
almost ignored by the fitness function of the metaheuristics
during the search process. As shown in Sections 5 and 5,
ROM and AOM outperformed other approaches for large in-
stances. Thus, to extrapolate more insights, a new class of
randomly generate instances with a similar dimension of a
real case (n = 500, m = 40) was generated and a compara-
tive study of their asymptotic behavior was summarized and
compared with the GA in Figure 2. The plot shows the pro-
gression of averaged objective values throughout the entire
search process before a large timeout was reached (i.e., 3600
seconds is set as the asympototic value for time). It can be
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Figure 2: Asymptotic behavior comparison of GA versus
ROA and AOM for the randomly generated instance (n =
500, m = 40) with 3600 seconds timeout.

observed that each approach performed a different number
of iterations within the given timeout. This is due to the fact
that each approach has different complexity within each iter-
ation. GA was able to carry out more iterations. However, it
ended with worse solution quality with respect to AOM and
ROM, showing the trade-off between the improvement from
a collaborative reasoning versus a larger number of itera-
tions. Moreover, by focusing on our implementations, AOM
reached a better solution quality in a shorter amount of time;
however, after a time threshold, ROM obtained better so-
lutions. These results are not outlined in Section 5 due to
the small timeout. Therefore, no specific framework imple-
mentation can be outlined as the best one but rather must
be chosen with respect to the timeout value imposed by
the non-functional constraints of the problem. For unifor-
mity of comparison, the above evaluations used the decision
weights to guide the whole search as defined in (Paolucci,
Anghinolfi, and Tonelli 2015). Nevertheless, to extend the
evaluation and to better assess the proposed implementa-
tion while keeping GA as the baseline, three new sets of
weights were evaluated to analyze the behavior of our ap-
proaches in different scenarios: • The initial case: ΠA =
{ΠA

1 = 0.60, ΠA
2 = 0.35, ΠA

3 = 0.05}, • Giving more
importance to energy: ΠB = {ΠB

1 = 0.35, ΠB
2 = 0.60,

ΠB
3 = 0.05}, • Giving the same importance to all objec-

tives: ΠC = {ΠC
1 = 0.34, ΠC

2 = 0.33, ΠC
3 = 0.33}, • Giv-

ing the same importance to tardiness and energy: ΠD =
{ΠD

1 = 0.475, ΠD
2 = 0.475, ΠD

3 = 0.05}. Section 5 sum-
marizes the average results for the largest class of instances
with a timeout of 300 seconds. Due to the tight timeout,
AOM always outperformed the other evaluated approaches
(AOM and GA) in the multi-objective based function. How-
ever, GA and ROM had better behavior than AOM in all
scenarios in terms of energy consumption, while AOM had
better performance in terms of setup time. Thus, a mixture of
the proposed approaches can provide a promising technique
that could be developed further.

TWT EN ST MO

ΠA
GA 10973646,98 37361,99 842,75 0,015084401

ROM 10947597,94 37418,68 812,96 0,013630537
AOM 10896557,66 37570,32 774,23 0,012468685

ΠB
GA 11114939,52 36927,08 848,94 0,021587188

ROM 11039597,95 36932,21 822,34 0,02000914
AOM 11056223,71 36985,63 795,12 0,018871841

ΠC
GA 13139426,46 42238,66 644,22 0,124417968

ROM 12886306,94 42551,58 606,12 0,113732844
AOM 12871967,53 44736,68 587,06 0,106763399

ΠD
GA 11031729,01 37099,19 840,09 0,018133667

ROM 10987348,45 37174,17 818,46 0,017200711
AOM 10988612,36 37225,67 789,80 0,016128346

Table 3: Average multi-objective values from four decision
settings of the largest instance class in a 300-second timeout.

6 Conclusions and Future Works

Several multi-agent approaches have been developed to
manage scheduling problems. In this paper, a multi-agent
framework has beeen proposed to solve energy-aware
scheduling problems in order to be applied to a real case of
the injection air moulding industry with intense energy con-
sumption. Thus, a set of collaborative agents work in a dis-
tributed environment to reach an agreement in order to min-
imize several objective functions: total job tardiness, total
setup time, and energy consumption. From framework gen-
erality, two specific implementations were developed and
tested against centralized and distributed state-of-the-art ap-
proaches on a real case dataset of the problem. The re-
sults show the efficiency of framework implementations as
a valuable choice for tackling sustainable scheduling prob-
lems. Also, meaningful insight has been gained regarding
the trade-off between time spent on the proposed collabo-
rative reasoning versus increasing the number of iterations,
which is the approach that is commoly used to improve per-
formance in many metaheuristics. An analysis of the design
choices made by the original authors for the data set under
evaluation has shown some limitations: the multi-objective
criteria to express the solution quality is defined as a scalar-
ized weighted function; and the time values of a problem
instance are expressed as sensitive decimal numbers, which
makes a constraint programming evaluation through a com-
mercial solver unfeasible. These limitations suggest possi-
ble lines for future works: the design of a benchmark for
the problem to enable CP evaluations; the use of differ-
ent multi-objective criteria (e.g., pareto front, ε-constraint,
etc.); the exploration of new implementations for the pro-
posed framework (i.e., different metaheuristics for the cen-
tralized solver module, new job properties to guide agree-
ment, etc.). Another interesting possibility is to consider dif-
ferent energy-aware problems: problems that allow energy
consumption variation in relation to the processing mode
(Zhang and Chiong 2016); scenarios that consider shifting
the energy costs (Grimes et al. 2014); or exploiting the re-
activity of the multi-agent system for dynamic energy-aware
scheduling (Zhai et al. 2017).
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