
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

On the Relation between
Star-Topology Decoupling and Petri Net Unfolding

Daniel Gnad, Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

{gnad,hoffmann}@cs.uni-saarland.de

Abstract

Petri net unfolding expands concurrent sub-threads of a tran-
sition system separately. In AI Planning, star-topology decou-
pling (STD) finds a partitioning of state variables into compo-
nents whose dependencies take a star shape, and expands leaf-
component state spaces separately. Thus both techniques rely
on the separate expansion of state-space composites. How do
they relate? We show that, provided compatible search or-
derings, STD state space size dominates that of unfolding if
every component contains a single state variable, and unfold-
ing dominates STD in the absence of prevail conditions (non-
deleted action preconditions). In all other cases, exponential
state space size advantages are possible on either side. Thus
the sources of exponential advantages of STD are exactly a)
state space size in the presence of prevail conditions (our re-
sults), and b) decidability of reachability in time linear in state
space size vs. NP-hard for unfolding (known results).

Introduction
Petri net unfolding is a well-known partial-order reduc-
tion method (e. g. McMillan (1992), Esparza, Römer, and
Vogler (2002), Baldan et al. (2012)). It maintains concur-
rent threads separately. Instead of building the forward state
space and trying to prune permutative parts as in other meth-
ods (e. g. Valmari (1989), Godefroid and Wolper (1991),
Wehrle et al. (2013), Wehrle and Helmert (2014)), the state
variables are not multiplied with each other in the first place.
The unfolding process incrementally adds transitions to an
acyclic graph, when the transition’s input “places” (precon-
dition facts) can be reached jointly. A new output place
is then added for each effect. The outcome structure is an
acyclic Petri net, a complete prefix, that preserves reachabil-
ity exactly relative to the input Petri net.

In classical planning, transition systems are described by
finite-domain state variables, where actions have conjunc-
tive preconditions and effects over these. This can be trans-
lated into Petri nets (Hickmott et al. 2007; Bonet et al. 2008).
Each place in an unfolding then corresponds to a state-
variable value, and the complete prefix is an acyclic fact-
action dependency structure that captures reachability.

Star-topology decoupling (STD) (Gnad and Hoffmann
2018) finds a partitioning of the state variables into com-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ponents, where all cross-component dependencies involve a
center component C, so that the other components L can be
viewed as leaves. The search explores action sequences af-
fecting the center. At each search node, the reachable leaf
states are expanded for each leaf L ∈ L individually.

Unfolding and STD are related. Consider a singleton-
component topology, where each component contains a sin-
gle state variable. The component states then are exactly the
places in the unfolding, and, like unfolding, STD expands
these separately. So how do the techniques relate exactly?

A significant known separation is the complexity of decid-
ing whether a conjunctive condition is reachable. Given an
unfolding prefix, this test is NP-complete (McMillan 1992)
as the transition histories supporting two places may be in
conflict. In contrast, given a decoupled state space prefix, the
test can be done in time linear in prefix size: thanks to the
star-topology organization, there are no conflicts. But what
about the sizes of the fully expanded prefixes, i. e., the re-
spective complete representation of reachability?

Gnad and Hoffmann (2018) have shown that the STD
state space can be exponentially smaller in the presence of
prevail conditions (non-deleted preconditions, whose treat-
ment in Petri nets leads to blow-ups); and that the complete
unfolding prefix can be exponentially smaller in the pres-
ence of non-singleton components. Here, we show corre-
sponding dominance results: without prevail conditions, un-
folding size dominates STD size; with only singleton com-
ponents, STD size dominates unfolding size. Both hold sub-
ject to compatible search orders, that prefer expansions on
leaves over ones on the center whenever possible, and that
are identical on the ordering of center-action sequences. For
incompatible search orders, exponential advantages are pos-
sible in either direction. Overall, we obtain a complete clas-
sification along the three dimensions of prevail conditions
(yes/no), non-singleton components (yes/no), and incompat-
ible search orderings (yes/no).

Background
We provide an overview suited to understand our results at
a high level. More technical details and notations, as needed
for the full proofs, are given in the appendix.

We use finite-domain state variables (Bäckström and
Nebel 1995; Helmert 2006). A planning task is a tuple Π =
〈V,A, I, G〉. Here, V is a set of variables, each associated

172

pi = l

pi = T

pi = r

t = l

t = r

lopiL

ulpiL

lopiR

ulpiR

drL drR

pi = lt = l

t = l

t = l

pi = T

t = r

pj = l

pj = T

lopiL

lopjL

drR

Figure 1: Part of the petri-net encoding of our running exam-
ple (left), and an incomplete prefix of its unfolding (right).

with a finite domainD(v). (Partial) variable assignments are
identified with sets of variable/value pairs, called facts, de-
noted (var = val). A state is a complete assignment to V . I
is the initial state, and the goal G is a partial assignment to
V . A is a finite set of actions, each a pair 〈pre(a), eff(a)〉 of
partial assignments to V , called precondition and effect of a.

For a partial assignment p, vars(p) is the subset of vari-
ables on which p is defined. For V ⊆ vars(p), p[V] denotes
the assignment to V made by p. We say that p satisfies a
condition q, p |= q, if vars(q) ⊆ vars(p), and p[v] = q[v]
for all v ∈ vars(q). An action a is applicable in a (partial)
state s if s |= pre(a)[vars(s)]. If so, the outcome of ap-
plying a in s is denoted sJaK, where sJaK[v] = eff(a)[v] for
v ∈ vars(eff(a))∩vars(s), and is sJaK[v] = s[v] elsewhere.

For convenience in the encoding as Petri nets, we assume
that there are no effect-only variables, v ∈ vars(eff(a)) \
vars(pre(a)). This is WLOG as such variables can be com-
piled away with a linear size increase (Pommerening and
Helmert 2015). What will be important, however, are pre-
vail conditions, v ∈ vars(pre(a)) \ vars(eff(a)).

For illustration, we use a simple logistics example that
highlights some key differences between STD and unfold-
ing. V = {t, p1, . . . , pn} where t encodes the position of
a truck on a map with two locations l, r; and each pi en-
codes the position of a package. We have Dt = {l, r} and
Dpi

= {l, r, T} where T stands for being in the truck. In
I , all variables have value l. Actions drive, e. g. drR with
precondition {(t, l)} and effect {(t, r)}; or load a pack-
age, e. g. lop1L with precondition {(t, l), (p1, l)} and effect
{(p1, T)}; or unload a package accordingly. Note that load
and unload actions have a prevail condition on the truck.

