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Abstract

In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost
and a weight, a start state, and a goal state, the task is to com-
pute a minimum-cost path from the start state to the goal state
with weight no larger than a given weight limit. While most
existing works have focused on solving the WCSP problem
optimally, many real-world situations admit a trade-off be-
tween efficiency and a suboptimality bound for the path cost.
In this paper, we propose the bounded-suboptimal WCSP al-
gorithm WC-A*pex, which is built on the state-of-the-art ap-
proximate bi-objective search algorithm A*pex. WC-A*pex
uses an approximate representation of paths with similar costs
and weights to compute a (1+ε)-suboptimal path, for a given
ε. During its search, WC-A*pex avoids storing all paths ex-
plicitly and thereby reduces the search effort while still retain-
ing its (1+ ε)-suboptimality bound. On benchmark road net-
works, our experimental results show that WC-A*pex with
ε = 0.01 (i.e., with a guaranteed suboptimality of at most
1%) achieves a speed-up of up to an order of magnitude over
WC-A*, a state-of-the-art WCSP algorithm, and its bounded-
suboptimal variant.

Introduction and Related Work
In the Weight-Constrained Shortest-Path (WCSP) problem,
given a graph in which each edge is annotated with a cost
and a weight, a start state, and a goal state, the task is to
compute a minimum-cost path from the start state to the goal
state with weight no larger than a given weight limit. The
WCSP problem appears in many real-world applications. In
an electric vehicle domain, the graph represents a road net-
work, and each edge is annotated with a cost corresponding
to driving time and a weight corresponding to battery con-
sumption (Baum et al. 2015). A desired route minimizes the
driving time without depleting the battery. In a cycling do-
main, the graph represents a road network, and each edge
is annotated with a cost corresponding to cycling time and
a weight corresponding to climbing altitude gain (Storandt
2012). A desired route minimizes the cycling time without
exceeding a given limit on the total climbing altitude gain.

Combinatorially, the WCSP problem also appears as a
subproblem in the context of column generation methods
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used for solving other problems, such as the shift scheduling
problem (Cabrera et al. 2020) and the virtual network em-
bedding problem (Rost 2019). Although many path-finding
problems are tractable, the WCSP problem is NP-hard to
solve optimally, i.e., it is NP-hard to compute the minimum-
cost path within the given weight limit (Handler and Zang
1980; Lorenz and Raz 2001).

The WCSP problem is similar to the Bi-Objective
Shortest-Path (BOSP) problem, where each edge is anno-
tated with two costs. Although the task in the BOSP prob-
lem is different from the task in the WCSP problem, sev-
eral techniques of BOSP algorithms can be carried over to
WCSP algorithms by treating the weight as the second cost
while being cognizant of the weight limit. In fact, WC-
A* (Ahmadi et al. 2022a) is a state-of-the-art WCSP algo-
rithm that draws inspiration from BOSP algorithms. WC-
A* and its bi-directional variant WC-BA* (Ahmadi et al.
2022b) have been shown to outperform previous state-of-
the-art WCSP algorithms Bi-pulse (Cabrera et al. 2020) and
RC-BDA* (Thomas, Calogiuri, and Hewitt 2019) in terms
of runtime by up to two orders of magnitude on road net-
works (Ahmadi et al. 2022a,b).

While the algorithms mentioned above focus on solving
the WCSP problem optimally, many real-world situations
admit—or even encourage—a trade-off between efficiency
and a suboptimality bound for the path cost. A bounded-
suboptimal WCSP algorithm computes a (1+ε)-suboptimal
path, for a given ε. A (1+ ε)-suboptimal path has a cost that
is no larger than (1 + ε) times the minimum path cost and a
weight that is no larger than the weight limit.

There is relatively little work on solving the WCSP prob-
lem with bounded-suboptimality guarantees. Cabrera et al.
(2020) suggest a general method for converting an optimal
WCSP algorithm to a bounded-suboptimal one by terminat-
ing the search immediately after the cost of the incumbent
solution (i.e., the best solution that the WCSP algorithm has
found so far) is proven to be within the given suboptimal-
ity bound. Other works on bounded-suboptimal WCSP al-
gorithms (Lorenz and Raz 2001; Ergun, Sinha, and Zhang
2002) are typically based on fully polynomial-time approxi-
mation schemes, whose runtimes are polynomial in the size
of the graph and 1/ε. Unfortunately, these algorithms are
still impractical for large graphs, such as road networks, that
often have millions of states.
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There are many existing works on bounded-suboptimal
search algorithms for (unconstrained) shortest-path prob-
lems. These algorithms include WA* (Pohl 1970), fo-
cal search (Pearl and Kim 1982), and explicit estimation
search (Thayer and Ruml 2011). While speeding up the
search by allowing suboptimality is intuitive, it is unclear
how to do so efficiently for the WCSP problem.

