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Abstract

There has been significant interest of late in generating behav-
ior of agents that is interpretable to the human (observer) in
the loop. However, the work in this area has typically lacked
coherence on the topic, with proposed solutions for “explica-
ble”, “legible”, “predictable” and “transparent” planning with
overlapping, and sometimes conflicting, semantics all aimed
at some notion of understanding what intentions the observer
will ascribe to an agent by observing its behavior. This is also
true for the recent works on “security” and “privacy” of plans
which are also trying to answer the same question, but from the
opposite point of view —i.e. when the agent is trying to hide
instead of reveal its intentions. This paper attempts to provide
a workable taxonomy of relevant concepts in this exciting and
emerging field of inquiry.

Introduction

There has been significant interest in the robotics and plan-
ning community lately in developing algorithms that can
generate behavior of agents that is interpretable to the hu-
man (observer) in the loop. This notion of interpretability
can be in terms of goals, plans or even rewards that the ob-
server is able to ascribe to the agent based on observations
of the latter. Interpretability remains a significant challenge
in the design of human-aware Al agents, such as assistive
agents, as emphasized in the Roadmap for U.S. Robotics
(Christensen et al. 2009) — “humans must be able to read and
recognize agent activities in order to interpret the agent’s
understanding”. However, the work in this area has typi-
cally lacked coherence on the topic from the community
as a whole, even if not in the research agenda of differ-
ent research groups (Chakraborti et al. 2017a; Dragan 2017;
MacNally et al. 2018), per se. Indeed, a quick scan of the ex-
isting literature reveals algorithms for “explicable”, “legible”,
“predictable” and “transparent” planning with overlapping,
and sometimes conflicting, semantics. The same can be said
of a parallel thread of work on the “deception”, “privacy”
and “security” of plans. This paper thus attempts to provide
a workable taxonomy of relevant concepts that can hope-
fully provide some clarity and guidance to future researchers
looking to work on the topic.
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The rest of the paper is organized as follows: We first
introduce a general framework for describing problems in
the space of “plan interpretability” and outline how exist-
ing works have addressed different aspects of this problem
in cooperative settings. We will then turn the tables and ex-
plore complementary manifestations in adversarial settings.
Finally, we end with a discussion on aspects of the proposed
framework that have not been explored in existing literature.

Model Differences with the Observer

The key challenge in generating interpretable behavior is the
ability to account for the model of the observer. This can be
summarized as follows —

e An agent’s actions may be uninterpretable when it does
not conform to the expectations or predictions engendered
by the observer model. Thus, the agent, to plan for inter-
pretable behavior, must not only consider its own model
but also the observer model and the differences thereof.
(Chakraborti et al. 2017a; Dragan 2017)

This “model” can include the beliefs or state information
of the agent, its goals and intentions, its capabilities or even
its reward function. It can also include the observation model
as well as the computational capability of the observer. A
misunderstanding or mismatch on any of those accounts will
mean that the plan or policy, as expected by the observer
(given their cognitive capabilities), will not be the same as
that computed by the agent, and will thus be difficult to
interpret from the observer’s point of view. We will outline
in the rest of this writeup how existing work on the topic
addresses one or more of these contributing factors, especially
the goals and plans' ascribed to the agent by an observer.

Table 1 formalizes these considerations in the modeling of
the agent A and the observer O in terms of —

'In this paper, we talk of behavior and plan in the same breath. In
general, behavior can be seen as a particular instantiation of a plan
or policy (which, in its general form, can have loops, contingencies,
abstractions, etc.). However, most of the works surveyed here have
used the term plan to refer to behavior. We will also stick to that
convention — i.e. all the discussion here is confined to behaviors
observed or ascribed to the agent by the observer.
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(a) Legibility/Transparency. (b) Explicability. (c) Predictability.

Figure 1: A simple illustration of the differences between plan explicability, legibility and predictability. In this Gridworld, the
agent can travel across cells, but cannot go backwards. Figure 1a illustrates a legible plan (green) in the presence of 3 possible
goals of the agent, marked with ?s. The red plan is not legible since all three goals are likely in its initial stages. In the parlance
of transparent planning, the first action in the green plan can be part of a transparent plan (having conveyed the goal). Figure 1b
illustrates an explicable plan (green) which goes straight to the goal G as we would expect. The red plan may be more favorable
to the agent due to its internal constraints (the arm sticking out might hit the wall), but is inexplicable (i.e. sub-optimal) in the
observer’s model. Finally, Figure 1c illustrates a predictable plan (green) since there is only one possible plan after it performs
the first action. In the parlance of t-predictability, this is a 1-predictable plan. The red plans fail to disambiguate among two
possible completions of the plan. Note that all the plans shown in Figure 1c are explicable (optimal in the observer’s model) but
only one of them is predictable — i.e. explicable plans may not be predictable. Similarly, in Figure 1b, the red plan is predictable
after the first action (even though not optimal, since there is only one likely completion) but not explicable —i.e. a predictable
plan in the online setting may not be explicable in the offline setting. Similarly, in the offline case without the prefix (Figure 1b)
the green plan is the only predictable plan and is also explicable.

e Planning Problem II =  (Domain Theory = Whether a plan is good or even sound from the point of view
M, Current State = Z, Goal State = G). The planning of the agent does not matter if the observer does not think so
problem espoused by agent A is referred to as IT4. according to their computational model.

e Plan 7 is a solution to the planning problem II. A behavior The exact nature of the interpretation task may vary. For
is one instantiation of a plan or policy — as we noted before, example, we will see later that an optimal completion (O)
a plan refers to a behavior in this paper, unless otherwise in the ob.server model is an explicable plan while satisficing
mentioned. 7 is a partial plan whose completion set is completions (SF) may be used to obfuscate. Many of the
denoted by {7}. distinctions between different types of interpretability > are

related to whether we are concerned with goals or plans

e Computational Model x € {S = Sound, SF = (Dragan, Lee, and Srinivasa 2013).