Petri-Net Unfolding
Planning tasks can be encoded in Petri nets Σ =
〈P, T, F,M0〉, which are digraphs whose nodes are the
places P and transitions T of Σ. When encoding a planning
task Π (Hickmott et al. 2007; Bonet et al. 2008), the places P
correspond to the facts of Π, and the transitions t ∈ T corre-
spond to the actions a ∈ A. The flow relation F connects
precondition places as input to transitions, and effects as
their outcome, e. g. (p, t) ∈ F means that t has precondition
p. A state s of Π (a set of facts) becomes a marking M in Σ
(a set of places). M0 = I is the initial marking. A transition
t can fire (i. e., is applicable) in a marking M if pre(t) ⊆M .

The resulting marking is M ′ = (M \ pre(t)) ∪ eff(t).
Figure 1 (left) illustrates the Petri net encoding of our run-

ning example. Places are blue circles, transitions gray boxes.
A marking M places a token in every place p ∈M .

Petri nets do not natively support prevail conditions. The
input places of transitions are “consumed” when a transi-
tion fires. Prevail conditions can be encoded by re-adding
a token to the respective place. In our example, the encod-
ing of (un)load actions consumes the current truck position,
and adds it back in the effect. This incurs a blow-up in the
unfolding (illustrated below), as a distinction is introduced
between the truck position before vs. after (un)load actions.

The outcome of the unfolding process for a Petri net Σ is
a triple UnfΠ = 〈B,E,G〉 that captures all markings reach-
able from M0 in Σ. The conditions b ∈ B and events e ∈ E
of UnfΠ are labeled with the places p ∈ P and transitions
t ∈ T in Σ.G extends the flow relation F according to these
labels. The unfolding process ensures that G is acyclic. A
configuration is a set C ⊆ E of events, partially ordered by
G, that includes all its predecessor events and that can be
sequenced to an executable transition sequence.

The unfolding is generated as follows. Initially, for every
p ∈ M0, there is a condition b in the unfolding. Then, the
unfolding incrementally extends UnfΠ by appending pos-
sible events e, adding a new condition to UnfΠ for every
b ∈ eff(e). An event e can fire at a configurationC if the out-
come C∪{e} is again a configuration (i. e., can still yield an
executable transition sequence), and e is not a cut-off event.
An event e is cut-off if its marking M , obtained when ex-
ecuting the configuration supporting e, equals the marking
M ′ of an already generated configuration. The unfolding
terminates if no more events can fire; it then represents all
markings reachable in Σ. We define the size of an unfolding
|UnfΠ| := |B| as the number of its conditions. We assume a
search order �, an order over configurations, constraining
the firing order: at each point in the unfolding process, the
�-minimal possible event e is added.

Figure 1 (right) illustrates some unfolding steps. Observe
the exponential blow-up due to missing support for prevail
conditions: any load event can choose to either use the initial
occurrence of (t = l), or any other occurrence generated
by previous load events, so that the number of possibilities
multiplies over the number of load events and thus packages.

Star-Topology Decoupling
Star-topology decoupling (STD) generates component states
in a similar way as unfolding generates conditions. Yet,
whereas conditions are facts, STD partitions the state vari-
ables into factors, and the atomic entities are assignments
to one such factor. STD finds a partitioning F of state vari-
ables so that the interaction across factors takes the form
of a star topology, where every cross-factor interaction in-
volves a single center factor C ∈ F , so that no direct in-
teractions exist between the other factors, called leaf factors
L := F \ {C}. We call assignments to C center states, and
assignments to any L ∈ L leaf states. Both are factor states.
In our example, one can set C := {t} and Li := {pi}.

Decoupled search branches over center actions AC , i. e.,
actions that affect – that have an effect on – C. It enumer-

173

center(IF) = l

center(sF) = r

center(tF) = l

SL(IF) = {(pi = l)
lopi L−−−→ (pi = T), . . . }

SL(sF) = {(pi = l), (pi = T)
ulpiR−−−→ (pi = r), . . . }

SL(tF) = {(pi = l), (pi = T), (pi = r), . . . }

drR

drL

Figure 2: The complete decoupled state space of our exam-
ple. One decoupled state per row. Center states and transi-
tions highlighted in blue. Transition within leaf state-sets il-
lustrate how new leaf states are reached.

ates the reachable leaf states separately for each leaf factor.
The leaf actions AL are those which affect an L ∈ L. A
decoupled state sF is a pair sF = (center(sF), SL(sF))
of center state center(sF) and set of leaf states SL(sF).
We say that sF satisfies a condition p, denoted sF |= p,
if center(sF) |= p[C] and for every L ∈ L there exists an
sL ∈ SL(sF) such that sL |= p[L].

The decoupled initial state IF has center(IF) = I[C].
For each leaf L, first I[L] is included into SL(IF); then the
reachable leaf states are added into SL(IF), i. e., those sL
reachable from I[L] via leaf actions a ∈ AL \ AC whose
center precondition is satisfied by center(IF), i. e., I[C] |=
pre(a)[C]. In our example, see Figure 2, we first have the
initial state facts (pi = l). The leaf states {(pi = T)} ∈
SL(IF) are then reached via lopiL actions.

Applying a center action a ∈ AC to a decoupled state
sF generates a successor tF as follows. First, center(tF) =
center(sF)JaK and SL(tF) = {sLJaK | sL ∈ SL(sF) ∧
sL |= pre(a)[L]}. Then, SL(tF) is augmented by those leaf
states reachable via leaf actions whose center precondition is
satisfied by center(tF). In our example, applying a = drR
to IF , all sL ∈ SL(IF) satisfy pre(a)[L] (which is empty),
and additionally the leaf states (pi = r) become reachable.

The decoupled state space ΘFΠ incrementally expands
center actions as described. Like for unfolding, we encode
the expansion order in an ordering relation�, here an order
over center-action paths, where each step considers the �-
minimal possible expansion. An outcome state tF is pruned
(is a cut-off) if its hypercube [tF] – the set of states formed
from center(tF) and leaf states in SL(tF) – is contained
in the union of [sF] for the previously generated decou-
pled states sF . Checking whether this is the case is co-NP-
complete (Gnad and Hoffmann 2018). A cheap sufficient
criterion is based on testing [tF] ⊆ [sF] against individ-
ual previous sF . For all but one of the results we prove here
(Theorem 5), that criterion is sufficient.

We define the size of ΘFΠ as the number of facts |ΘFΠ | :=∑
sF∈ΘF

Π
(|C| +

∑
sL∈SL(sF) |sL|). We denote the number

of decoupled states in ΘFΠ by #ΘFΠ .

