
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Cutting the Size of Compressed Path
Databases with Wildcards and Redundant Symbols

Mattia Chiari
m.chiari017@studenti.unibs.it

University of Brescia

Shizhe Zhao
shizhe.zhao@monash.edu

Monash University

Adi Botea
adibotea@ie.ibm.com
IBM Research, Ireland

Alfonso E. Gerevini
alfonso.gerevini@unibs.it

University of Brescia

Daniel Harabor
daniel.harabor@monash.edu

Monash University

Alessandro Saetti
alessandro.saetti@unibs.it

University of Brescia

Matteo Salvetti
m.salvetti014@studenti.unibs.it

University of Brescia

Peter J. Stuckey
peter.stuckey@monash.edu

Monash University

Abstract

Path planning on gridmaps is a common problem in AI and
a popular topic in application areas such as computer games.
Compressed Path Databases (CPDs) represent a state-of-the-
art approach to the problem, in terms of the speed of com-
puting full optimal paths and also individual optimal moves.
Despite significant improvements in recent years, the mem-
ory required to store a CPD can still be a bottleneck for large
game maps. In this work we present a new compression ap-
proach that can reduce the size of CPDs. Our approach uses
an extended notion of wildcards and a novel concept called
a redundant symbol. We implement our ideas on top of a
state-of-the-art CPD system and, in a range of experiments,
we demonstrate a substantial reduction in the size of CPDs.

1 Introduction
Path planning is an important and long studied problem in
AI, and it is a problem which finds common application in
different real-world settings such as robotics and computer
games. When the problem appears in practice, it is often as-
sumed that the input environment can be modelled as a two-
dimensional gridmap that is made up of traversable and non-
traversable cells. Despite significant improvements in the re-
cent literature, path planning on gridmaps remains an active
area of research. This is demonstrated, for instance, by the
interest shown in the Grid-based Path Planning Competition
GPPC (Sturtevant et al. 2015).

Compressed Path Databases (CPDs) (Botea 2011) are a
state-of-the-art approach (in terms of speed) for optimal
pathfinding on gridmaps (Sturtevant et al. 2015; Salvetti et
al. 2018). Each CPD is simply a data structure that provides
an optimal first move: from any cell s towards any cell t of
the gridmap. Created during an offline preprocessing step,
and exploited during a subsequent online phase, CPDs can
be used to compute shortest paths quickly. This is done by
looking up which is the next optimal first move on the way
to the target and executing that move; a process which is re-
peated until the target is reached. CPDs can also be used to
quickly provide any prefix of an optimal path. This is impor-
tant to reduce the so-called first-move lag, where an agent

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

needs to wait until it knows in which direction to move.
Many other pathfinding techniques for example, including
search-based methods derived from A* (Hart, Nilsson, and
Raphael 1968) know the first optimal move only when they
know the entire solution. By contrast, CPDs identify such
moves faster and independently from the rest of the path.

A main drawback of CPDs is that preprocessed data can
sometimes be prohibitively large — even after considering
recent efforts to reduce its size; e.g. (Strasser, Harabor, and
Botea 2014; Salvetti et al. 2017). In this work we seek to
address the issue with two new compression ideas that can
substantially reduce the size of existing CPDs:

• Redundant symbols are a generic concept that allow us
to represent a single first-move with two or more sym-
bols. The additional flexibility allows us to more effec-
tively compress first-move data.

• Proximity wildcards are “don’t care” symbols which al-
low us to avoid storing first-move data in cases where such
data can be efficiently re-computed online.

We undertake a detailed evaluation on gridmaps from
Sturtevant’s well known benchmark sets (Sturtevant 2012).
Results indicate important reductions of the CPD size, from
several factors to over one order of magnitude. Because CPD
sizes are much smaller, we also report a speedup in the time
required to extract optimal shortest paths.

The rest of this paper is organised as follows. In the next
section, we present background material on CPDs and sum-
marise existing work in the area. In Section 3, we introduce
the redundant heuristic symbol and show how this can help
compress CPDs. In Section 4, we show how we can use
proximity wild cards to help compress CPDs. In Section 5,
we explain the experimental setup and give experimental re-
sults. Finally, in Section 6 we give the conclusions and men-
tion future work.

2 Background
We present background information on gridmaps, com-
pressed path databases and wildcards, that are necessary to
understand the new contributions of this paper.

