
Improving the Efficiency and Efficacy of Multi-Agent Reinforcement Learning on
Complex Railway Networks with a Local-Critic Approach

Yuan Zhang1, Umashankar Deekshith2, Jianhong Wang3, Joschka Boedecker1

1Neurorobotics Lab, University of Freiburg, Germany
2Deutsche Bahn AG, Germany

3Center for AI Fundamentals, University of Manchester, UK
{yzhang,jboedeck}@cs.uni-freiburg.de, umashankar.deekshith@deutschebahn.com, jianhong.wang@manchester.ac.uk

Abstract

The complex railway network is a challenging real-world
multi-agent system usually involving thousands of agents.
Current planning methods heavily depend on expert knowl-
edge to formulate solutions for specific cases and are there-
fore hardly generalized to new scenarios, on which multi-
agent reinforcement learning (MARL) draws significant at-
tention. Despite some successful applications in multi-agent
decision-making tasks, MARL is hard to scale to a large
number of agents. This paper rethinks the curse of agents
in the centralized-training-decentralized-execution (CTDE)
paradigm and proposes a local-critic approach to address the
issue. By combining the local critic with the PPO algorithm,
we design a deep MARL algorithm denoted as local-critic
PPO (LCPPO). In experiments, we evaluate the effectiveness
of LCPPO on a complex railway network benchmark, Flat-
land, with various numbers of agents. Noticeably, LCPPO
shows prominent generalizability and robustness under the
changes of environments.

Introduction
Multi-agent reinforcement learning (MARL) has drawn sig-
nificant attention in multi-agent decision-making tasks, e.g.
continuous control on robots (Yan et al. 2023), playing
strategic video games (Rashid et al. 2018) and distributed
voltage control in power grids (Wang et al. 2022a). Al-
though MARL has attracted significant interest in the com-
munity, its successful applications are primarily concen-
trated in cases where the number of agents is limited (less
than 10). Most existing MARL algorithms still suffer from
increasing complexity as the number of agents increases in
a system. This can partially explain why MARL is hard to
handle complex railway networks, where there exist up to
thousands of agents. Flatland (Mohanty et al. 2020) is an
open-source platform, simulating traffic on complex rail-
way networks. In this platform, MARL has not yet outper-
formed the traditional optimization approaches, which natu-
rally gives rise to a research question that if there exists an
efficient paradigm facilitating MARL to address this real-
world problem.

In this paper, we begin by investigating the underlying
challenge of why existing MARL algorithms would fail on
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complex railway networks, then we address this challenge
by proposing an efficient paradigm in critic representation.
The training of the multi-agent systems is a non-stationary
Markov decision process from the single agent’s perspec-
tive so that independent learning (Claus and Boutilier 1998)
will receive an unstable training process. To address this
issue, MARL algorithms heavily rely on the centralized-
training-decentralized-execution (CTDE) (Oliehoek, Spaan,
and Vlassis 2008) paradigm. Based on CTDE, each agent
gathers information from other agents during training (e.g.,
either coordinating or communicating with other agents).
This information is encoded in the representation of agents’
policies, so that they can still perform harmoniously with
local observations during execution. Figure 1 provides an
illustrative example of the distinction between independent
learning and CTDE for actor-critic-based methods.

Figure 1b visualizes the independent learning that each
agent has an independent critic with its own observation
and action as inputs, denoted ”independent critic”. Figure 1c
concludes most popular CTDE-based methods (Lowe et al.
2017; Wang et al. 2020a; Sunehag et al. 2018) in the MARL
community. There exists a global mixer gathering all other
agents’ actions and observations. The global information is
then fed into the critic network (denoted ”global critic”) to
produce a more consistent value prediction and eliminate the
non-stationarity. Nevertheless, the complexity of the global
critic in representation grows with the number of existing
agents, which causes the redundant global information and
therefore the unstable learning procedure in practice (Yu
et al. 2022). Furthermore, both paradigms of forming crit-
ics have not yet utilized the physical information existing
in the physical system, such as the group structure 1a from
the railway networks. In this work, we propose an efficient
local critic (Figure 1d) paradigm, taking advantage of the
observed group structure elicited from the spatial relation-
ship among agents to mitigate the issues by the global critic
mentioned above.