Results Overview
We consider the following three dimensions:

(i) Presence or absence of prevail conditions.

(ii) Presence or absence of multi-variable components.

(iii) Compatibility, or lack thereof, of the search orders�.

+P+M+O

+P+M-O+P-M+O -P+M+O

-P+M-O+P-M-O -P-M+O

-P-M-O #ΘF
Π ≤ |UnfΠ| ≤ |Θ

F
Π |

#ΘF
Π ≤ |UnfΠ| |UnfΠ| ≤ |Θ

F
Π |

Figure 3: Subsumption hierarchy and results overview.
Above the green line, STD can yield exponentially smaller
representation size, below that line it cannot. Above the red
line, unfolding can yield exponentially smaller representa-
tion size, below it cannot.

Dimension (i) concerns the planning tasks Π. We denote the
class of Π without prevail conditions by “-P”, and the class
of all (arbitrary) Π, not making that restriction, by “+P”. For
dimension (ii), we denote by -M the restriction where the
factorization F may not contain multi-variable components,
and by +M the class of all F not imposing this limitation.

Regarding dimension (iii), note that we are not interested
in heuristic search here; the target is to build a complete
representation of reachability (the decoupled state space in
STD, a complete prefix in unfolding). Still, the order of ex-
pansions can significantly impact representation size, poten-
tially incurring or avoiding exponential blow-ups as we shall
see. We capture this in terms of the search orders �. We
say that a pair of search orders (�U ,�D) for unfolding re-
spectively STD is compatible if (O1)�U always orders new
leaf events before new center events, and (O2)�D and�U

agree on center paths, i. e., denoting by Q|C the restriction
of a configuration Q to center events, Q1|C �U Q2|C iff
πC(Q1) �D πC(Q2) for all valid sequencings of (the par-
tially ordered)Q1|C andQ2|C into center paths πC(Q1) and
πC(Q2). In other words, the only degree of freedom in�U ,
over�D, is the relative ordering of leaf events. We denote
that restriction by -O, and the unrestricted case by +O. Note
that (O1) mimics the factor-state generation order in STD,
where after adding a center action, all reachable leaf states
are added prior to considering the next center action.

Figure 3 gives an overview of the hierarchy of sub-classes
induced by dimensions (i) – (iii), and the associated reacha-
bility representation size results. In this hierarchy, exponen-
tial separations are inherited upwards, to more permissive
classes, as separating example families get preserved; while
domination properties are inherited downwards, to more re-
stricted classes, as the required prerequisites are preserved.

The next section shows our separation theorems. We show
that for the class +P-M-O there exist planning task families
where STD results in exponentially smaller reachability rep-
resentations. We show that, within -P+M-O, unfolding size
can be exponentially smaller. For incompatible orders -P-
M+O, we show separations in both directions.

Afterwards, we show our domination theorems. Within
+P-M-O, the number of decoupled states is always at most as
large as the unfolding, #ΘFΠ ≤ |UnfΠ|. On the other hand,
within -P+M-O, the unfolding is at most as large as the de-
coupled state space, |UnfΠ| ≤ |ΘFΠ |. As #ΘFΠ and |ΘFΠ | are
polynomially related given -M, with downward inheritance
in particular we get that, in the most restricted class -P-M-O,

174

STD size and unfolding size are polynomially related.

Separation Theorems
We show exponential separations between STD and unfold-
ing. The planning task families Πn in the following theo-
rems have size linear in n.
Theorem 1 There exists a family of tasks Πn in +P, with
factorings in -M and search orders in -O, where |ΘFΠn | is
polynomial in n while |UnfΠn | is exponential in n.

Our running example is such a family Πn. There are only
3 decoupled states, independently of n; the number of factor
states is linear in n. The number of conditions in the unfold-
ing is exponential in n, because all possible combinations
of, e. g., lopiL actions are enumerated in the initial state.

The so-called place-replication method in Petri nets en-
codes prevail conditions differently, with copies of the pre-
vail places (Baldan et al. 2012). In our example, though, this
incurs the same blow-up. Contextual Petri nets (Baldan et
al. 2012) have built-in support for prevail conditions (“read
arcs”), yet contextual unfoldings must keep track of “event
histories” which again incur the same blow-up.
Theorem 2 There exists a family of tasks Πn in -P, with fac-
torings in +M and search orders in -O, where #ΘFΠn is ex-
ponential in n while |UnfΠn | is polynomial in n.

Such example families can be constructed through per-
mutability (concurrency, in Petri net parlance) within fac-
tors. For example, scaling the number of trucks in logistics,
if all truck variables are in the center, then STD enumerates
all possible interleavings of truck drives. Unfolding expands
the trucks separately, avoiding that blow-up.
Theorem 3 There exists a family of tasks Πn in -P, with fac-
torings in -M and search orders in +O, where |ΘFΠn | is poly-
nomial in n while |UnfΠn | is exponential in n.

Theorem 4 There exists a family of tasks Πn in -P, with fac-
torings in -M and search orders in +O, where #ΘFΠn is ex-
ponential in n while |UnfΠn | is polynomial in n.

For both theorems, we construct example families and
search orders where one technique enters a part of the search
space that is exponential in n, while the other technique
takes a “short-cut”, entering a part of the search space that al-
lows to capture complete reachability with polynomial rep-
resentation size. For Theorem 3, the task family is con-
structed so that the unfolding search has a detrimental prior-
ity to expand center actions – even though leaf actions could
be expanded, violating (O1) – missing the “short-cut” of-
fered by leaf actions after a single center action has been
applied. For Theorem 4, vice versa, complying with (O1)
may lead to an exponential disadvantage, due to generating
the leaf preconditions of center actions causing a blow-up.

Domination Theorems
We now show domination results between the size of the
decoupled state space and that of the unfolding.

Intuitively, in singleton-component factorings, there is no
concurrency within factors, so unfolding can only exploit the
concurrency inherent in the factoring. Formally:

Theorem 5 For Π in +P, factorings in -M, and search or-
ders in -O, with hypercube pruning #ΘFΠ ≤ |UnfΠ|.

The proof consists of Lemmas 2 and 3 in the appendix.
Lemma 2 considers non-pruned/non-cut versions of STD
and unfolding, i. e., the infinite structures that arise with-
out pruning. It shows that the action and factor-state occur-
rences in ΘFΠ can be injectively mapped to corresponding
events and conditions in UnfΠ. This is because, in singleton-
component factorings, factor states are singleton facts (vari-
able/value pairs), corresponding exactly to the places and
conditions in the Petri net formulation. Whenever an action
occurence in ΘFΠ generates new factor states, a correspond-
ing event in UnfΠ generates corresponding conditions.