106

Gridmaps. A gridmap is a rectangular grid where each
cell is either fully traversable or fully blocked. Gridmaps
represent a popular way to represent the navigation environ-
ment of a mobile agent, such as a robot or a game charac-
ter. The agent can occupy exactly one traversable cell at a
time. The time is discretised and, at a given time step, the
agent can move to an adjacent traversable cell. 4-connected
grids and 8-connected grids correspond to two common
ways to define neighbouring relations. In 4-connected grids,
a traversable cell has (at most) 4 neighbours: North, South,
East and West. The cost of each such a transition is 1. 8-
connected grids, also known as Octile gridmaps, allow diag-
onal transitions (NE, SE, SW, NW), with a cost of

√
2 each,

in addition to the 4 straight transitions mentioned. In this
work, we assume that diagonal moves are disallowed if they
would touch an obstacle cell. We use the major compass di-
rections (N, S, SW, SE etc.) to refer to the corresponding
transitions from a given cell. Given a cell n in a gridmap, we
write n.x and n.y for the x and y coordinates of that cell.

Each gridmap induces a graph where traversable cells
are nodes, and neighbouring relations are edges. Consider
a weighted graph G = (V,E) with vertices V and edges
E ⊆ V × V , and edge length function w such that w(s, t)
is the weight of edge (s, t) ∈ E. A path from s to t in G
is a sequence of edges (n0, n1), (n1, n2), . . . , (nk−1, nk),
where k ∈ N+, n0 = s, and nk = t. The length of the path
is
∑k−1

i=0 w(ni, ni+1).

Compressed Path Databases (CPDs). A CPD (Botea
2011) encodes optimal first edges from any node s towards
any node t on a graph. More formally, we say that a “move”
from s towards t is the first edge of a path from s to t. An op-
timal move is the first edge of an optimal path. In this paper,
we use the terms “move” and “edge” interchangeably. Like-
wise for “cell” and “node” and also “gridmap” and “graph”.

Building a compressed database requires a series of it-
erations. Each iteration runs the Dijkstra algorithm (Dijkstra
1959) using a distinct node s as a source (root of the search).
A slight modification of the Dijkstra algorithm produces a
so-called first-move array T (s), using s as a source. In a
first-move array, all nodes t reachable from s are assigned a
first-move label that identifies all moves leaving s that start
a shortest path towards t. The first-move array T (s) is com-
pressed, which concludes the iteration at hand. Being inde-
pendent, the iterations can be run in parallel, with a speed-up
linear in the number of available processors.

Example 1. Consider the gridmap shown in Figure 1. We
illustrate an iteration of the preprocessing that builds the
CPD. In our example, Dijkstra is run from the source node s.
For each traversable cell we now specify all the optimal first
moves, from s to the node at hand. For example, two optimal
first moves exist from s towards the bottom-left corner: W
and SW. Compressing the set of first-moves requires a fixed
ordering of the graph nodes. In our example we assume that
the nodes are ordered left to right and top to bottom.

Following the approach of Strasser, Harabor, and
Botea (2014), the string of symbols is encoded with run-
length encoding (RLE). RLE compresses a string of sym-

W W W W,E E E E

W W W W,E E E E

W W E E

W W W s E E E

W,SW W,SW SW S SE E,SE E,SE

Figure 1: The optimal first moves to each cell of the gridmap
from the cell marked s. Black cells indicate obstacles.

bols by representing more compactly substrings, called runs,
consisting of repetitions of the same symbol. E.g., the sub-
string W; W; W; (W,E); E; E; E (the first row in the figure)
can have two runs, namely WWWW, and EEE. We replace
each such run by a pair of values: one value indicates the
starting index (where the run begins) and the other value
stores the associated symbol. With RLE the example sub-
string can be represented more efficiently as 1W; 5E. Ob-
serve how we are free to choose any symbol from a non-
singleton list such as (W,E). Overall, the entire string is com-
pressed into 11 runs: 1W 5E 8W 12E 15W 20E 22W 26E
29SW 32S 33SE. Note that obstacle nodes and the source
are assigned wildcard symbols “∗”; i.e., “don’t care” sym-
bols, because we never need to look up a move from s to any
of these. This concludes one iteration of CPD preprocessing.

Once preprocessing is complete the resulting CPD can
be used to look up optimal moves by performing a binary
search on the compressed string of any given source node.
E.g., to look up the optimal move from s to (6,2), which is at
index 13, we start with end pointers (l, u) = (1, 11) and look
up middle point m = 6, which is the entry 20E. As 13 < 20,
the binary search continues to the left, setting u = 5. Next
we look up m = 3 (the 8W entry in the compressed string)
and since 13 > 8, we continue to the right, setting l = 4.
Next we look up m = 4 (entry 12E) and set l = 5. Next we
look up m = 5 (the 15W entry) and set u = 4. The search
ends because u < l. For the final middle point m = 5, the
entry is 15W, and since 13 < 15 the search returns move E
of the fourth entry 12E.