Nevertheless, there exist two challenges of directly ap-
plying the local critic to MARL. First, a group structure
(e.g. members, connections, size) is non-stationary and each
agent may be involved in different groups throughout the
whole process, which prompts the introduction of a novel
mixing network to deal with variations of a group structure.
The output of this mixing network is usually interpreted as
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Figure 1: Different critic architectures are shown in subfigures from (b) to (d), representing a group structure in a multi-agent
system as shown in (a). (b) and (c) demonstrate two prevalent critic architectures proposed by previous works, whereas (d)
demonstrates the critic architecture proposed in this paper.

the group’s long-term rewards in previous works (Sunehag
et al. 2018; Rashid et al. 2018), which is difficult to track
in this scenario where the group is formalized and unrav-
elled across time. The second challenge is how to appropri-
ately clarify the contribution of each agent to a certain group.
When an agent joins different groups across time, it would
be non-trivial and intricate to define the past groups (or
group members) its long-term rewards might reflect, which
could directly influence the policy optimization.

Our main contribution is addressing the practical is-
sues of incorporating the local critic into multi-agent sys-
tems, namely dynamic group and agent coordination. Our
method is easy to incorporate into actor-critic frameworks
like PPO, leading to a practical MARL algorithm, referred
to as LCPPO. Furthermore, our approach demonstrates su-
perior performance over other MARL baselines on a com-
plex railway network simulator called Flatland, with vari-
ous numbers of agents. Finally, our method shows additional
generalizability and robustness with respect to environmen-
tal changes in the railway network system, which supports
that LCPPO could be a promising approach to tackling real-
world applications.

Related Work
The vehicle planning problem as modelled in the Flatland
Environment has been an active research area within the
operations research (OR) community dating back decades
(Bodin and Golden 1981). To the Flatland challenge, the
winning solution in 2020 (Laurent et al. 2021) was from the
perspective of multi-agent path finding (MAPF) (Stern et al.
2019) combining it with other optimization techniques. For
example, to handle malfunctions, an improved version of
minimum communication policies (MCP) (Ma, Kumar, and
Koenig 2016) was used to avoid the deadlocks by stopping
some trains to maintain the order that each train visits each
location. Overall, although OR methods are quite effective
in known deterministic environments, they depend on expert
knowledge to formulate solutions for specific cases and are
therefore hardly generalized to new scenarios and stochastic
setups. This motivates us to study MARL for this planning
problem, which can autonomously cope with unexpected sit-
uations.

Prior works (Jiang et al. 2022) have achieved decent per-

formances on the Flatland challenge with MARL. However,
they utilize the global state for planning, which still faces
the scalability issue as OR methods. One common approach
to ease this issue is the centralized-training-decentralized-
execution (CTDE) framework. To maintain efficiency and
handle coordination concurrently, it adopts a local actor dur-
ing planning and a global critic during training to gather
all agents’ information (Lowe et al. 2017) or decompose a
global critic into individual value functions (Sunehag et al.
2018; Rashid et al. 2018; Wang et al. 2020b). They suf-
fer from large joint state-action space and slow convergence
rates during training. This directly motivates the local critic
approach proposed in this paper. Yang et al. (2018) have
already investigated issues of large scalability in MARL,
which unfortunately simplifies agents based on static neigh-
bouring information and is difficult to apply on dynamic
railway network setups. The sub-team structure (Phan et al.
2021) is similar to our work. Their setup is still aiming to fit
the global reward, which is less direct than the local group
reward in our paper.