Lemma 3 shows that, if sF is not pruned by hypercube
pruning in ΘFΠ , then it contains a non-cut-off event in UnfΠ.
Namely, say action occurrence a in sF generates a state not
contained in any previous hypercube, and say a is mapped to
e as per Lemma 2. Then e is not a cut-off: with compatibil-
ity of �, the only additional conditions generated in UnfΠ
are duplicates of prevail conditions, and the only additional
events are duplicates of actions consuming these conditions.

Our next result is perhaps more surprising. The exponen-
tial advantage of STD disappears without prevail conditions:

Theorem 6 For Π in -P, factorings in +M, and search or-
ders in -O, |UnfΠ| ≤ |ΘFΠ |.

The proof (in the appendix) consists of two parts. The first
part considers the non-pruned versions of STD and unfold-
ing, and shows that the factor-state occurrences in ΘFΠ can
be surjectively mapped to corresponding factor co-sets in
UnfΠ: jointly reachable conditions over the variables of a
factor. During the construction of UnfΠ and ΘFΠ , for every
new event e in UnfΠ, every new factor co-set supported by
e is matched by corresponding new factor states in ΘFΠ . The
crucial part of the argument is that, in the absence of prevail
conditions, all new conditions b generated by e correspond
to a factor-state change in the planning task, matched by the
generation of a new factor state in ΘFΠ .

The second part of the proof observes that, for any event e,
corresponding new factor state occurrences p in ΘFΠ map to
factor co-sets including the new conditions added by e. The
factor co-sets mapped to are different for every event. Fur-
ther, at any point in the construction, with compatibility of
�, the current ΘFΠ prefix cannot represent states not repre-
sented in the UnfΠ prefix. Thus, if e is a non-cut-off event, at
least one decoupled state sF containing the new factor-state
occurrences p is not pruned by hypercube pruning.

Corollary 1 For Π in -P, factorings in -M, and search or-
ders in -O, with hypercube pruning #ΘFΠ ≤ |UnfΠ| ≤ |ΘFΠ |.

Conclusion
Our results completely characterize the possibility of expo-
nential size differences, or lack thereof, between STD and
unfolding as a function of three major dimensions. A ma-
jor question for the future is whether, guided by these re-
sults, the strengths of STD could be combined with those
of unfolding. One could use unfolding inside the STD fac-
tors, which should dominate both algorithms in search space

175

size, at the expense of worst-case exponential reachability
tests within factors. Other thinkable combinations include
special-case handling of prevail conditions, for star-shape
dependencies, within unfolding techniques.

Appendix: Technical Background Details
We spell out the concepts previously only outlined, and we
give additional notations as needed in our proofs.

Petri-Net Unfolding
Our definitions loosely follow Bonet et al. (2014). A net N
is a tuple N = 〈P, T, F 〉, where P and T are sets of places
and transitions. F ⊆ (P ×T)∪ (T ×P) is the flow relation.
For z ∈ P ∪ T , we denote pre(z) := {y | (y, z) ∈ F} and
eff(z) := {y | (z, y) ∈ F}. For Z ⊂ P ∪ T , we denote
pre(Z) :=

⋃
z∈Z pre(z) and eff(Z) :=

⋃
z∈Z eff(z). A set

of places M ⊆ P is called a marking. A Petri net Σ =
〈N,M0〉 is a pair of a netN = 〈P, T, F 〉 and initial marking
M0 ⊆ P . By �, we denote the reflexive transitive closure
of the flow relation F . Two nodes y, y′ ∈ P ∪ T are in
conflict, denoted y#y′, if there exist distinct t, t′ ∈ T s.t.
pre(t) ∩ pre(t′) 6= ∅, t � y, and t′ � y′. Two nodes y, y′ ∈
P ∪ T are concurrent, denoted y ‖ y′, if neither y#y′ nor
y � y′ nor y′ � y.

The unfolding procedure builds a branching process,
which is an occurrence net labeled with the places and tran-
sitions in Σ. An occurrence net ON = 〈B,E,G〉 is a net
whereB andE are called conditions and events, correspond-
ing to places and transitions in a net. Occurrence nets have
the following properties: they are acyclic, i. e., � is a partial
order; for every b ∈ B : |pre(b)| ≤ 1; for every y ∈ B ∪ E,
¬(y#y) and there are finitely many y′ s.t. y′ ≺ y, where
≺ is the transitive closure of G. ≺ is called the causality
relation, and an event f with f ≺ e is called a causal pre-
decessor of e. Min(ON) is the set of ≺-minimal elements
of B ∪ E. A branching process ∆ of a Petri net Σ is a pair
∆ = 〈ON,φ〉 of an occurrence net ON and a homomor-
phism φ : B ∪ E → P ∪ T specifying the labels.

A set of conditions D is called a co-set if for all d 6= d′ ∈
D : d ‖ d′. A set of events C ⊆ E is causally closed if for
every e ∈ C, f ≺ e implies f ∈ C. A configuration C is a
finite set of events that is causally closed and free of conflicts
(∀e, f ∈ C : ¬(e#f)). By [e] := {f | f � e} we denote
the local configuration of an event e ∈ E. For a configura-
tion C, Mark(C) := φ((Min(ON) ∪ eff(C)) \ pre(C)) is
a reachable marking of Σ. Intuitively, a configuration corre-
sponds to a partially ordered plan.

An event e is a cut-off if there exists a configuration C in
∆ such that Mark(C) = Mark([e]). An event e ∈ E labeled
with a transition t is a possible extension of a configuration
C in ∆ if C ∪ {e} is a configuration, and there exists a co-
set D in ∆ such that no event in pre(D) is a cut-off, |D| =
|pre(t)|, φ(D) = pre(t), and ∆ contains no event e′ with
pre(e′) = D where φ(e′) = t. We then say that e fires in C.

The unfolding process for Σ incrementally builds a
branching process called a complete prefix, denoted UnfΣ.
The process starts from Min(ON), and adds possible ex-
tensions while ones exist. The extensions e are added ac-
cording to an order� over their local configurations [e]. In

each step, the�-minimal event e is considered. If e is not a
cut-off, then new instances of eff(φ(e)) are added to UnfΣ.
Upon termination, all reachable markings of Σ are repre-
sented by a configuration in UnfΣ (McMillan 1992).

If � is a well-founded order and satisfies certain condi-
tions (see Def. 3 in Bonet et al. (2014)), then the number
of non-cut-off events in UnfΣ is upper-bounded by the num-
ber of reachable markings in Σ. We will consider such �
throughout. We define the size of UnfΣ as |UnfΣ| := |B|.