We denote as CPD(s,t) a function which returns a first
move from s which starts some optimal shortest path from s
to t. As shown in the previous example, the function requires
a binary search through a compressed string of symbols. We
can retrieve a shortest path by simply repeatedly applying
the CPD to find the next move to make. The procedure for
the extraction of the shortest path is shown in Algorithm 1.

In practice, the size of the CPD can be reduced by choos-
ing a column ordering, that is the order in which nodes ap-
pear in the run length encoding. For simplicity, in the run-
ning examples we will use a default order (top to bottom, left
to right). However, in the experiments we use state-of-the-
art heuristic orderings introduced in previous work (Strasser,
Harabor, and Botea 2014). These have been shown to outper-
form naive orderings in terms of memory by up to a factor
of 10 (Strasser, Botea, and Harabor 2015).

107

Algorithm 1: Unidirectional path extraction at runtime
for an (s, t) pair. Symbol + denotes concatenation.

1 p← []
2 while s 6= t do
3 (s, n)← CPD(s, t)
4 p← p+ [(s, n)]
5 s← n

6 return p

Algorithm 2: Bidirectional path extraction at runtime
for an (s, t) pair

1 prefix← []
2 suffix← []
3 while s 6= t do
4 if (s, t) ∈ R then
5 (s, n)← CPD(s, t)
6 prefix← prefix + [(s, n)]
7 s← n
8 else
9 (t, n)← CPD(t,s)

10 suffix← [(n, t)] + suffix
11 t← n

12 return prefix + suffix

Bidirectional Wildcards. Salvetti et al. (2017) show how
we can improve the compression in a CPD for undirected
graphs by taking into account the duplicate information. In
order to find a shortest path from s to t we only need to
know either (a) the first move from s towards t, or (b) the
first move from t towards s. We do not need both.

Assume a realised relation R ⊆ V × V which defines
which pairs of (s, t) are realised correctly in the CPD. For
the completeness of path finding we simply require that ∀s ∈
V, t ∈ V, s 6= t→ ((s, t) ∈ R ∨ (t, s) ∈ R).

Given this information we can extract a shortest path from
s to t using a bidirectional search shown in Algorithm 2.

In practice the realised relation R is based on a node or-
dering ≺, so that (s, t) ∈ R⇔ s ≺ t.

The advantage of the realised relation is that if (s, t) 6∈ R
then we will never access the t entry in L(n). Hence we can
replace the entry in T the first moves array for s, T (t) with
wildcard entries “∗”. This allows to create more compressed
run length encodings.

3 Heuristic Redundant Symbols
In many cases in navigating a grid map, the first move to be
taken from a start s to target t is the “obvious move” that
heads in the direction towards the target. Rather than record
the first optimal move in the CPD, we can just record that the
move is “obvious”. To do so we introduce a new heuristic
redundant symbol h© to represent such moves.

Given nodes s and t we can define a default
move from s to t, d(s, t) as follows. Let A =
[NW,N,NE,W, null, E, SW,S, SE] be the array of direc-

NWNWNW N NE NE NE

NWNWNW N NE NE NE

NWNW NE NE

W W W s E E E

SW SW SW S SE SE SE

Figure 2: The default first move d(s, t) to each cell of the
gridmap. Bold if it appears in T (t) for the cell marked s.

tions indexed from 1 to 9. Let σx = sign(t.x − s.x), and
σy = sign(t.y − s.y), where sign(x) is −1 if x < 0, 0 if
x = 0, and +1 if x > 0; then d(s, t) = A[σx+3×σy+5].
Essentially, the default move is just the move that leads us
closest to the target, according to a heuristic distance func-
tion like, e.g., the Euclidean or the octile distance.

When the default move from s to some node t is one of the
optimal first moves from s to t, i.e., if d(s, t) ∈ T (t) where
T is the first move array for s, then we can encode this in-
formation in the CPD using the new symbol h© which repre-
sents that we follow the heuristic of default moves. Specif-
ically, we add to T (t) the new symbol h©, in addition to the
existing contents of T (t). This way, the compression step
will have more options to choose what symbol to keep from
T (t) in the compressed string, with a potentially better com-
pression in the end.