Background
Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) is a research
field that combines multi-agent learning and reinforcement
learning to solve a multi-agent system (MAS) described as
a game-theoretical model. In this work, we apply MARL as
a basic learning framework to solve complex railway net-
works. Following the common setting in MARL, we model
the MAS as a partially observable stochastic game (POSG),
which can be expressed as the following 7-tuple (Kumar and
Zilberstein 2009) such that ⟨N ,S,A,O, {ri}i∈N , T, b0⟩.
More specifically, N = {1, 2, ...} is a set of agents in the
MAS. S is a set of available states. O = ×i∈NOi is a joint
observation set, where Oi is agent i’s observation set; while
A = ×i∈NAi is a joint action set, where Ai is agent i’s
action set. Each agent i is equipped with a reward function
to evaluate its performance such that ri : S × A → R.
Additionally, the transition function of the MAS can be de-
scribed as follows: T : S×A → ∆(S×O), where ∆(X ) is
the set of all probability distributions defined over a set X .
b0 ∈ ∆(S) is the initial state distribution. The objective of
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POSG is to maximize each agent’s individual discounted cu-
mulative rewards by a stationary policy πi : Oi → Ai such
that maxπi E[

∑∞
t=0 γ

tri(st, at)], where γ ∈ (0, 1) is a dis-
count factor, st ∈ S and at ∈ A. In MARL, the usual learn-
ing paradigm to solve POSG is called the multi-agent actor-
critic framework, for which each agent individually applies
the actor-critic framework to optimize its policy. Two of the
most popular algorithms based on this paradigm are IPPO
(de Witt et al. 2020) and MAPPO (Yu et al. 2022), which
extends the vanilla multi-agent actor-critic framework by in-
corporating the PPO algorithm (Schulman et al. 2017). In
this paper, we propose Local Critic PPO based on MAPPO
via formalizing the critic with GNNs to capture sufficient
information from the complex railway network.

Centralized Training Decentralized Execution
MARL algorithms are applied either as fully centralized
methods where a single policy with joint action is learned
for all agents or in an independent agent learning set-
ting - also called decentralized learning where agents
are optimised separately. Nevertheless, the fully central-
ized method could lead to the curse of dimensionality to
impede learning the optimal joint policy, while the in-
dependent learning (e.g. IPPO) may result in the non-
stationary learning procedure (Hernandez-Leal, Kartal, and
Taylor 2019). To trade off the benefits and drawbacks
of these two paradigms, centralized-training-decentralized-
execution (CTDE) (Oliehoek, Spaan, and Vlassis 2008) (e.g.
MAPPO) was proposed to form each agent’s critic by all
other agents’ information (e.g. observations and actions),
still maintaining the decentralized policies to approximate
the joint policy as used in independent learning paradigm
to avoid the curse of dimensionality. Through the lens of
application, a limitation of CTDE is that it always collects
the information of all agents to form a critic for an agent
i, however, in physical scenarios some agents are not influ-
ential to agent i. This would inevitably cause some unnec-
essary fluctuations on the approximate critic, leading to po-
tential learning instability (Yu et al. 2022). To mitigate this
issue, we propose the local critic to aggregate the sufficient
agents’ information, based on the existing physical informa-
tion (e.g. a tree structure describing the spatial relationship
among agents), provided by the complex railway network.
This would effectively filter out the information from irrel-
evant agents, to reduce the instability induced from the sce-
narios with a large number of agents. The performance of
the proposed local critic sheds light on the necessity of in-
corporating known physical information into design when
dealing with real-world problems.

Local Critic Multi-agent Reinforcement
Learning (LCMARL)

As shown in background, MAPPO relies on a global critic
during training, which fails to scale on complex railway net-
works like Flatland, with more than 10 agents. In this sec-
tion, we propose an effective approach, formalizing a local
group and constructing a local critic building on the local
group for training. Incorporating the local critic into the pop-

ular RL algorithm PPO (Schulman et al. 2017), we achieve
a practical MARL algorithm applicable to the large-scale
railway planning problems, referred to as local-critic PPO
(LCPPO).