Satisficing, O = Optimal, C = Complete} defines under

what criterion an agent solves a planning problem. For ex- Explicability 'We begin with “plan explicability” as intro-
ample, if the observer has a complete computational model duced in (Chakraborti, Sreedharan, and Kambhampati 2018a;
(C), they would find a solution if there was one. Note that Zhang et al. 2016; 2017; Kulkarni et al. 2019).

most of these are features of the observer model that has

been explored in existing literature and are certainly not Explicability measures how close a plan is to the expec-
meant to be exhaustive. Also, some of these possibilities tation of the observer, given a goal / planning problem.

are not disjoint. Thus the objective of explicability is to be in the set

e Completion Function (s, 7, x) +— § captures whether of solutions to the observer’s understanding of a planning
a state § is reachable from the state s following a plan problem. In Table 1, the explicable plan is one that has a
7 subject to the computation model x. For example, completion in both the agent and the observer model. The
6(Z,m,0) — G implies 7 is an optimal solution to II). first constraint requires that the solution solves the agent’s
e Observation Model ) : a x s — 0 associates a token (0) planning problem while the latter requires that there ex-
with an action (a) and next state (s) pair. An observation ists a solution satisfying the emitted observations in the
sequence (o) produced by 7 is represented by (o) = 7. observer model — e.g. a plan looks optimal to the ob-

server (Chakraborti, Sreedharan, and Kambhampati 2018a).

Interpretability? Plans versus Goals When the observer model is not known (Zhang et al. 2017;

An agent model (and the observer model) accounts for its

. e . 2Explicability, legibility and predictability of plans is a spectrum,
beliefs, goals, capabilities and computation power. The com-

i.e. one plan can have more “X-ability than another. In the rest

putational model and completion function given above cap- of the paper, unless otherwise stated, we refer to the end of that
ture what plans the observer can understand, and the quality spectrum, whenever such a plan exists, (e.g. most explicable plan)
of those plans. This is key to questions of interpretability. when we mention an explicable, legible or predictable plan.
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Concept \ Setting / Agent Perspective

Formulation / Existing Literature

Explicability ‘ Observer

Agent II* = (M4 74,6%),x*,Q |

Target  Solve IT* with completion in IT®

Find: 7
Subject to: 3,e¢710(Z4, 7, x*) | G4

and HTrE{fr},(o)l:?r(s(Iea U Xe) ': g@

This involves finding the expected plan (prefix) that satisfies the
observer model. Note that the 3 can be switched to V to model
a more pessimistic observer model that requires all possible
completions be explicable.

(Zhang et al. 2017)

(Kulkarni et al. 2019)

(Chakraborti, Sreedharan, and Kambhampati 2018a)

H@7X@ unknown; G4 =G®: Q:axs—a

Here IT° and x® are learned from human feedback in terms of
a pre-defined labeling scheme.

H@,X@ partially known; GA=G%Q:axs—a

Here I1° and x® are learned from human feedback in terms of
known plan distance measures A (71, 72).

O #1°,x°=0,Q:axs—a

This algorithm has the ability (via explanations) to deal with
cases where Ar : 6(Z°, 7, x®) = G®, ie. when explicable
plans are not feasible in the agent model.

Predictability ‘ Observer

4 = (M 14,64 x*, Q

Agent

° = (M®,1°,G°), x°

Target  Solves IT* with fewest completions in IT°

Explicability +
min [[{r | 7 € {7}, (0) = 7,8(Z°,m,x°) = G°}|

This involves finding the most disambiguated or easy to pre-
dict plan (suffix) — all plan prefixes (even though belonging to
explicable plans) are not easy to complete.

(Dragan, Lee, and Srinivasa 2013)

(Fisac et al. 2018)

(Kulkarni, Srivastava, and Kambhampati 2019)

n® implicit, X(—) =0,Q:axs—a

This deals with motion planning in continuous spaces where the
mental model is often implicit — e.g. shortest path.

Heimplicit,xe =SF,Q:axs—o0

This explores predictability in discrete spaces but is still confined
to motion / semi-task planning.

HA:HG,XG:C,Q:aXsHo

This looks at m-similar solutions (instead of most predictable)
with similarity d such that |[S|| > m and v, ,rpes A(m1, T2) <
d, where S = {r | §(Z°, 7, x°) = G°}.

Legibility or
Transparency

Agent II* = (M*,74,6%),x*,Q |
‘ Observer T1° = (M®,7° {G°}) = {11}, x® ‘
Target  Solve IT* and least number of II9s

Find: 7
Subject to: 3.e(730(Z4, T, x*) E G*

and min |[{g | g € {G®} Azre(#},(0)o7 0(Z°,7,X°) = g}|

This involves finding plans that disambiguate possible goals —
this is a property of the goal and not the plan. Interestingly, G*
may not be in {G @} as long as there is a mapping between them.