Example 2. Consider the gridmap shown in Figure 2. For
each node t, we show the default move bolded if it appears in
T (t) for s, that is the set of the optimal first moves sketched
in Figure 1. As we can see, almost half of the graph can be
encoded using the default moves. Once we add the heuris-
tic move symbol h© to each entry T (t) where the move is
bolded, we can perform a better run length encoding. The
encoding using the new heuristic move symbol is 1W 5E 8W
12E 15W 20E 22 h©, which is smaller than without using h©
(i.e., 7 runs in the new encoding, compared to 11 in Exam-
ple 1).

The heuristic move symbol is able to encode large parts
of the graph which are close to the source, and many other
parts as well.

3.1 Distance Functions
The default move is quite basic, it takes no account of in-
formation about the surroundings of s, and indeed in many
cases the direction returned may not even be possible. We
can improve the use of the heuristic move symbol h© by con-
sidering the relationship between s and t in more detail.

Let s be the source, t be a target, let fx(s, t) be a pre-
defined heuristic distance function. We assume fx(s, t) is
simple to calculate. For our examples we will use the octile
distance function

fo(s, t) =
√
2× c+ |s.x− t.x| − c+ |s.y − t.y| − c

where c = min(|s.x− t.x|, |s.y − t.y|)

or the Euclidean distance function

108

W W W E E E E

W W W E E E E

W W W E E E E

W W E E

W W W s E E E

SW SW SW S SE SE SE

Figure 3: The heuristic first move Fo(s, t) to each cell of the
gridmap from the cell marked s. All symbols are in bold,
since each of them belongs to the corresponding set T (t) for
the marked symbol s.

fe(s, t) =
√

(s.x− t.x)2 + (s.y − t.y)2.
We define the move chosen by the distance function

Fx(s, t) from s to t as the move leaving s to n such that
the estimated path distance through n, w(s, n) + fx(n, t), is
minimised, that is

Fx(s, t) = argmin
(s,n)∈E

{w(s, n) + fx(n, t)}.

In order for h© to be used in the CPD, it must be unambigu-
ous, hence we assume a total order on all moves leaving s,
and assume the argmin in F returns the least move in this
order that leads to the minimal distance. For gridmaps our
default ordering is NE, NW, SE, SW, N, S, E, W. Effectively
this tries to take diagonal moves first when there is a tie.

The move chosen by the distance function is immediately
better than the default move approach because it can never
choose invalid grid moves. Just as before, if Fx(s, t) returns
a first move that corresponds with the start of the shortest
path from s to t, then we can add the symbol h© to the set
T (t) of possible first moves for s.

Example 3. Consider the gridmap in Figure 1. Figure 3
shows the heuristic move to each node in the graph under-
lying the gridmap. Since for each target node t, Fo(s, t) ∈
T (t) for s, we can add a heuristic move symbol h© to each
entry in T (t). Now when we perform run length encoding
we get the result 1 h©. That is, the entire compressed string
has only 1 run, which is substantially shorter than options
discussed in Examples 1 and 2.

The revised CPD lookup function is shown in Algo-
rithm 3. It simply looks up the CPD as usual but, if it
finds a symbol h©, it returns the heuristic move Fx(s, t), for
whichever version we choose to use.

3.2 Improving the Tie-breaking
The heuristic move must be unambiguous, hence when there
are moves that look equally good we must choose one of
them unambiguously. This choice can be different for each
source node s. While the diagonal first ordering is a good
default, we can make use of the relative positions of s and t
to have better tie breaking.

Algorithm 3: Get next move algorithm for CPDs with
heuristic moves.

1 CPDH(s, t)
2 m← CPD(s,t)
3 if m = h© then
4 return F (s, t)
5 else
6 return m

s E E E E E

S SE SE SE SE

S SE SE SE SE

S SE SE SE SE SE

S SE SE SE SE SE

s E E E E E

S SE E,SE E E

S S,SE S,SE E E

S S,SE S,SE S,SE S,SE S,SE

S S,SE S,SE S,SE S,SE S,SE

(a) (b)

Figure 4: (a) The heuristic first move Fo(s, t) to each cell of
the gridmap from the cell marked s and (b) the optimal first
moves to each cell from s, with the heuristic moves in bold.

Example 4. Consider the gridmap in Figure 4. We show the
heuristic move Fo(s, t) to each cell of the gridmap in Fig-
ure 4(a), and the optimal first moves in Figure 4(b). Clearly
all nodes can make use of a heuristic move, except those
marked E on the second and third row. The resulting en-
coding is 1 h© 12E 13 h© 17E 19 h©. This pattern is common
where some part of the graph is blocked. We want to have a
better tie breaker for such circumstances.