Overview
Figure 2 gives an overview of how to incorporate the local
critic into the MARL framework in an actor-critic-styled al-
gorithm, including the local-critic network and its update.
Suppose N agents in a system, and they receive their lo-
cal observations ot = (o1t , o

2
t , . . . , o

N
t ) at each step t. With-

out the loss of generality, we assume global state st = ot.
However, from the single agent’s view, the system is still
partially observable. The group structure gt is a graph rep-
resentation with N nodes and E edges, which can be natu-
rally constructed in a railway system. More specifically, two
agents share an edge if they are on rails connected by less
than one crossroad. This setup aims to use as little informa-
tion as possible, while more complex construction methods
are possible. For each agent i, the number of its neighbour-
ing agents Nt(i) is usually extremely less than N due to the
sparsity property in railway systems.

All observations are further passed into the local-critic
network V (ot, gt;ϕ) : O × G → R to predict agents’
individual values vt = (v1t , v

2
t , . . . , v

N
t ), where G is the

set of group structures. The local-critic network is repre-
sented as a neural network parameterized with ϕ, as illus-
trated in Figure 2a. The network first encodes each ob-
servation oit to a hidden unit zit with a multilayer percep-
tron (MLP) layer zit = MLP(oit). Then the network uti-
lizes the group structure gt within the graph neural network
(GNN) (Scarselli et al. 2009) layer to achieve the local in-
formation hit = GNN(zt, gt) = σ(zit,

⊕
j∈Nt(i)

ψ(zit, z
j
t )),

where σ, ψ are learnable functions and
⊕

is aggregation op-
erator. The local information hit is further fed to predict the
value vit with an MLP layer. For each agent i, the GNN en-
sures its local information can only flow inside its neigh-
bouring agents Nt(i) defined by the group structure gt. If
the number of neighbouring is limited to NG and the num-
ber of agents N , the complexity of GNN is O(NGN) far
more efficient compared with O(N2) of the global critic in
Figure 1c. In practice, the GNN structure is implemented in
the Transformer (Vaswani et al. 2017) architecture with the
mask mechanism.

Dynamic Group
The biggest challenge in learning the local-critic network
is the evolving group structure gt. For agent i, it is urgent
to discover its influence on its neighbouring agents Nt(i)
in several successive steps, but Nt(i) can change at every
step. To mitigate this issue, we propose a concept called the
imaginary step t̃ (red dashed frame in Figure 2b). The imag-
inary step t̃ utilizes the observations ot+1 but maintains the
group structure gt. By passing through the local-critic net-
work, we obtain virtual values ṽt+1 = V (ot+1, gt). Since
values ṽt+1 and values vt (individual values at step t) are
calculated with the same group structure gt, there exists a
recursive relationship (Bellman equation) with these values
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Figure 2: An overview of Local-Critic Multi-agent reinforcement learning (LCMARL). The left figure represents the structure
of the local-critic network with the GNN structure. The right figure describes how to update this network in MARL with a
virtual imaginary step and value function loss in RL.

and rewards rt, which will be further introduced.
With the introduction of the imaginary step, values at dif-

ferent steps are connected with the same group structure. In
details, assume the predicted values at step t are denoted as
vt = V (ot, gt;ϕ) for all agents, while the imaginary val-
ues at step t + 1 are denoted as ṽt+1 = V (ot+1, gt;ϕ).
These two values indicate the same meaning: the discounted
expected cumulative return that agents can achieve under
the static group structure gt. We denote the i-th output of
V (ot, gt;ϕ) as Vi(ot, gt;ϕ) for simplicity. According to the
dynamic programming techniques (Sutton and Barto 2018),
the extended Bellman equation for any i on value function
Vi can be derived:

Vi(ot, gt;ϕ) = Eat,rt,ot+1

[
rit + γ(Vi(ot+1, gt;ϕ)

]
, (1)

where γ is the discount factor to account for future steps.
The expectation is concerning the next observations, actions
and rewards. The complicated expectation computation is
usually approximated by sample-based methods (Sutton and
Barto 2018).

Agent Coordination
Equation 1 indicates that the value of agent i is only related
to the received individual reward rit. It is imperfect since
agents could reach a local sub-optimal solution. Instead, we
would like to encourage agents to find solutions better for
global interest.