(Dragan, Lee, and Srinivasa 2013) ‘
(MacNally et al. 2018) |
(Kulkarni, Srivastava, and Kambhampati 2019)

® implicit, X@ =0,Q:axs—a

HA:H("),ngO,Q:aXs»—)a

HA:HQ,X@:C,Q:(IXSHO

Similar to m-similarity, this work looks for j-legible solutions in
the offline sense such that ||{g | 6(Z°, 7, x®) = g}|| < j

Kulkarni et al. 2019), as is most often the case, the comple-
tion in the observer model is difficult to guarantee. As such,
explicability is a spectrum, where closer to completed plans

Table 1: A summary of concepts in the cooperative setting.
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in the observer model can be deemed to be more explicable.
Note that this formulation does not require that the agent
and observer have the same goal. As long as it looks like



the agent’s plan (prefix) achieves the observer’s goal in the
expected manner, the plan (prefix) is explicable.

Predictability Plan predictability, on the other hand, looks
for non-ambiguous completions of a plan prefix (Dragan, Lee,
and Srinivasa 2013; Fisac et al. 2018; Kulkarni, Srivastava,
and Kambhampati 2019).

Plan predictability reduces ambiguity over possible
plans, given a goal / planning problem.

Table 1 highlights this distinction with the additional min-
imization term over the cardinality of the possible plan set
(that satisfies the emitted observations) with completions in
the observer model. This makes it clear that predictability is,
again, a spectrum and —

An explicable plan can be unpredictable.

An example would be when there are multiple explicable
plans, i.e. many completions in the observer model, so that
there is still work to be done in making sure that the observer
can anticipate which plan it is that the agent is going to
execute. If this can be achieved, then that specific plan would
be both explicable and predictable. Consider the example in
Figure 1c: if the user expects optimal plans (Y = O), the two
red plans are explicable because they are optimal. However,
they are not predictable until after step two because either
one is still possible before that. Similarly —

A predictable plan (in the online setting) can be inexpli-
cable in the offline setting.

This is possible when, given a prefix (during online plan
execution), the observer can tell exactly what plan the agent
is executing but the entire plan is still not one that s/he might
expect it to (i.e. it does not follow the completion model
of the observer). For example, the red plan in Figure 1b is
completely predictable (since there is only one completion
path), but it is not optimal, and therefore inexplicable if the
user expects optimal plans (y = O). In (Fisac et al. 2018)
the actions in the plan prefix of length ¢ can be arbitrary and
inexplicable as long as the postfix is predictable. This is also
true for transparent (MacNally et al. 2018) plans as well.
This phenomenon is readily seen in (Chakraborti et al. 2018)
where the agent produces suboptimal plans that are easier to
predict’. Figure 1 provides another example. More on this
later in the discussion on online versus offline interactions.

Legibility So far we have discussed explicability and pre-
dictability of plans under the condition of known goals only.
Plan legibility, in contrast, is defined as follows —

Plan legibility reduces ambiguity over possible goals
that might be achieved.

The observer model now includes a set of possible goals
or equivalently a set of possible models parameterized by
the goal, as shown in Table 1. In addition to solving the
planning problem of the agent (first constraint), a legible

3Fisac et al. (2018) use a fixed length of the plan prefix to
generate predictable plan suffixes. In general, a planner can be
allowed to determine this organically as done in (MacNally et al.
2018; Chakraborti et al. 2018).
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solution requires that the set of observer models where a plan
(satisfied by the observations) has completions is minimized.

The notion of legibility of goals has remained consis-
tent across existing literature (Dragan and Srinivasa 2013;
Dragan, Lee, and Srinivasa 2013; Kulkarni, Srivastava, and
Kambhampati 2019) and is equivalent to the notion of trans-
parency of plans (MacNally et al. 2018). To the best of our
knowledge, plan explicability / predictability and legibility
have not been considered together (i.e. with ambiguity over
goals and plans simultaneously).

Interestingly, as Table 1 highlights, even though both pre-
dictability and explicability assume known goals, the goal
known to the observer may not be the actual true goal of
the agent and yet plans may be predictable or explicable.
For example, the agent could really be doing something
else but achieve the expected goal in the process, or the
observer might think that their goal was being achieved due
to limited observability or model differences. The ability to
communicate enables Chakraborti, Sreedharan, and Kamb-
hampati (2018a) to handle expectations under conditions
of misunderstood goals as well. However, the notion of ex-
plicability remains identical as one of generating expected
behavior. Similarly, for legibility, there needs to be only some
mapping between the agent goal and the possible goal set
which may not actually contain the real goal of the agent.
In this sense, it is useful to recognize that all these behav-
iors model interpretable behavior given the entire planning
problem and not specifically just the goal in the observer
model.*

Online versus Offline Interactions

The actual setup of the interaction — i.e. online or offline —
makes a big difference to the explicability versus predictabil-
ity discussion. This is because explicability and predictability
of a plan are non-monotonic, a plan prefix deemed inexplica-
ble can become explicable with the execution of more actions
and vice versa, either due to the observer being an imperfect
planner due to computational limitations or due to implicit
updates to the mental model based on the observations. The
online case of explicability can then be seen in terms of
the plan prefix — i.e. if its completion belongs to one of the
explicable (completions in the observer model) or not. On
the other hand, the offline case does not exist for plan pre-
dictability, which is a property of the plan suffix. However,
in the online case, before the execution starts (i.e. with no
prefix) a predictable plan has to be one of the explicable plans.
With a prefix, that may no longer be the case, as discussed
above (this is considering the definition of explicability in
the existing work on the entire plan).