A planning task Π = 〈V,A, I, G〉 can be encoded as a
Petri net Σ(Π) = 〈〈P, T, F 〉,M0〉. Facts are encoded as
places. Actions a are encoded as transitions t with pre(t)
= pre(a) and eff(t) = eff(a), adding redundant effects
eff(a)[v] = pre(a)[v] for prevail conditions. We assume this
encoding throughout, and refer to its unfolding as the un-
folding of Π, denoted UnfΠ. We identify facts with places,
actions with transitions, and (partial) states with markings.

Star-Topology Decoupling (STD)
Given a planning task Π, a variable partitioning F is a star
factoring if |F| > 1 and there exists C ∈ F such that, for
every action a where vars(eff(a)) ∩ C = ∅, there exists
F ∈ F with vars(eff(a)) ⊆ F and vars(pre(a)) ⊆ F ∪ C.

The set of actions affecting a leaf L ∈ L := F \ {C} is
denotedAL, the set of all leaf actions is denotedAL. We re-
fer to sequences πC = 〈aC1 , . . . , aCn 〉 of center actions aCi ∈
AC as center paths, and sequences πL = 〈aL1 , . . . , aLn〉 of
leaf actions aLi ∈ AL as leaf paths. The set of states of a
leaf L is denoted SL, the set of all leaf states is denoted SL.

A decoupled state space given Π and F is a labeled tran-
sition system ΘFΠ = 〈SF ,AC , TF , IF 〉, built by starting
from IF and incrementally adding non-pruned transitions
and outcome states tF . SF is the set of decoupled states.
The center actions aC ∈ AC label the transitions TF . We
have 〈sF , aC , tF 〉 ∈ TF iff sF , tF ∈ SF , sF |= pre(aC),
and sFJaCK = tF . Here, the outcome sFJaCK of applying
aC to sF is defined by center(tF) := center(sF)JaCK and
SL(tF) :=

⋃∞
i=0 S

L(tF)i where SL(tF)0 := {sLJaCK |
∃L ∈ L, sL ∈ SL(sF) ∩ SL : sL |= pre(aC)[L]} and
SL(tF)i+1 := {sLJaLK | ∃L ∈ L, sL ∈ SL(tF)i ∩
SL, aL ∈ AL \ AC : center(tF) |= pre(aL)[C], sL |=
pre(aL)[L]}\

⋃i
j=0 S

L(tF)j . The initial decoupled state IF

is defined similarly by center(IF) := I[C] and SL(IF) :=⋃∞
i=0 S

L(IF)i where SL(IF)0 := {I[L] | L ∈ L}. The
center path on which a decoupled state sF is reached from
IF in ΘFΠ is denoted πC(sF).

Essentially, state transitions in ΘFΠ advance the center
state by aC , and advance the set of reached leaf states us-
ing those leaf actions enabled by the new center state. This
corresponds to an unfolding (sub-)process over factor states
that adds one center event and iteratively adds all leaf events
enabled by that center event.

Appendix: Proofs
We give the full proofs of our theorems, covering first the
separation results then the domination results.

176

Separation Theorems
Theorem 1 There exists a family of tasks Πn in +P, with
factorings in -M and search orders in -O, where |ΘFΠn | is
polynomial in n while |UnfΠn | is exponential in n.

Proof: One family as claimed is our illustrative run-
ning example, Πn = 〈Vn,An, In, Gn〉 defined as fol-
lows. Vn = {t, p1, . . . , pn} where D(t) = {l, r} and
D(pi) = {l, r, T}. The initial state is In = {t = l, p1 =
l, . . . , pn = l}. The goal does not matter here. The ac-
tions are An = {drive(x, y) | (x, y) ∈ {(l, r), (r, l)}} ∪
{load(i, z), unload(i, z) | 1 ≤ i ≤ n, z ∈ {l, r}} where
pre(drive(x, y)) = {t = x}, eff(drive(x, y)) = {t = y},
pre(load(i, z)) = {t = z, pi = z}, eff(load(i, z)) =
{pi = T}, and pre(unload(i, z)) = {t = z, pi = T},
eff(unload(i, z)) = {pi = z}.

Assume the factoring F with center C = {t} and leaves
L = {{p1}, . . . , {pn}}. The number of decoupled states
is #ΘFΠn = 3 as illustrated in Figure 2: After applying
drive(l, r) and drive(r, l), all leaf states are reached. ΘFΠ
contains |ΘFΠ | = 3 + 2n+ 3n+ 3n = 8n+ 3 factor states.

The size of the unfolding prefix |UnfΣ|, however, is expo-
nential in n. Any load(i, l) event that fires in the initial state
consumes an instance of the condition (t = l), and produces
a new instance of that condition. As the consumed instance
can be any instance produced beforehand, the number of in-
stances in the Petri net doubles in each step. �

Theorem 2 There exists a family of tasks Πn in -P, with fac-
torings in +M and search orders in -O, where #ΘFΠn is ex-
ponential in n while |UnfΠn | is polynomial in n.

We prove the following stronger claim:

Lemma 1 There exists a family of tasks Πn in -P, with fac-
torings in +M and search orders in -O, where #ΘFΠn is ex-
ponential in n for every family of star factorings Fn, while
|UnfΠn | is polynomial in n.

Proof: Consider Πn = 〈Vn,An, In, Gn〉 as follows. Vn =
{v1, . . . , vn}, where D(vi) = {0, 1, 2} for 1 ≤ i ≤ n. The
initial state is In = {v1 = 0, . . . , vn = 0}. The actions are
An = {a0, a

12
i , a

12
ij | 1 ≤ i, j ≤ n} where pre(a0) = {v1 =

0, . . . , vn = 0} and eff(a0) = {v1 = 1, . . . , vn = 1};
pre(a12

i) = {vi = 1} and eff(a12
i) = {vi = 2}; pre(a12

ij) =

{vi = 0, vj = 1} and eff(a12
ij) = {vi = 2, vj = 2}.

The unfolding prefix UnfΣ has size |UnfΣ| = 3n, with a
single condition b for every reachable fact. #ΘFΠn is expo-
nential in n as claimed. Observe that the a12

ij actions have an
unreachable precondition, yet their presence means that, in
any star factoring, there can be at most one leaf: if there were
two leaves Fi and Fj containing vi and vj respectively, then
the action a12

ij would incur a direct dependency across Fi and
Fj , in contradiction. Thus, for any family Fn = {Cn, Ln}
of star factorings (where Ln may not be present for some
values of n), max(|Cn|, |Ln|) ∈ Ω(n). So #ΘFΠn is expo-
nential in n since it has to enumerate all applications of a12

i
actions for a linear number of variables vi. �

Theorem 3 There exists a family of tasks Πn in -P, with fac-
torings in -M and search orders in +O, where |ΘFΠn | is poly-
nomial in n while |UnfΠn | is exponential in n.