Value decomposition networks (VDN) (Sunehag et al.
2018) utilized the monotonicity of the addition calculation
and summed all individual values Vi as the global value, to
encourage cooperative behaviours among agents. Inspired
by it, we sum all individual values inside each agent i’s
neighbourhood to encourage agent coordination inside this
local group, which requires much less computation com-
pared with VDN which relies on a global group. Moreover,
with the evolution of the local group, agents would have
a chance to coordinate with different agents. The modified

Bellman equation takes place on the local-group level in-
stead of on the single-agent level, shown as follows:∑

j∈Nt(i)

Vj(ot, gt;ϕ) = Eat,rt,ot+1

[ ∑
j∈Nt(i)

rjt

+γ
∑

j∈Nt(i)

Vj(ot+1, gt;ϕ)
]
.

(2)

Intuitively, agent j’s individual value Vj positively con-
tributes to the local group value, thus encouraging coordi-
nation behaviours.

Practical Algorithm: LCPPO
Equation 2 describes the recursive relationship (Bellman
equation) of the value function with a local-critic perspec-
tive, which takes the core position to design the loss func-
tion of value functions in actor-critic algorithms. Based on
the learned value function, a better policy can be achieved
by gradient-based methods. In this paper, we rely on the
successful single-agent RL algorithm PPO (Schulman et al.
2017) as the backbone, and develop a novel MARL algo-
rithm, referred to as Local-Critic PPO (LCPPO). The spe-
cific procedure is shown in Algorithm 1. Agents are as-
sumed as homogeneous. The policy function is denoted
as πi(oit; θ) = π(oit; θ) for any agent i, with parameters
θ, whereas the value function is denoted as V (ot, gt;ϕ),
with parameters ϕ. Agent i’s individual value function
is denoted as Vi(ot, gt;ϕ), which is the i-th output of
V (ot, g;ϕ). LCPPO can be extended to heterogeneous
agents with individual policy and value functions but left
to future work. For each agent i’s neighbouring group
Nt(i) derived from group structure gt, the group value
is defined as the sum of group members’ individual val-
ues: vNt(i)

t =
∑

m∈Nt(i)
Vm(ot, gt;ϕ). The key modifica-

tion to PPO method is on Line 9 that the local group re-
ward rNt(i)

t is modified with an additional correction term
γ(ṽ

Nt(i)
t+1 − v

Nt+1(i)
t+1 ). This term is designed to compensate

701



Algorithm 1: LCPPO
Input: initial parameters θ0 for policy function π, initial param-
eters ϕ0 for value function V
for k = 0, 1, 2, · · · ,K do

Set data buffer Dk = ∅
for j = 0, 1, 2, · · · , J do

Collect trajectory τj = {o0,a0, r0, g0,o1, · · · } by exe-
cuting actions at ∼ π(at|ot; θ) =

∏N
i=1 π(a

i
t|oit; θ) in the

environment at each step t
for each step t and each agent i’s neighbouring groupNt(i)

derived from gt do
Compute values vNt(i)

t =
∑

m∈Nt(i)
Vm(ot, gt;ϕ)

Compute virtual values ṽ
Nt(i)
t+1 =∑

m∈Nt(i)
Vm(ot+1, gt;ϕ)

Compute local group reward r
Nt(i)
t =

∑
m∈Nt(i)

rmt +

γ(ṽ
Nt(i)
t+1 − v

Nt+1(i)
t+1 )

Compute advantage estimates Â
Nt(i)
t via GAE (Schul-

man et al. 2017) with local group reward r
Nt(i)
t and value vNt(i)

t

Compute rewards-to-go R̂
Nt(i)
t = Â

Nt(i)
t + v

Nt(i)
t

τj ← τj ∪ {vNt(i)
t , Â

Nt(i)
t , R̂

Nt(i)
t }

end for
Dk ← Dk ∪ {τj}

end for
Update value function’s parameters ϕ with Adam opti-

mizer (Kingma and Ba 2015) by fitting rewards-to-go:

ϕk+1 = argmin
ϕ

∑
τ∈Dk

∑
t=0

∑
i∈N

( ∑
m∈Nt(i)

Vm(ot, gt;ϕ)−R̂Nt(i)
t

)2
Update policy function’s parameters θ with Adam optimizer

by maximizing multi-agent PPO objective:
θk+1 = argmax

θ

∑
τ∈Dk

∑
t=0

∑
i∈N

∑
m∈Nt(i)

min
(
cmt (θ)Â

Nt(i)
t ,

clip(cmt (θ), 1− ϵ, 1 + ϵ)Â
Nt(i)
t

)
, where cmt (θ) =

π(am
t |omt ;θ)

π(am
t |omt ;θk)

the calculations on advantages ÂNt(i)
t , so that it stands for

the virtual values instead of the real values, following Equa-
tion 2.

Experiments
Experimental Setup
Task Description We evaluate the LCPPO on Flat-
land (Mohanty et al. 2020), a simplified grid environment
to simulate the railway networks with an easy-to-use ma-
chine learning interface. The goal is to control each vehicle
with different routes to arrive safely and punctually. Figure 4
visualizes the running process in Flatland. We mainly fol-
low the official environmental configurations1 with 10/20/30
agents respectively. In particular, the map size is 30×30 with
3 cities (2 cities for 10 agents). The max rails between cities
are 2 and there are 2 rail pairs in each city. The malfunction
rate is 0 and the speed for the vehicle is 1.0 grid per step and
varied in later analysis.

Regarding the MARL setup, we follow the previous
setup (Jiang et al. 2022) that each agent i receives a local ob-

1flatland.aicrowd.com/challenges/flatland3.html

servation oit at step t consisting of two parts: agent attributes
Xattr and tree-structured representationX tree.Xattr describes
the individual attributes of each agent with 83 dimensions,
e.g. scheduled departure and arrival time. X tree represents
the spatial information on the grid environment, which is
encoded as the tree structure X tree = (nodeVv=1, edgeEe=1)
includes V = 31 nodes with 13-dimensional node attributes
nodev and E = 30 edges with 4-dimensional attributes
edgee indicating connected nodes, concatenated to a 606-
dimensional vector. All the information is derived from
the spanning tree, which is constructed by traversing from
the agent’s location and branch at each possible crossroad.
Please refer to Jiang et al. (2022) for the detailed description
of the spanning tree and attributes. The action space includes
five discrete actions: do nothing, go forward, stop, turn left,
and turn right. Regarding the group structure needed by
LCPPO during training, it’s defined as follows: for each
agent, any other agents who appear in the first level of its
spanning tree belong to the same group. The common group
size is less than 3, which is much less than the total number
and guarantees the efficiency of LCPPO.

Evaluation Metric We adopt multiple objectives to eval-
uate the performance of different methods. Each agent re-
ceives an individual reward signal at each step, consisting of
the following items:
• Arrival Reward: rat = 1 if the agent primarily reaches

the target and rat = 0 otherwise;
• Deadlock Penalty: rlt = −1 if the agent primarily im-

merses in a deadlock and rlt = 0 otherwise. A dead-
lock happens when two trains step into a single trail
from opposite directions. The deadlock quickly blocks
the rails and catastrophically paralyzes the whole system,
and thus should be penalized.

• Environment Reward: To encourage the train to arrive
on time, Flatland environment (Mohanty et al. 2020) pro-
vides an environmental reward defined as

ret =


1.0, if t ≤ B AND new arrival
(B − t)/Tmax + 1, if B < t < Tmax AND new arrival
(B − d)/Tmax, if t = Tmax AND not arrival
0, otherwise

(3)

where B is the latest arrival time, Tmax is the system’s
maximum running steps and d is the shortest path Man-
hattan distance between the train’s position and target at
Tmax. The intuition of the reward is to punish the delays
after the scheduled latest time.