Note that, similar to predictability, legibility of plans is
more useful in the online setting since it may be easy to
deduce the real goal from the final state after completion of

“Though in the context of goal-directed behavior, from the per-
spective of the observer, these can end up being perceived as behav-
ior given a goal rather than all components of the planning problem.
In fact, recent works have explored how humans assign intentional-
ity (de Graaf and Malle 2019) and unequal importance (Zahedi et
al. 2019) to model artifacts that may be equivalent theoretically.



the plan. Though, even in such cases, when the goals (which
are not usually fully specified) are not mutually exclusive,
legible plans can help. Like explicability and predictability,
legibility also shares the non-monotonicity property.

Motion versus Task Planning

One of the biggest points of difference in many of these works
is in the nature of the target domain — i.e. motion plan-
ning (Dragan and Srinivasa 2013; Dragan, Lee, and Srinivasa
2013; Dragan et al. 2015) versus task planning (Zhang et al.
2017; Kulkarni et al. 2019; Zakershahrak and Zhang 2018;
MacNally et al. 2018). From the algorithmic perspective, this
means continuous versus discrete state variables. However,
the notion of plan interpretability engenders additional chal-
lenges. This is because a reasonable mental model for motion
planning® can be assumed to be one that prefers shorter plans
and thus need not be modeled explicitly (and thus does not
need to be acquired or learned). For task planning in gen-
eral, this is less straightforward. In fact, work on explica-
ble task planning (Zhang et al. 2017; Kulkarni et al. 2019;
Zakershahrak and Zhang 2018) has aimed to learn this im-
plicit model using feedback from humans on the agent’s
behavior. A particular instance of this is when these model
are assumed to be identical (MacNally et al. 2018; Kulkarni,
Srivastava, and Kambhampati 2019) (this is usually the case
in path planning, by default).

Given how humans can have vastly different expectations
in the case of task planning, it is unclear how useful mental
models learned from crowd feedback (as done in (Zhang et al.
2017; Kulkarni et al. 2019; Zakershahrak and Zhang 2018))
can be in the case of individual interactions.

Computational Capability

Interpretability is, of course, contingent on the computational
capability of the observer, i.e. the completion function. There
has been surprisingly little work on this. Fisac et al. (2018)
approximated the human model with Boltzmann noisy ra-
tionality. Motion planning can permit the assumption of
“top-K ” rationality. However, for task planning (i.e. domains
with combinatorial properties) the computational model of
the observer is less clear — one can imagine something like
depth or time bounded inferential capability that constrains
the space of plans in the mental model. While almost all
related work (Chakraborti, Sreedharan, and Kambhampati
2018a; MacNally et al. 2018) assumes a perfectly rational ob-
server, models learned using feedback from human-subjects
(Zhang et al. 2017; Kulkarni et al. 2019) are likely to implic-
itly model computational limitations.

Some recent works (Zhang and Zakershahrak 2019; Za-
kershahrak, Gong, and Zhang 2019) have started exploring
these directions in this multi-model setting, especially from
the point of view of explanation generation as a model recon-
ciliation process (more on this later).

*While this is true for path planning in general, complex trajec-
tory plans of manipulators with high degrees of freedom might still
require modeling of observer expectations.
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Discussion

Learning the Observation Model. The original work on ex-
plicability in task planning (Zhang et al. 2016; 2017) and sub-
sequent works that build on it (Zakershahrak and Zhang 2018;
Gong and Zhang 2018) attempt to learn the observer model
when it is unknown. To the best of our knowledge, this is the
only attempt to do so in the existing literature, in the context
of plan explicability. They postulate that the explicability®
can be measured in terms of whether the human observer
is able to associate higher level semantics to actions in the
plan. While this approach has its merits (e.g. in taking into
account computational limitations), it also arguably conflates
explicability with predictability. For example, just because an
observer is able to assign task labels to individual actions in
a plan does not necessarily mean they would have expected
that plan.

Recent work (Choudhury et al. 2019) has highlighted the
merits of being able to learn such models from data, even
though explicit theories on the observer model can provide
an early advantage in terms of accuracy and robustness due
to the sample complexity of learning such models.

Observability. The concepts of explicability, predictability
and legibility are intrinsically related to what is observable.
In most of the existing work, the plan has been assumed to be
completely observable. When this is not the case, the agent
can try to ensure that unexpected actions are not observable
and thus still be explicable. Interestingly most of the work
in cooperative settings have worked with full observability
while highlighting model differences. Later we will see that
in the adversarial setting existing work mostly focuses on
the observation model while assuming the rest of the agent’s
model is aligned with that of the observer.

Longitudinal effects. All of the work on the topic of inter-
pretable behavior has, unfortunately, revolved around single,
and one-off, interactions and little attention has been given
to the impact of evolving expectations in longer term inter-
actions. There is some reason to suspect that the need for
explicable behavior will diminish as the observer becomes
accustomed to the “quirks” of the agent. After all, to para-
phrase George Bernard Shaw, “the world conforms to the
unreasonable man”! This is, however, not a concern for legi-
ble and predictable behavior since, even with complete model
alignment, the topic of coordination remains relevant.

Explanatory actions. In recent work (Sreedharan et al.
2018), authors have explored the notion of “explanatory
actions” as actions that can have epistemic effects. These
are actions that can affect the observer model. Plans that are
made explicable with the use of explanatory actions are, of
course, never predictable — i.e. one cannot predict that an ex-
planatory action will occur during a behavior, but its presence
can make the whole behavior explicable. Thus, in this view,
in the set of explicable plans, not all plans are predictable.