When we have blockages in the graph it can often be the
case that the heuristic best move is not the diagonal move.
We improve our heuristic tie breaking by breaking the graph
into 8 quadrants around s, corresponding to the 8 direc-
tions, and break ties by choosing the closest direction to the
straight line direction from s to t. In order to avoid complex
trigonometric operations we use simple approximations: if
|s.x− t.x| ≥ 2|s.y− t.y| then the straight line from s to t is
close to the horizontal line, so we favour E or W, similarly
if |s.y − t.y| ≥ 2|s.x − t.x| then the straight line from s to
t is close to vertical so we favour N or S. In other cases we
favour the closest diagonal direction. We denote the heuris-
tic move with directional tie breaking by F d

x (s, t) where x
denotes the distance function.

Example 5. Consider the gridmap in Figure 4 once more.
Using direction-based tie breaking the heuristic moves are
given in Figure 5. Note that now each heuristic move ap-
pears in the optimal first moves (Figure 4(b)), and hence we
can encode all the first moves as 1 h©, that is much shorter
than without using directional-based tie breaking.

4 Proximity Wildcards
In the previous section, we have used heuristic moves to in-
troduce redundant symbols in CPDs, for an improved com-

109

s E E E E E

S SE E E E

S S SE E E

S S SE SE SE SE

S S S SE SE SE

Figure 5: The heuristic first move F d
o (s, t) to each cell of the

gridmap from the cell marked s using directional tie break-
ing.

pression. In this section we further exploit the potential
of heuristic moves by focusing on proximity areas around
source nodes s. Often, within an open area around a node s,
all the nodes will be optimally reachable using the heuristic
move as a first move. To take advantage of this we introduce
a new level of compression, using proximity wildcards.
Definition 1. Given a node s and a function Fx(s, n), the
proximity distance pd(s) is the lowest value d ∈ N such
that there exists a cell n for which |s.x − n.x| ≤ d + 1 or
|s.y − n.y| ≤ d+ 1, and Fx(s, n) 6∈ T (n) for s, where T is
the first-move array for s.
In other words, for all cells n such that |s.x− n.x| ≤ pd(s)
and |s.y − n.y| ≤ pd(s), we have that h© ∈ T (n) for s.
For simplicity, in the rest of the paper the proximity wild-
cards are determined by using Fx = fo, i.e., using the octile
distance function.
Definition 2. The proximity square of a node s is the square
centred in s and with the edge size equal to 2 · pd(s) + 1.

That is, the proximity square is the largest square centred
on s such that the cells of the gridmap inside the square can
optimally be reached from s by the heuristic move h©.∗

We can then replace the entries in T for the nodes inside
a proximity square with a wildcard symbol “∗”, and use
the distance pd(s) instead to determine the move for nodes
n within the proximity square. Wildcards obtained this way
are called proximity wildcards. To be able to use proximity
wildcards in the CPD, we change the lookup function to al-
ways use the heuristic move when the target is within the
proximity square of s.
Example 6. Consider the gridmap shown in Figure 6, with
8 cells labelled from a to h. Figure 7 illustrates, for each
source cell (node), the areas on the map where heuristic
moves coincide with optimal moves. As mentioned, heuris-
tic moves are computed with fo(s, t).

Using Definitions 1 and 2, it follows that, in Figure 7, the
proximity square of a source node may contain the source
cell, cells in bold, obstacles, and areas outside the map. The
proximity square cannot contain (white) cells in normal font.
This remark allows us to calculate, for each source node s,
the value pd(s). We show the values in Table 1.
∗We can keep the definition simple and still use a square in

those cases when s is close to the border of the gridmap, by simply
allowing the proximity square to partly go outside the gridmap.

a b c

d e

f g h

Figure 6: A small gridmap to illustrate proximity wildcards.

a E E

S SE

S SE SE

W b E

SW S

SW S SE

W W c

SW SW

SW SW S

N NE NE

d E

S SE SE

NW N NE

W e

SW S SE

N NE NE

N NE

f E E

NW N NE

NW N

W g E

NWNW N

NWNW

W W h

Figure 7: Heuristic moves, for each source cell. Source cells
are shown in yellow. In each case, heuristic moves that co-
incide with optimal moves are shown in bold.

So far we have computed the proximity squares of each
node. Next we illustrate how these are used to introduce
proximity wildcards in the first-move table. Table 2 shows
the first-move table of our running example before adding
the proximity wildcards. This is compressed into 1 h© (first
row); 1 h© 9S (second row); 1W (third row); 1 h© (fourth
row); 1 h© 3N 4 h© 9S (fifth row); 1 h© (row 6); 1N 4 h© (row
7); 1W (last row). This sums up to 13 RLE runs.