The final reward for agent i is the weighted sum of all terms
above: rit = cer

e
t + car

a
t + clr

l
t, where ce = 1.0, ca = 5.0

and cl = 2.5 follows previous work (Jiang et al. 2022).

Baselines and Implementation To ensure a fair compar-
ison, we select representative CTDE-based methods, which
only use local information during execution, and one SOTA
OR-based method with global optimization.
• IPPO implements the structure as in Figure 1b. Each

critic only relies on local observation during training.
• MAPPO represents the structure as in Figure 1c and pre-

vious work (Yu et al. 2022). The critic network gathers all
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(a) 10 Agents.

(b) 20 Agents.

(c) 30 Agents.

Figure 3: The training performances on the Flatland simulator with variant numbers of agents. All experiments are carried out
with 5 random seeds and the average performances across all agents are plotted with standard deviation as shaded area.

agents’ observations as input and predicts the value. No-
tably, the global critic fits the global reward as the sum of
individual rewards for global cooperation.

• LCPPO follows Algorithm 1 introduced in this paper.
Theoretically, the critic network only utilizes observa-
tions from its neighbours. Practically, we use all agents’
observations and adopt a Transformer (Vaswani et al.
2017) layer with the mask mechanism to imitate the ef-
fects.

• OR is the winning solution of the flatland challenge from
the operations research field2. OR method utilizes global
information and expert knowledge of the environment to
execute a thorough planning process at the beginning of
the episode. Although this setup is different from RL-
2github.com/Jiaoyang-Li/Flatland

based methods, it is included to indicate the current per-
formance gap left for RL-based methods.

All MARL baselines share the same actor network struc-
ture of a 2-layer feedforward neural network with 128 and
64 hidden units each. The critic network has a hidden-layer
structure as the actor network, and there is an additional
transformer layer with 128 hidden units and 4 heads to
group local information in LCPPO. Other hyperparameters
are demonstrated in the supplementary material. The param-
eter sharing technique (de Witt et al. 2020) is enabled among
agents for efficient learning.

Main Results
The main results of 10/20/30 agents are shown in Figure 3.
All experiments are carried out with 5 random seeds and the
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(a) Passing Different trails in different directions.

T T+6T+4T+2
(b) Waiting for closed-target agents passing.

T T+9T+6T+3
(c) Waiting for same-direction group agents passing.

Figure 4: Visualization of agents’ policies learned by LCPPO algorithm.

average performances are plotted with standard deviation
as shaded area. All evaluation metrics are averaged across
participating agents. In terms of the arrival ratio and envi-
ronmental reward, all experiments share a similar trend of
LCPPO > IPPO > MAPPO, which is strong evidence that
the local critic successfully guides the coordination of agents
thus leading to more on-time arrivals. Notably, MAPPO
can’t learn meaningful behaviours with the increasing num-
ber of agents. This result complies with the curse of agent
issues occurring in the MARL area as explained in the in-
troduction. Regarding the deadlock ratio, LCPPO is usually
slightly larger than IPPO, which is considered acceptable
when more agents depart and crowd the network. We hope
future work could analyze how to better coordinate these
two objectives. Beyond that, we visualize the agents’ poli-
cies learned by LCPPO in Figure 4 to further explain the

behaviours. In general, we believe that LCPPO masters 2
skills to outperform other baselines: (i) Different trails allow
trains to pass in different directions as in Figure 4a, which
not only avoids deadlock but also regulates the traffic; (ii)
Trains learn to wait for other trains to pass first for group
benefit. The red-box agent waits for another agent to reach
targets first in Figure 4b and stops for other same-direction
agents to pass in Figure 4c.