6Zhang et al. (2017) use “explicability” and “predictability” as
measures towards achieving the same objective of producing plans
closer to human expectation. This is somewhat confusing. The
notion of predictability used there for the disambiguation of the plan
suffix remains consistent.



But, as we discussed before, all the predictable plans at the
start of plan execution have to be explicable.

Human-agent Collaboration. Note that most of the discus-
sion till now has assumed a passive observer. However, in
most scenarios, the observer is likely to be a collaborator or,
at the least, their behavior is going to be contingent on that
of the agent. While explicability helps this cause, predictable
behavior can negatively affect the observer when considered
in isolation since such behavior, even though predictable, can
leave the collaborator with little room to plan around. Indeed,
human factors studies of plan predictability versus legibility
(Dragan et al. 2015) are consistent with this concern, demon-
strating that legibility is more desirable in a collaborative
setting. Recent work (Zakershahrak and Zhang 2018) has
started to take these considerations into account.

On preferences versus expectations. There is considerable
prior art on incorporating human preferences in a robot’s
behavior, or plans in general. Indeed, the distinction between
preferences and expectations is rather subtle. The former
can be seen as constraints imposed on the plan generation
process if the agent wants to contribute to the observer’s
utility — “What would Jesus want me to do?” — while the
latter looks at how the agent can adapt its behavior in a
manner that the observer would expect, as required by the
observer’s mental model of the agent — “What would Jesus
expect me to do?”. As we mentioned before, in the case of
motion planning, there is often no such distinction. Even in
the case of task planning — for example, in “human-aware”
planning where an agent decides not to vacuum while the
elderly are asleep (Kéckemann, Pecora, and Karlsson 2014)
— sometimes it may be hard to identify where exactly the
constraints lie, with preferences (“I don’t want vacuuming
while I am asleep”) or expectations (“I don’t expect the agent
to be designed to vacuum at odd hours”). Ultimately this
distinction might not make a difference algorithmically. The
agent would need some process of performing multi-model
argumentation (with its own model and the observer model)
during its planning process (Chakraborti, Sreedharan, and
Kambhampati 2018a).

Turning the Tables

So far we have talked about work that aims to reveal the
intentions of the agent to an observer. The agent can also use
the observer mental model and/or the observation model to
hide its intentions. In the following, we compare and contrast
recent work in the planning community in this direction.
Many of the distinctions carry over from our discussion of
plan explicability, predictability and legibility.

Goals versus Plans Similar to the previous discussion on
predictability/explicability versus legibility, an agent can con-
sider obfuscation of its goals and/or its plans. The goal obfus-
cation problem is the inverse of the legibility problem, while
plan obfuscation is the inverse of the predictability problem
discussed previously. Also similar to the previous discussion,
it is easy to see that obfuscation of one (goal or plan) may
not necessarily obfuscate the other. Unsurprisingly, they can
be viewed under a unified framework, as explored recently
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in (Kulkarni, Srivastava, and Kambhampati 2019). Most of
the existing work in this area has revolved around goal ob-
fuscation (under the various names of privacy, deception and
security) as outlined in Table 2. Interestingly, these ideas has
evolved out of two parallel threads of research — one (Keren,
Gal, and Karpas 2015; 2016; Masters and Sardina 2017b;
MacNally et al. 2018) from the seminal work on goal recog-
nition design (Keren, Gal, and Karpas 2014) and the other
(Kulkarni, Srivastava, and Kambhampati 2019; Kulkarni et al.
2018) from the earlier work on plan explicability (Zhang et
al. 2017; Chakraborti, Sreedharan, and Kambhampati 2018a;
Kulkarni et al. 2019). The connections between these topics
have hopefully become more apparent at this point.

Motion versus Task Planning The distinction between mo-
tion and task planning again makes an appearance in the
techniques used to approach these problems if not in the
formulation of the concepts themselves. Particularly, (Mas-
ters and Sardina 2017b) arrive at a computationally efficient
proxy for the likelihood of possible goals given a state and tra-
jectory that is not necessarily available (Masters and Sardina
2017a) in the task planning setting. A similar computation
used in (Kulkarni et al. 2018) only works for an incomplete
computational model for the observer.

Online versus Offline The obfuscation problem is more
appealing in the online setting since most of the motiva-
tion in obfuscating plans (such as in evading a pursuit or
escaping surveillance) is lost after the plan is done. This
is particularly the case for plan obfuscation with full ob-
servability, if not entirely true for goal obfuscation (c.f. dis-
cussion on predictability and legibility in offline settings).
However, there is a rich set of problems to explore even in an
offline setting (Kulkarni, Srivastava, and Kambhampati 2019;
Kulkarni et al. 2018) once the observation model becomes
noisy or incomplete. An offline analysis also allows for the
determination of prefixes, if not entire plans, that can pre-
serve privacy (Keren, Gal, and Karpas 2016). Many times,
partially obfuscating solutions are all that is achievable.

The Observer and the Observation Model

One of the most important variables in this thread of work is
the observation model. The notion of obfuscation and privacy
immediately follows from settings with partial observability
(Keren, Gal, and Karpas 2015; Kulkarni, Srivastava, and
Kambhampati 2019; Kulkarni et al. 2018). However, as seen
in (Masters and Sardina 2017b; Keren, Gal, and Karpas 2014),
these concepts are still relevant to fully observable settings,
especially in the online case.