Then, for each row, we replace all entries within the prox-
imity square of the source node at hand with wildcards, since
we do not need to use the CPD to look up their first move.
The resulting first-move table is shown in Table 3. The re-
sulting run length encodings are: 1*; 1S; 1W; 1*; 1 h© 3N
4 h© 9S; 1*; 1N; and 1W. This gives a total of 11 RLE runs.
This concludes our example.

The revised CPD lookup function using proximity squares
is shown in Algorithm 4. The first advantage is that for
lookups close to the source s we may not need to perform
logarithmic run length decoding. The second advantage is
that since many more wildcards are added to the first move
array, the run length encoding can be much smaller.

Node s a b c d e f g h
pd(s) 2 1 0 2 0 2 1 0

Table 1: Proximity distances for the nodes in the gridmap in
Figure 6.

110

a b c d e f g h
a ∗ h©, E h©, E h©, S h©, SE ∗ h©, S h©, S, SE h©, S, SE
b h©,W ∗ h©, E h©, SW h©, S ∗ h©, S, SW h©, S S
c h©,W h©,W ∗ W W ∗ W W W
d h©, N h©, NE h©, NE ∗ h©, E ∗ h©, S h©, SE h©, SE
e h©, NW h©, N N h©,W ∗ ∗ h©, SW h©, S S
f h©, N h©, N,NE h©, N,NE h©, N h©, NE ∗ ∗ h©, E h©, E
g h©, N,NW h©, N N h©, NW h©, N ∗ h©,W ∗ h©, E
h W W W W W ∗ h©,W h©,W ∗

Table 2: First move table with no proximity wildcards, for the example shown in Figure 6. In each cell, we show all the optimal
moves, and the h© symbol, if the heuristic move coincides with an optimal move.

a b c d e f g h
a ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
b ∗ ∗ ∗ ∗ ∗ ∗ h©, S, SW h©, S S
c h©,W h©,W ∗ W W ∗ W W W
d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
e h©, NW h©, N N h©,W ∗ ∗ h©, SW h©, S S
f ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
g h©, N,NW h©, N N ∗ ∗ ∗ ∗ ∗ ∗
h W W W W W ∗ h©,W h©,W ∗

Table 3: First move table with proximity wildcards.

Algorithm 4: Get next move algorithm for CPDs using
proximity wildcards and heuristic moves.

1 CPDHP(s, t)
2 d← pd(s)
3 if |s.x− t.x| ≤ d ∧ |s.y − t.y| ≤ d then
4 return F (s, t)
5 else
6 m← CPD(s,t)
7 if m = h© then
8 return F (s, t)
9 else

10 return m

5 Experiments
We run experiments on two sets of maps: Dragon Age: Ori-
gins (DAO) and a set of 9 large maps from three different
games. For the first benchmark, we used 155 maps from the
game Dragon Age: Origins with the number of nodes rang-
ing from about 2,000 to 100,000. For the second benchmark
we used 3 maps from Dragon Age: Origins, 3 from Star-
Craft and 3 form Baldur’s Gate II with a number of nodes
ranging from about 100,000 to 300,000.

As a baseline we compare against Single Row Compres-
sion (SRC) with DFS ordering (Strasser, Harabor, and Botea
2014), the fastest optimal solver at the last edition of GPPC
(Sturtevant 2014). We further test three variants of SRC, each
enhanced with additional compression. These algorithms are
denoted as follows:

• Algorithm h, which implements the heuristic symbol en-

mean std min 25% 50% 75% max

SRC 6.52 11.2 0.011 0.41 2.37 7.25 68.6
h 1.85 3.82 0.003 0.09 0.70 1.87 29.6
w 1.93 3.54 0.005 0.12 0.74 2.04 24.3
hw 1.48 2.82 0.004 0.08 0.52 1.57 21.7

Table 4: Size of CPDs of all maps from DAO (MB).

hancements described in Section 3;

• Algorithm w, which implements proximity wildcards, de-
scribed in Section 4, combined with bidirectional wild-
cards (Salvetti et al. 2017);

• Algorithm hw, which is the combination of the previous
two methods, h and w.

In the comparison, we examine the improved size, the pre-
processing time and the path extraction time.