Proof: We construct a task family Πn = 〈Vn,An, In, Gn〉
as follows. The variables are Vn = {c, l1, . . . , ln}, where
D(c) = {0, 1} and D(li) = {0, 1, 2}. The initial state
is In = {c = 0, l1 = 0, . . . , ln = 0}. The actions are
An = {aC01all2, a

C
10, a

C
01i01, a

L
i20, a

L
i21 | 1 ≤ i ≤ n}. The

action preconditions and effects are: pre(aC01all2) = {c =
0, l1 = 0, . . . , ln = 0} and eff(aC01all2) = {c = 1, l1 =
2, . . . , ln = 2}; pre(aC10) = {c = 1} and eff(aC10) = {c =
0}; pre(aC01i01) = {c = 0, li = 0} and eff(aC01i01) = {c =
1, li = 1}; pre(aLi20) = {li = 2} and eff(aLi20) = {li = 0};
pre(aLi21) = {li = 2} and eff(aLi21) = {li = 1}.

Assume the factoring F with center C = {c} and leaves
L = {{l1}, . . . , {ln}}. After applying aC01all2, exploration
of the leaf actions aLi20 and aLi21 reaches all variable values
and thus a compact representation of reachability. We con-
struct the search orders � so that STD finds this compact
representation, but unfolding does not.

We postpone configurations containing leaf events until
no more center-only configurations are available (thus vio-
lating constraint (O1) of compatible orders); and we con-
strain the order on center actions to start with the sequence
〈aC01all2, a

C
10〉. Precisely: if Cl contains an event e labeled

by φ(e) = a ∈ AL \ AC , but C does not contain such an
event, then C � Cl; denoting C1 = {aC01all2} and C2 =
{aC01all2, a

C
10}, we set C1 � C2 � C ∈ UnfΣ \ {C1, C2}.

Inside these constraints,� can be arbitrary.
With this search order, STD first generates sF =

IFJaC01all2K, where application of the leaf actions aLi20 and
aLi21 reaches all values of the leaf variables. Then STD gen-
erates tF = sFJaC10K. After that, the process stops: sF cov-
ers everything with center state c = 1, tF covers every-
thing with center state c = 0. The decoupled state space
has #ΘFΠn = 3 states, and thus polynomial size.

The unfolding prefix UnfΣ, however, has size exponen-
tial in n. The unfolding starts with the center events aC01all2

and aC10. Thereafter, given�, it prefers to explore the center
events aC01i01 rather than the leaf events aLi2x. The unfold-
ing thus has to set each leaf variable separately to 1, using
aC01i01. Every step aC01i01 sets c to 1, and must be followed
by aC10 setting c back to 0. In doing so, aC01i01 consumes an
instance of the condition c = 0, and aC10 generates a new
instance of that condition. As the consumed instance can be
any instance produced beforehand, the number of instances
in the Petri net doubles in each step. �

Theorem 4 There exists a family of tasks Πn in -P, with fac-
torings in -M and search orders in +O, where #ΘFΠn is ex-
ponential in n while |UnfΠn | is polynomial in n.

Proof: We adapt the task Πn used in the proof of Theorem 3.
We add a new variable l with domain {0, 1} and initial value
0. We include a new action aL01 with precondition {l = 0}
and effect {l = 1}. We add the fact l = 1 into the pre-
conditions of all actions aC01i01, and we add l = 0 into the

177

effects of these actions. In this modified task, to enter the ex-
ponential part of the search space, the leaf action aL01 must
be applied first. STD always applies leaf actions first. If we
violate (O1) however, unfolding can avoid this.

Precisely, we constrain� to order configurations contain-
ing (an event labeled) aC01all2 behind all configurations con-
taining any of aC01i01; and to order configurations contain-
ing aL01 behind all other configurations. STD then expands
the leaf action aL01 at IF , enabling the aC01i01 actions, thus
forcing the search into exploring the search sub-space using
these actions. This sub-space contains a different decoupled
state for every subset of leaf states so is exponentially large.
Yet unfolding prefers to do anything other than adding aL01,
so initially adds aC01all2 and then expands the aLi20 and aLi21

actions, which together with a single aC10 event and a single
aL01 event represent all reachable markings. �

Domination Theorems
We first analyze the case of singleton components, then
that where there are no prevail conditions. Each analysis
is decomposed into two steps, first showing a correspon-
dence across hypothetical non-pruned infinite structures,
then showing that this correspondence persists in the actual
structures. The non-pruned UnfΠ expands cut-off events.
The non-pruned ΘFΠ does not prune decoupled states, and
within each decoupled state does not do duplicate checking
across leaf-factor states. Note that these structures can be
built incrementally by choosing applicable center and leaf
expansions non-deterministically.

By â we denote an occurrence of an action a in ΘFΠ , i. e.,
center action a ∈ AC inducing a new decoupled state sF ,
or a leaf action a ∈ AL inducing a leaf state in a decoupled
state sF . By p̂ we denote an occurrence of a factor state p,
i. e., a center state or a reached leaf state in a decoupled state.

Theorem 5 For Π in +P, factorings in -M, and search or-
ders in -O, with hypercube pruning #ΘFΠ ≤ |UnfΠ|.

The proof shows how to embed ΘFΠ into UnfΠ. Theorem 5
follows directly from the following two Lemmas.

Lemma 2 Let Π be a task in +P, and F a factoring in -M.
Let ΘFΠ and UnfΠ be non-pruned. Then there is an injective
mapping f from action and factor-state occurrences â and p̂
in ΘFΠ to events and conditions in UnfΠ, where φ(f(â)) = a
and φ(f(p̂)) = p and, if p̂ is generated by â in ΘFΠ , then
f(p̂) is added by f(â) in UnfΠ.

Proof: Let p̂ be a factor-state occurrence in sF . The proof is
by induction over the length of the shortest action sequence
π = 〈a1, . . . , an〉 to a state s ∈ [sF] where s |= p and, if
n > 0, p ⊆ eff(an). Such a π exists for every p̂.

The base case n = 0 captures exactly those p̂ not gen-
erated by an action. These p̂ form the non-expanded initial
decoupled state, denoted IF0 , where no leaf action has yet
been applied, i. e., the factor state occurrencess p̂ are I[C]
and I[L] for every L ∈ L. As F is singleton-component,
these p̂ are simply the initial-state facts p. By definition of
UnfΠ, for every such p there is b ∈ UnfΠ where φ(b) = p.
We can define the desired mapping f0 accordingly.