The observer model also plays a critical role in this regard.
Particularly, some of the surveyed works (Masters and Sar-
dina 2017b; Keren, Gal, and Karpas 2016) have modeled a
rational (more powerful) observer where P(G | (o)) follows
the distribution computed by a plan recognizer (i.e. x© = O),
while others (Kulkarni, Srivastava, and Kambhampati 2019;
Kulkarni et al. 2018) have considered an observer with a com-
plete planner, i.e. P(G | (o)) = 1if a plan exists that satisfies
the observation, 0 otherwise (i.e. x® = C). Interestingly,
in contrast to explicability or legibility and predictability, in
the cases of goal or plan obfuscation, none of the surveyed
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(a) Simulation (b) Dissimulation

Deception: Simulation / Dissimulation

(c) Obfuscation: Private / Secure Plans

Figure 2: A simple illustration of different goal obfuscation behaviors. Figures 2a and 2b show different forms of deceptive
behavior (Masters and Sardina 2017b) in red — in simulation or “hiding the truth” (Figure 2a) the agent could be going to either
of the three possible goals while in dissimulation or “showing the false” (Figure 2b) the likelihood of a decoy goal is strictly
higher than that of the real goal. The green plan in (Figure 2a) is a truthful plan. Figure 2c illustrates the difference between
privacy and security of goal obfuscating plans. Here the observer cannot observe the actions of the agent in the first row of
the grid due to occlusions. The red and green plans are both 3-ambiguous (Kulkarni, Srivastava, and Kambhampati 2019) and
privacy preserving (Keren, Gal, and Karpas 2016) — the former allows for {G1, G2, G3} while the latter allows for {G2, G3} as
possible goal sets for the agent assumed to be rational. However a secure algorithm cannot flip from the red to the green plan
when rerun with G5. This is allowed under privacy preserving (Keren, Gal, and Karpas 2016) and deceptive plans (Masters and
Sardina 2017b) but not in secure plans (Kulkarni et al. 2018) — i.e. the red plan is the only secure 3-ambiguous solution.

works have scratched the surface of model differences be-
tween the agent and the observer beyond the observation and
computation model.

The Many Flavors of Security, Privacy,
Obfuscation, (Dis-)Simulation and Deception

The most interesting aspects of obfuscating behavior is the
different notions of privacy, security and deception. We high-
light the salient differences in Figure 2.

Obfuscation and Privacy These are synonymous in exist-
ing literature (Keren, Gal, and Karpas 2016; Kulkarni, Sri-
vastava, and Kambhampati 2019) in trying to make multiple
goals likely or possible given a set of observations. This is the
reverse of legibility — notice that the minimizing term in Table
2 has flipped. Keren, Gal, and Karpas (2016) look at pair-wise
likelihood of goals in maintaining privacy, while (Kulkarni,
Srivastava, and Kambhampati 2019) provide a more general
formulation for the computation of “k-ambiguous” solutions.
This has implications on the security of the obfuscating algo-
rithm, as we discuss below.

Security and Privacy The notion of security in plans
(Kulkarni et al. 2018) builds on the concept of “indepen-
dence of inputs” (Stolba 2017; Lindell 2005) which requires
(in this specific context) that the planning algorithm return
the same output or plan regardless of which obfuscated goal
it is run with as the real goal so that an adversary cannot
determine the real goal by rerunning the algorithm. Thus —

A secure plan is always private.

This imposes an additional constraint to the privacy prob-
lem — as highlighted in Table 2, all possible goals must now
lead to the same observation tokens.

Obfuscation and Deception Finally, in goal (or plan) ob-
fuscation, the primary objective is to not reveal the true inten-
tions, but not necessarily actively mislead. This distinction
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between simulation — “hiding the truth” — versus dissimu-
lation — “showing the false” — was made in (Masters and
Sardina 2017b). In the case of the latter, not only are multiple
goals likely given a plan prefix but a decoy goal is also more
likely than the real one. Deception, in general, can include
both. It is clear from the discussion that —

A deceptive plan is always obfuscating, but may or may
not be dissimulating.

A more detailed discussion of this distinction can be found
in (Masters and Sardina 2017b).

Discussion and Future Work

In the following discussion, we make connections to a par-
allel thread of work — “model reconciliation” — and outline
possible directions for future work.

Communication and Model Reconciliation

Most of the discussion in this paper has revolved around
communication of intentions (goals or plans) implicitly using
behavioral cues. In general, predictable or legible behavior
can be seen as a special case of implicit signaling behavior
(Gong and Zhang 2018) when communication is undesir-
able. Foreshadowing certain actions (for example, through
the medium of mixed reality (Chakraborti et al. 2018)) can
considerably help the cause of predictability / legibility and
coordination in human-agent interaction. The work on pre-
dictable (Fisac et al. 2018) or transparent (MacNally et al.
2018) plans could have similarly deployed speech, stigmer-
gic or, in general, communication actions in the plan prefix.
Recent work (Sreedharan et al. 2018) has attempted a unified
formulation through the use of explanatory actions.

During communication, the agent must be able to ad-
dress the root cause of inexplicability, i.e. it must be
able to explicate parts of the model that differ from the
observer until they agree that its plan was, in fact, the



Concept \ Setting / Agent Perspective Formulation / Existing Literature
‘ Agent II*4 = (M4, 74,64, x4, Q Find: 7
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This is the inverse of the legibility problem. A special case
of simulation (Masters and Sardina 2017b) is when the real
goal of the agent is explicitly hidden, i.e. 6(Z°, 7, x®)
G*. Deception may or may not involve simulation.