As mentioned, in our experiments, inside setting w we
have implemented our proximity wildcards on top of a dif-
ferent type of wildcards from the literature, namely bidirec-
tional wildcards (Salvetti et al. 2017). The relation is that
both types of wildcards replace actual move symbols with
don’t care symbols, improving the compression. The differ-
ence is that they are computed significantly differently, ex-
ploiting different properties of the problem. See Section 2
for a brief description of bidirectional wildcards. Given the
relation between both types of wildcards, we wanted to eval-
uate how they work together and what are the gains of prox-
imity wildcards on top of Salvetti et al.’s (2017) wildcards.

All algorithms are implemented in C++ and compiled
with clang-902.0.39.1 using -O3 flag, under x86 64-apple-

111

Figure 8: Distribution of the compression factor in the maps
from DAO. The compression factor is the CPD size pro-
duced by SRC enhanced with the setting at hand (h, w, hw)
divided by the CPD size produced by SRC. Maps are ordered
by the SRC CPD size.

darwin17.5.0 platform with 2.5 GHz Intel Core i7 Processor
and 16 GB 1600 MHz DDR3 Memory. All benchmarks† and
our implementations‡ are available online.

5.1 Preprocessing Results
From Table 4, we can notice that for the maps from DAO
the sizes of CPDs are quite small. Figure 8 shows the dis-
tribution of the compression factor of the proposed meth-
ods. From the plot we can see that both proposed methods
achieve better compression in 99% of maps, and hw tends to
dominate other methods in most of maps. We also notice w
and hw produce larger size (≈ 7%) in 1% of maps. The rea-
son is that these maps are small, while w needs to compute
and store extra information (the proximity distances), and
such an extra cost can sometimes be larger than the benefit
in such cases.

On the DAO maps, a closer look inside the w setting re-
veals the following: CPDs computed with SRC (Strasser,
Harabor, and Botea 2014) enhanced with bidirectional wild-
cards (Salvetti et al. 2017) have a minimum size of 0.006
MB, an average size of 2.292 MB and a maximum size of
26.526 MB. I.e., the usage of bidirectional wildcards leads
to a reduction of the size of the CPDs by 41% to 86%, with
an average size reduction of 61%. Neverthless, adding prox-
imity wildcards on top of this (i.e., running the w setting)
is even stronger: w further improves the size of the CPDs,
compared to SRC with bidirectional wildcards, by 6.33% to
43.68%, to an average improvement of 24.86%.

We also examine the compression performance on larger
maps, with results shown in Table 5. Notice that even in
larger maps, the final CPD size produced by our methods are
still small. For example, map AR0044SR has 231469 nodes;
an uncompressed first move matrix needs 2314692 Bytes ≈
53.5GB; for this map, SRC requires 507 MB, while hw re-
quires only 9.1MB, which is more than 50 times smaller. In

†https://movingai.com/benchmarks/grids.html
‡https://github.com/eggeek/CPD-Hsymbol-Wildcard

The size of the CPD in MB
Maps #cells SRC h w hw

AR0044SR 231,469 507.1 14.3 34.8 9.1
AR0605SR 140,922 179.4 25.4 23.0 14.2
AR0700SR 131,852 69.0 37.8 23.3 20.3
Aftershock 166,076 88.0 8.9 14.7 7.6
DarkContinent 285,669 213.8 70.5 50.6 40.4
TheatreofWar 220,816 170.1 53.9 42.2 36.6
hrt000d 106,608 60.8 11.0 11.4 6.8
ost000a 130,478 44.1 15.9 13.4 9.7
ost000t 105,707 38.0 13.4 11.2 8.0

The number of the RLE runs ×103
Maps SRC h w hw

AR0044SR 126,086 2,887 7,549 1,128
AR0605SR 44,418 5,917 5,042 2,854
AR0700SR 16,856 9,050 5,166 4,422
Aftershock 21,512 1,730 2,846 1,057
DarkContinent 52,594 16,767 11,226 8,678
TheatreofWar 41,852 12,803 9,437 8,045
hrt000d 14,878 2,418 2,325 1,175
ost000a 10,644 3,574 2,695 1,763
ost000t 9,191 3,036 2,267 1,460

Table 5: CPD size statistics for the large maps used in ex-
periments. Top: the number of cells per map, and the CPD
size in MB. Bottom: the number of RLE runs per map in
thousands.

Full path extraction
std dev. min 25% 50% 75% max

h 0.43 0.23 1.03 1.16 1.33 8.44
w 0.53 0.28 1.10 1.28 1.52 9.68
hw 0.64 0.22 1.03 1.24 1.50 11.05

Table 6: Speed up factor when extracting a full path mea-
sured as the time cost of SRC divided by the time cost of the
proposed algorithms.

fact, h alone leads to a reduction by a factor of 25.46 on this
map.