For the inductive case, we have 〈a1, . . . , an〉 and p ⊆
eff(an). By induction hypothesis, the factor states generated
along πn−1 := 〈a1, . . . , an−1〉 can be mapped by an in-
jective function fn−1 to corresponding conditions in UnfΠ,
generated by a corresponding configuration Cn−1. There-
fore, a new event en with φ(en) = an is a possible extension
of Cn−1. In ΘFΠ , ân generates a new occurrence of factor
state p := eff(a)[F] for every factor F it affects. As F is
singleton-component, each p is a fact (v = eff(a)[v]). In the
unfolding, en generates a new condition b in UnfΣ for every
p ∈ eff(a), where φ(b) = p. We can thus extend fn−1 to a
mapping fn as desired. �

Lemma 3 Let Π be a task in +P, and F a factoring in -M.
Let ΘFΠ and UnfΠ be generated using compatible orders�,
with hypercube pruning for ΘFΠ . Then decoupled states in
ΘFΠ can be injectively mapped to non-cut-off events in UnfΠ.

Proof: Consider first ΘFΠ and UnfΠ generated using iden-
tical orders, iteratively as follows. In each expansion step,
first add a new action occurrence â and its new factor state
occurrences p̂ to ΘFΠ . Then add all corresponding non-cut-
off events e, and conditions c, to UnfΠ as per Lemma 2.

Let sF in ΘFΠ be arbitrary. Denote by D the prefix of ΘFΠ
generated prior to sF , and by U the prefix of UnfΠ. As sF
is not pruned by hypercube pruning, there exists s ∈ [sF]
not contained in [tF] for any tF in D. Let â be an action oc-
currence in sF that generates s, i. e., either the center action
application leading to sF or a leaf action application setting
a leaf L to s[L]. Then the corresponding event e is a non-
cut-off event in UnfΠ, because U cannot contain reachable
markings (states) not contained in D. Clearly, e is different
for every sF , allowing an injective mapping.

Consider now ΘFΠ and UnfΠ generated using compatible
orders. The only additional degree of freedom then is the
relative ordering of leaf event expansion within decoupled
states. This does not affect the above arguments. �

Theorem 6 For Π in -P, factorings in +M, and search or-
ders in -O, |UnfΠ| ≤ |ΘFΠ |.

The proof shows how to surjectively map factor states in
ΘFΠ to factor co-sets in UnfΠ, showing that the number of
factor states is at least as high as that of factor co-sets.

We use the following notations. A factor co-set P is a co-
set where vars(φ(P)) = F for some F ∈ F . We write
P [F] to indicate the factor F concerned, and given an ar-
bitrary co-set Q we write Q[F] for the restriction of Q to
conditions over the variables F . We write [Q] for the config-
uration supporting Q, and we write [Q]C for the restriction
of [Q] to center events. We write p[F] to indicate that a fac-
tor state p is over factor F . We say that a sequence πC of
center actions extends a partial order C over center actions
if there is a sub-sequence of πC that is a sequencing of C.

Proof: The proof has two parts: first, we consider the non-
pruned ΘFΠ and UnfΠ; then we analyze cut-off events vs.
hypercube pruning.

For the first part, we prove that (*) there is a surjective
mapping g where (a) for every p̂, φ(g(p̂)) = p; (b) for every

178

co-set Q, there is at least one sF where πC(sF) extends
[Q]C; and (c) for every such sF and every F , there is p̂[F]
in sF where g(p̂[F]) ⊇ Q[F].

We prove (*) by structural induction over an incremen-
tal construction of ΘFΠ alongside the construction of UnfΠ.
D and U denote the current prefix of ΘFΠ and UnfΠ respec-
tively, during the construction.

The induction base case is simple: U is then the set
Min(ON) of ≺-minimal elements of B ∪ E. This con-
tains exactly one condition b for every state variable v,
with φ(b) = I[v]. The factor co-sets P [F] here match ex-
actly the factor states I[F] for F ∈ F . We construct D
as the non-expanded initial decoupled state IF0 . Defining
g(I[F]) := P [F], we obviously get (a) – (c).

For the inductive case, say that U ′ results from U by
adding event e. We denote a := φ(e). By IH, we have a
mapping g from D to U satisfying (*). We show how to ex-
tend D and g to suitable D′ and g′ respectively.

We construct D′ by, for every sF where πC(sF) extends
[pre(e)]C , extending sF with a, as follows. If a is a leaf ac-
tion, then (i) we apply a to every factor state p in sF where
p |= pre(a). If a is a center action and sF |= pre(a), then
we apply a to sF , resulting in a new successor tF . In the
latter, (ii) we add the updated center state; (iii) for every leaf
factor L affected by a, and for every sL ∈ SL ∩ SL(sF)
where sL |= pre(a)[L], we add sL updated with eff(a)[L];
(iv) for every (leaf) factor L not affected by a, we add to
tF occurrences of actions aL ∈ AL \ AC reaching all of
SL∩SL(sF). The latter is possible because, without prevail
conditions, no such aL has preconditions on the center.

Observe that this construction of D builds several decou-
pled states in a parallel manner, in difference to the actual
construction of (pruned) ΘFΠ during search. However, the
construction of D complies with the unfolding search order.

Regarding the construction of g′: For (i) – (iii), let p̂′[F]
be a new factor state occurrence added to D′ by an occur-
rence â of a, and let p̂[F] be the factor state occurrence
that â is applied to. By IH, P [F] := g(p̂[F]) is a fac-
tor co-set and P [F] ⊇ pre(e)[F]. Let P ′[F] := (P [F] \
pre(e)[F]) ∪ eff(e)[F]. Then P ′[F] is a co-set in U ′. We
set g′(p̂′[F]) := P ′[F]. For (iv), i. e., a factor state occur-
rence p̂′[L] of p′[L] ∈ SL ∩ SL(sF) added to D′, we define
g′(p̂′[L]):=g(p̂[L]), where p̂[L] is p′[L]’s occurrence in sF .

We next show that g′ has the desired properties (*) on D′
and U ′. Obviously, (a) is given by construction.

To see that g′ is surjective, note that any new factor co-
set P ′[F] in U ′ must result from a factor co-set P [F] in
U through P ′[F] := (P [F] \ pre(e)[F]) ∪ eff(e)[F] where
eff(e)[F] 6= ∅ and thus pre(e)[F] 6= ∅. Let Q := P [F] ∪
pre(e). Then Q is a co-set in U as otherwise P ′[F] could
not be a co-set in U ′. By IH (b), there is at least one sF in D
where πC(sF) extends [Q]C . By IH (c), for every F there is
p̂[F] in sF where g(p̂[F]) ⊇ Q[F] = P [F], which implies
with IH (a) that g(p̂[F]) = P [F].