(Keren, Gal, and Karpas 2015) 4 =11°, X@ =0,0:axs—s

This is a special case of k-ambiguity (Kulkarni, Srivastava,
and Kambhampati 2019) when £ = 2. Also, the solution
is not secure as per (Kulkarni et al. 2018) — i.e. the real
goal may not become the decoy, and thus reveal itself, if the
algorithm is rerun with the decoy goal.

Goal-Obfuscation (Keren, Gal, and Karpas 2016) 4 =11°, X@ =0,Q:axs—o0
Dissimulation Same as above (but generalizes observation model).
or Privacy (Masters and Sardina 2017b) | T4 =TI1°, x®* =0,Q:a X s —a

Last Deceptive Point (LDP) introduced here (in the context
of motion planning) has parallels to the notion of equidistant
states in (Kulkarni et al. 2018). The latter deals with a general
task planning setting. However, it deploys a heuristic which
makes the planner incomplete.

(Kulkarni, Srivastava, and Kambhampati 2019) | II* =11°,x® = C,Q:a x s — 0

Instead of maximizing obfuscation, this work specifically
looks for k-ambiguous solutions in the offline sense such
that ||{g | §(Z°, 7, Xx°) = g}l > &

| Agent II*=(M* 14,64, x*Q | Find: 7
Plan-Obfuscation ‘ Observer I1° = (M®,7° G®), x® ‘ Subject to: 3776{,}}6(IA7 7, x*) = G4 and
Target  Solve II* with most completions in II¢ max ||[{7 | € {7}, (o) E 7,6(Z°,7,x°) = G°}|

This is the inverse of the predictability problem.
(Kulkarni, Srivastava, and Kambhampati 2019) 4 =11°, Xe =C,Q:axs—o0

In addition to the cardinality of the solution set, this work
looks for [-diverse solutions in the offline setting such that
I{ | 6(Z°, 7, x°) E G°}| > L.

| Agent II*=(M* 14 6% x*Q Privacy + if (o) = 7 , then
Security | Observer II° = (M®,7°,{G°}) = {II?},x°® Vg € {G°} t sre(rt (x0T, mx°) E g

Target  Find same solution for II** and as many ITI | A privacy preserving planning algorithm is secure if and
only if it emits the same observation sequence regardless of
which goal it is run with.

(Kulkarni et al. 2018) | A =TI°, y* = -C,x° =C,Q:ax s o0

The approach in (Kulkarni, Srivastava, and Kambhampati
2019) can also do this with a slight modification, by gener-
ating observations that the agent wants to adhere to, with a
random decoy goal.

Table 2: Summary of concepts in the adversarial setting.

best plan under the circumstances. This process of expla- achieve common ground with the observer by, for ex-
nation, referred to as a process of model reconciliation, ample, expressing incapability (Raman et al. 2013; Ra-
has been of significant interest (Chakraborti et al. 2017b; man and Kress-Gazit 2013; Briggs and Scheutz 2015;
Sreedharan, Chakraborti, and Kambhampati 2018; Sreedha- Kwon, Huang, and Dragan 2018), communicating misun-
ran, Srivastava, and Kambhampati 2018; Chakraborti et al. derstandings about its capabilities (Chakraborti et al. 2017b;
2019) recently. Chakraborti, Sreedharan, and Kambhampati 2018a) or even

Particularly when the explicable plan is infeasible, such lying (Chakraborti and Kambhampati 2019) and augment-
communication remains the only option for the agent to ing new goals (Chen and Zhang 2018). The latter works are
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certainly more relevant from the perspective of the second
part of the paper which explores obfuscation of intentions
instead of revealing them. In fact, plan explicability and plan
explanations form a delicate balancing act in “human-aware
planning”, as explored recently in (Chakraborti, Sreedharan,
and Kambhampati 2018a). A concise survey of the model rec-
onciliation process can be found in (Chakraborti, Sreedharan,
and Kambhampati 2018b).

Design for Interpretability

A topic relevant to reasoning in the space of models of
agents and observers is that of goal recognition design (GRD)
(Keren, Gal, and Karpas 2014; Mirsky et al. 2019). Interest-
ingly, even though we only brought it up in the context of
goal obfuscation and privacy (Keren, Gal, and Karpas 2015;
2016), GRD is not particularly restricted to adversarial set-
tings at all. The notion of environment design involves chang-
ing an environment to make behaviors more (or less in case
of an adversarial setting) interpretable to the observer. This
in contrast to changing the observer model in model recon-
ciliation or the behavior of the agent itself as discussed in
this paper. Though existing work in GRD has only looked at
predictability and obfuscability issues, one could conceive
of a general redesign framework that attempts to cover all
the different flavors of interpretable behavior explored here.
Interestingly, since environment redesign usually has more
lasting effects than modifying the behavior of the agent (since
they will be unable to perform certain actions or plans as a
result rather than choosing not to), such a framework has to
consider the longitudinal effects of changing an environment
on the autonomy of the agent and on long-term interactions
between the agent and the observer.

Further Generalizations

In Tables 1 and 2 we provided a general framework for de-
scribing the different aspects of the plan interpretability prob-
lem. The table also highlights gaps in the existing literature
that can lead to exciting avenues of research in the future.
The model considered in Tables 1 and 2, even though quite
general in being able to classify the breadth of existing work
on the topic, does not quite capture the full scope of plan
interpretability. Below, we motivate a couple of generaliza-
tions to the framework presented in Tables 1 and 2. This was
done intentionally so as not to overly generalize the overview
which already captures the surveyed literature.