Figure 9 shows the rate between the preprocessing time
of SRC using methods h, w, hw and the preprocessing time
of SRC for all maps (including the DAO set and the large
maps). From the figure we can see that, on preprocessing, h,
w, and hw require more time than SRC. The worst-case pre-
processing slow-down does not exceed a factor of 4. In 80%
of the cases, the preprocessing slow-down does not exceed a
factor of 1.5.

5.2 Path Extraction Results
Our proposed methods achieve impressive compression per-
formance without paying any cost in path extraction. Table 6
shows the speed up factor for the full path extraction. From
the table, we can see that the proposed algorithms tend to be
faster and data shown in Table 7 helps understand why: i) h

112

Figure 9: Distribution of the preprocessing-time factor over
all maps. The preprocessing-time factor is the preprocess-
ing time cost of the proposed algorithm at hand (h, w, hw)
divided by the preprocessing time cost of SRC. Maps are or-
dered by SRC size.

#op mean std min 25% 50% 75% max

lsrc 382.6 383.0 0.0 109 268 525 2563
csrc 0.00 0.00 0.0 0.0 0.0 0.0 0.0
lh 382.6 383.0 0.0 109 268 525 2563
ch 0.00 0.00 0.0 0.0 0.0 0.0 0.0
lw 365.6 383.9 0.0 91 251 508 2563
cw 17.04 22.49 0.0 5.0 11.0 22.0 428.0
lhw 368.5 385.2 0.0 93 254 510 2563
chw 14.14 20.75 0.0 2.0 9.0 18.0 428.0

Table 7: Number of operations in path extraction. Here l rep-
resents the number of binary searches, and c represents the
number of times the target is inside the source’s proximity
square.

runs the same number of binary searches as SRC, but the for-
mer has smaller CPD size, so that the binary search is faster;
also, smaller CPDs could improve the rate of cache hits; ii)
using w if a target is inside the source’s proximity square can
avoid looking for the optimal first move in the CPD, via a bi-
nary search, and compute it directly in constant time instead;
iii) hw can benefit from both.

6 Conclusion
In this paper, we have shown how to substantially reduce
the size required to store compressed path databases (CPDs)
for a grid map, by using a heuristic move symbol, and in-
troducing wildcard symbols which we store for nodes in the
proximity to the source. Using these methods together we
can reduce the size of a CPD significantly. The reduction
in CPD size also leads to an improvement in lookup time,
even though the lookup function is slightly more complex.
With these improvements we define a new state of the art for
CPDs.

While the paper has focused on grid maps, most of what
we have talked about can be extended to more general
graphs. Given a distance function we can apply the distance

function approach to any graph. We can extend directional
tie-breaking to any graph embedded in the Euclidean plane.
Proximity wildcards can also be extended to this case by
discovering the largest radius within which the move to all
target nodes follows the distance function heuristic.

Interesting directions for the future work include extend-
ing the area of the proximity wildcards (e.g., with rectangles
instead of squares), evaluating the effectiveness of the pro-
posed techniques for the multi-row compression of the CPD
(Strasser, Harabor, and Botea 2014), and investigating the
usage of CPDs and default moves on road maps.

References
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the 7th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 122–127.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on System Sciences and Cybernetics 4(2):100–
107.
Salvetti, M.; Botea, A.; Saetti, A.; and Gerevini, A. E. 2017.
Compressed path databases with ordered wildcard substi-
tutions. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling,
(ICAPS-17), 250–258.
Salvetti, M.; Botea, A.; Gerevini, A. E.; Harabor, D.; and
Saetti, A. 2018. Two-oracle optimal path planning on
grid maps. In Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling,
(ICAPS-18), 227–231.
Strasser, B.; Botea, A.; and Harabor, D. 2015. Compressing
optimal paths with run length encoding. Journal of Artificial
Intelligence Research, JAIR 54:593–629.
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast First-
Move Queries through Run Length Encoding. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search (SOCS-14), 157–165.
Sturtevant, N. R.; Traish, J. M.; Tulip, J. R.; Uras, T.;
Koenig, S.; Strasser, B.; Botea, A.; Harabor, D.; and Rabin,
S. 2015. The grid-based path planning competition: 2014
entries and results. In Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SOCS-15), 241–251.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Sturtevant, N. 2014. The Website of the Grid-Based Path
Planning Competition. http://movingai.com/GPPC/.

113