As Q ⊇ pre(e), we have that πC(sF) extends [pre(e)]C .
Thus sF has been extended with a = φ(e). If a is a leaf ac-
tion, then, because there are no prevail conditions and thus
no Petri net outputs of e on the center, F must be the respec-

tive leaf factor L. We have p[L] |= pre(a), so a was applied
to p[L] by (i), generating the outcome state φ(P ′[L]) which
is mapped by g′ to P ′[F] as desired. If a is a center action,
then, because there are no prevail conditions and thus no
Petri net outputs of e on factors not affected by a, F must
be either (ii) the center or (iii) a leaf factor L affected by a.
In both cases, a was applied to p[F], generating the outcome
state φ(P ′[F]) which is mapped by g′ to P ′[F] as desired.

Let now Q′ be any new co-set in U ′. We must show that
(b) and (c) hold forQ′. Observe first thatQ′ must result from
Q := (Q′ \eff(e))∪pre(e) in U , and that Q is a co-set in U .

Regarding (b): By IH (b), there is at least one sF where
πC(sF) extends [Q]C . If a is a leaf action, there is nothing
to show as, then, [Q]C = [Q′]C . Say that a is a center action.
By construction, sF has been extended with a, producing a
new successor tF . Clearly, πC(tF) extends [Q′]C .

Regarding (c): Let tF inD′, where πC(tF) extends [Q′]C ,
be arbitrary. First, say that a is a leaf action. Then D con-
tains sF with πC(sF) = πC(tF), namely the same decou-
pled state but yet with less leaf states. Let F be arbitrary. By
IH (c), there is p̂[F] in sF where g(p̂[F]) ⊇ Q[F]. Say that
a affects L. If F 6= L, then, as there are no prevail condi-
tions and thus no outputs of e on any factor other than L,
Q[F] = Q′[F] and we are done. Say that F = L. Then, as
Q ⊇ pre(e), we have p[L] |= pre(a) so awas applied to p[L]
by (i). The outcome state p′[L] is mapped by g′ to a co-set
P ′[L] in U ′, where P ′[L] ⊇ Q′[L] as needed.

Finally, say that a is a center action. Then tF was gener-
ated by extending sF in D with a. Let F be arbitrary. By IH
(c), there is p̂[F] in sF where g(p̂[F]) ⊇ Q[F]. If a affects
F , then similar to the above we have p[F] |= pre(a)[F], so
a was applied to p[F] by either (ii) or (iii), and the outcome
state p′[F] in tF is mapped by g′ to a co-set P ′[F] ⊇ Q′[F]
in U ′ as needed. If a does not affect F , then as above
Q[F] = Q′[F]. In that case, due to construction (iv), tF
contains a new occurrence of p[F], mapped by g′ to g(p̂[F])
which concludes the argument.

For the second part of the proof, consider now the pruned
versions of ΘFΠ and UnfΠ, built using compatible orders�.
Assume that e is a non-cut-off event in UnfΠ. Consider the
construction step where e is added, and denote D,D′ and
U,U ′ as above. Consider the decoupled states sF extended
with a := φ(e) by the above construction. With compati-
bility of �, there is at least one such sF in D′. For every
such sF , and for every factor F affected by a, there is a
factor-state occurrence p̂[F] in sF mapped to a factor co-set
P [F] := g(p̂[F]) where P [F] ⊇ eff(e)[F] and in particular
|P [F]| ≥ |eff(e)[F]|.

Observe that, for any other event e′, the factor-state oc-
currences p̂′[F] identified in the same manner must map to
different factor co-sets P ′[F] 6= P [F], simply because every
construction step of kinds (i) – (iii) maps to factor co-sets in-
cluding newly generated conditions. Therefore, to prove the
main claim it now suffices to show that at least one sF as
above is not pruned by hypercube pruning.

Clearly, φ(Mark([e])) ∈ [sF] for any such sF . Consider
the first sF generated in the construction of ΘFΠ . As, by con-
struction, D cannot represent states not represented by U ,
φ(Mark([e])) is not covered yet and sF is not pruned. �

179

Acknowledgments
Daniel Gnad was supported by the German Research Foun-
dation (DFG), under grant HO 2169/6-1, “Star-Topology
Decoupled State Space Search”. Jörg Hoffmann’s research
group has received support by DFG grant 389792660 as part
of TRR 248 (see perspicuous-computing.science).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Baldan, P.; Bruni, A.; Corradini, A.; König, B.; Rodrı́guez,
C.; and Schwoon, S. 2012. Efficient unfolding of contextual
Petri nets. Theoretical Computer Science 449:2–22.
Bonet, B.; Haslum, P.; Hickmott, S. L.; and Thiébaux, S.
2008. Directed unfolding of petri nets. Transactions on
Petri Nets and Other Models of Concurrency 1:172–198.
Bonet, B.; Haslum, P.; Khomenko, V.; Thiébaux, S.; and
Vogler, W. 2014. Recent advances in unfolding technique.
Theoretical Computer Science 551:84–101.
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein, S.,
eds. 2015. Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Esparza, J.; Römer, S.; and Vogler, W. 2002. An improve-
ment of mcmillan’s unfolding algorithm. Formal Methods
in System Design 20(3):285–310.
Gnad, D., and Hoffmann, J. 2018. Star-topology decoupled
state space search. Artificial Intelligence 257:24 – 60.
Godefroid, P., and Wolper, P. 1991. Using partial orders
for the efficient verification of deadlock freedom and safety
properties. In Proceedings of the 3rd International Work-
shop on Computer Aided Verification (CAV’91), 332–342.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hickmott, S. L.; Rintanen, J.; Thiébaux, S.; and White, L. B.
2007. Planning via petri net unfolding. In Veloso, M., ed.,
Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), 1904–1911. Hyderabad,
India: Morgan Kaufmann.
McMillan, K. L. 1992. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous cir-
cuits. In von Bochmann, G., and Probst, D. K., eds., Pro-
ceedings of the 4th International Workshop on Computer
Aided Verification (CAV’92), Lecture Notes in Computer
Science, 164–177. Springer.
Pommerening, F., and Helmert, M. 2015. A normal form for
classical planning tasks. In Brafman et al. (2015), 188–192.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.

Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13). Rome, Italy: AAAI Press.

180