Besides, the OR method consistently outperforms LCPPO
in terms of all metrics, especially for the almost perfect
deadlock ratio and arrival ratio, showing the current perfor-
mance gap for RL-based methods. We record the average
time cost of OR and LCPPO in Table 1. Notably, the time
cost for OR is calculated as the sum of the initial plan and
interval replans, while the time cost for LCPPO is calculated
as the episode inference time (this value should be compa-
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Algorithms Number of Agents
10 Agents 20 Agents 30 Agents

OR 75 421 862
LCPPO 75 218 269

Table 1: The average time cost of OR and LCPPO with vari-
ant numbers of agents. The unit is in milliseconds.

rable for IPPO and MAPPO as they adopt the same decen-
tralized actor network). The time cost for LCPPO doesn’t
scale as much as the OR method, attributed to the CTDE
framework. This shows the potential of LCPPO as a critical
extension of planning methods in large-scale and stochastic
railway systems in future work.

Generalization
Generalization (Kirk et al. 2023) is essential for learning-
based methods since there might be mismatches between
training and testing environments in practice, which also ap-
plies to the railway system. There are various malfunctions
in real-world railway trails. Besides, it’s common to add or
reduce train routes, which all require rescheduling plans. In
theory, LCPPO only utilizes local information to guide plan-
ning behaviours. When mismatches happen in the system,
local groups close to the mismatches need re-planning and
other groups are not influenced. Compared with the global
critic method, a malfunction could influence all agents since
it has not been during training.

To demonstrate the generalization of LCPPO, we design
the following experimental setups: we first utilize different
algorithms to train planning policies on environments de-
fined in the setups. Later on, certain components of the envi-
ronment are modified to simulate the mismatch in the system
and all policies are tested on newly changed environments
without further tuning. Regarding the changing components,
we consider the following scenarios:

• Malfunctions: Trains are randomly stopped for random
duration. The stopped train would block the trail and
block other trains passing. This stochastic process fol-
lows the Poisson process. The mean rate of the Poisson
process is 0.0001. The stopping duration ranges from 15
steps to 50 steps.

• Speeds: All trains have speed with one grid per step dur-
ing training. During testing, 1/4 of trains maintain this
speed, while 1/4 with one grid per 2 steps, 1/4 with one
grid per 3 steps and 1/4 with one grid per 4 steps.

• Agents: There are 20 trains in the network during train-
ing. 10 more agents are added during testing to challenge
the generalization ability.

All experiments are carried out with 5 random seeds and
20 episodes for each seed and we report the average ar-
rival ratio and its standard deviation in Table 2. Appar-
ently, LCPPO is the most robust algorithm among all MARL
baselines. The global critic method (MAPPO) is the least
favourite method under environmental mismatches. This

Algorithms Test Scenarios
Malfunctions Speeds Agents

IPPO 0.16 ± 0.19 0.12 ± 0.15 0.11 ± 0.14
MAPPO 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01
LCPPO 0.24 ± 0.11 0.19 ± 0.10 0.18 ± 0.09

Table 2: The average arrival ratio of all baselines under dif-
ferent test scenarios.

proves our concerns about current state-of-the-art MARL
methods. The number of agents is the most influential fac-
tor to all baselines, which calls theories from open team re-
search (Rahman et al. 2021).

Conclusion
This paper focuses on the applications of MARL on com-
plex network railway networks. The failure of state-of-the-
art MARL methods in such a large-scale environment di-
rectly motivates this work. We proposed the local critic idea
and achieved an efficient MARL algorithm LCPPO. LCPPO
scales efficiently with the number of agents in the Flatland
environment and performs more robustly than baselines.

Despite the advantages provided by the local critic,
LCPPO still renders some deadlocks and unsuccessful plan-
nings, which is non-negligible in real-world applications.
It implies that the CTDE paradigm might not be enough
to handle the coordination on agents (Zhou et al. 2023).
Therefore, it would be beneficial to include communications
among local groups or global information (graph structure,
other agents’ observations...) during execution for global op-
timal solutions. Besides, current updates on the value func-
tion rely on the sum of rewards in the local group, which
treats all agents with identical importance. This assumption
might be wrong for heterogeneous multi-agent systems. A
more advanced credit assignment technique should be con-
sidered (Rashid et al. 2018; Wang et al. 2022b) and extended
to dynamic group scenarios.
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