Observation Model with Epistemic Effects The observa-
tion model used in Tables 1 and 2 is quite general in being
able to capture both partial as well as noisy sensor models.
This model has been used extensively in the past (Geffner
and Bonet 2013) as well as in many of the works covered
in this survey; and provides a particularly elegant sensor
model while formulating the planning problem for a single
agent. However, when considering an observer in the loop,
one should be cognizant of the effects of observations on the
observer model — i.e. epistemic effects of actions. In recent
work (Sreedharan et al. 2018) this has been explored in the
context of implicit model updates on the part of the observer
by means of “explanatory actions”. One can conceive of a
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richer observation model that captures such epistemic effects
of the agent actions on the observer.

Preference Measure on Plan or Goal Set The notion of
legibility and obfuscation (Kulkarni, Srivastava, and Kamb-
hampati 2019; Kulkarni et al. 2018; Masters and Sardina
2017b; Keren, Gal, and Karpas 2016) has largely considered
the computation of a set of plans or goals as the desired con-
sequence of a behavior, with additional preferences on the
cardinality of that set in certain cases (e.g. predictability).
Interestingly, in the solution for plan-legibility or predictabil-
ity, Kulkarni, Srivastava, and Kambhampati (2019) look at
“l-diverse” and “m-similar” solutions that can equally apply
to the goal obfuscation and legibility cases as well. In general,
the minimization or maximization term over the plan or goal
sets in Tables 1 and 2 can be replaced by a function over
the preferences of the observer towards the agent’s achieve-
ment (execution) of any particular goal (plan) in the possible
goal (plan) set, with cardinality being a special case of that
function. More on this below.

An Active / Semi-Passive Observer The work surveyed
here considers a passive observer. The full scope of the in-
terpretability problem can include a more capable observer.
This can be a semi-passive observer — i.e. one that can change
the observation model only (in a sense reversal of the “sen-
sor cloaking” problem explored in (Keren, Gal, and Karpas
2016)), for example, to improve observability by going to
higher ground — to a fully active observer with their own
goals and actions, with the ability to even assist or impede
the agent from achieving its goals. This is likely to effect
the relative importance of agent behaviors (e.g. is predictabil-
ity more important than legibility in a collaborative setting?
(Dragan et al. 2015)) and also effect the preference measure
as discussed above (e.g. a surveillance scenario makes certain
behaviors in the completions set more important to recognize,
and hence to obfuscate, than others).

Unified Approach to Interpretable Behavior As we
mentioned before, existing work has only looked at the differ-
ent notions of interpretable behavior in isolation. Designing
these behaviors is likely to become more challenging as we
consider the effects of one or more of these behaviors simul-
taneously. For example, what would it mean to be explicable
or predictable when there is ambiguity over the agent’s goals?
A legible plan given a goal might be an explicable plan for
another goal. From our previous discussion regarding the fact
that any of these behaviors can exist with or without the other,
it will be interesting to see how they can exist simultaneously.
Further, given that some of these behaviors are predicated
on the notion of rationality on the agent model only (expli-
cability) and others are not (legibility and predictability), it
is unclear how the observer may be modeled once the be-
lief of rationality has been suspended (for example, due to
inexplicable but legible behavior).

Behaviors versus Plans Our discussion has mostly been
confined to analysis of behaviors — i.e. one particular ob-
served instantiation of a plan or policy. A plan — which can
be seen as a set of constraints on behavior — engenders a



candidate set of behaviors (Kambhampati, Thrig, and Srivas-
tava 1996) some of which may have certain interpretable
properties while others may not. This means that an algo-
rithm that can capture the “X-ability of a plan can also
do so for a particular behavior it models since in the worst
case a behavior is also a plan that has a singular candidate
completion. A general treatment of a plan can be very use-
ful, for example, in decision-support where human decision-
makers are deliberating over plans with the support of a
planner (Sengupta et al. 2017). Unfortunately, interpretability
of plans has received very little attention beyond explanation
generation (Smith 2012; Fox, Long, and Magazzeni 2017;
Borgo, Cashmore, and Magazzeni 2018).

Such a framework should not only be able to compute
plans but also policies for communicating its information
content during execution — there has been some recent work
exploring the notion of disclosure policies and disclosed
executions (Zhang, Shell, and O’Kane 2018a; 2018b).

Conclusion

In conclusion, we looked at a variety of interpretable be-
haviors of an agent that provide a rich set of directives to
consider while designing agents that can account for the ob-
server model in their decision making processes. We also
saw how the ability to model and anticipate interpretabil-
ity of its own behavior can be dual-use — i.e. the agent can
use this to either reveal or obfuscate its intentions to the
observer. We compared and contrasted existing literature
that has tackled various aspects of this problem and pro-
vided a unified framework for precise specification of these
(often confused) ideas. We also highlighted gaps in exist-
ing work and directions for future research. Finally, in this
survey we have focused on the interpretability of behavior
only, and the role of privacy and obfuscation in that context
only. There is a rich body of work in the planning com-
munity that has explored these concepts in the context of
information sharing in multi-agent planning (Brafman 2015;
Stolba 2017) that can provide additional insights towards
a more general of formulation of privacy preservation and
obfuscation in a joint planning scenario.
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