In this paper, we propose a novel bounded-suboptimal
WCSP algorithm called WC-A*pex. WC-A*pex takes a
WCSP instance and an ε ≥ 0 as input and computes a
(1 + ε)-suboptimal path. WC-A*pex uses techniques from
A*pex (Zhang et al. 2022a), a state-of-the-art approximate
BOSP algorithm. Unlike other WCSP algorithms, WC-
A*pex uses a clever data structure to merge paths with simi-
lar costs and weights efficiently (instead of storing them ex-
plicitly) during the course of its search. Since paths corre-
spond to search nodes, the merged representation of similar
paths reduces the number of node expansions and thereby
the overall search effort of WC-A*pex. WC-A*pex thus
uses a different technique to speed up the search from exist-
ing bounded-suboptimal search algorithms, most of which
rely on node expansion orders to guide the search to quickly
find a bounded suboptimal solution.

We evaluate WC-A*pex experimentally with different
suboptimality bounds and compare it with existing WCSP
algorithms on benchmark road networks with 1 to 14 mil-
lion states and 2 to 34 million edges. The competing WCSP
algorithms include WC-A* and our adaptation of it to the
bounded-suboptimal variant WC-A*-ε, which terminates the
search immediately after the incumbent solution is proven to
be (1 + ε)-suboptimal. Our experimental results show that
WC-A*pex substantially outperforms WC-A* and WC-A*-
ε in terms of runtime although they are also based on BOSP
algorithms. This demonstrates the power of the merged rep-
resentation of similar paths used in WC-A*pex. Even with
ε = 0.01 (i.e., with a guaranteed suboptimality of at most
1%), WC-A*pex achieves an order-of-magnitude speed-up
over WC-A* and WC-A*-ε on the largest road network. In
comparison, WC-A*-ε with the same value of ε achieves less
than 20% speed-up over WC-A*.

Terminology and Problem Definition
In this section, we formally define the WCSP and BOSP
problems. To allow for a uniform notation, we define the
cost of an edge as a pair of numbers. In the context of the
WCSP problem, the first number indicates the cost, and the
second number indicates the weight. In the context of the
BOSP problem, both numbers represent the cost.

We use boldface font to denote pairs and pi, i ∈ {1, 2}, to
denote the i-th component of a pair p. The addition of two
pairs p and p′ is defined as p + p′ = (p1 + p′1, p2 + p′2).
We say that p (weakly) dominates p′, denoted as p ⪯ p′, iff
p1 ≤ p′1 and p2 ≤ p′2. For an approximation factor (or, more
precisely, a pair of approximation factors) ε = (ε1, ε2), we
say that p ε-dominates p′, denoted as p ⪯ε p′, iff p1 ≤
(1 + ε1) · p′1 and p2 ≤ (1 + ε2) · p′2.

A (bi-objective) graph is a tuple G = ⟨S,E, c⟩, where
S is a finite set of states and E ⊆ S × S is a finite set of

(directed) edges. succ(s) = {s′ ∈ S : ⟨s, s′⟩ ∈ E} de-
notes the successors of state s. The cost function c : E →
R>0 ×R>0 maps an edge to its cost, which is a pair of pos-
itive numbers. A path π from state s1 to state sℓ is a se-
quence of states [s1, s2 . . . sℓ] with ⟨sj , sj+1⟩ ∈ E for all
j = 1, 2 . . . ℓ − 1. s1 = sstart unless mentioned otherwise.
Slightly abusing the notation, we define the cost of π as
c(π) =

∑ℓ−1
j=1 c(⟨sj , sj+1⟩). We say that path π dominates

another path π′ (resp. π ε-dominates π′) iff c(π) ⪯ c(π′)
(resp. c(π) ⪯ε c(π′)).

A WCSP instance is a tuple P = ⟨G, sstart, sgoal,W ⟩,
where G is a graph, sstart ∈ S is the start state, sgoal ∈ S
is the goal state, and W ∈ R>0 is the weight limit. The two
components c1 and c2 of the cost function c correspond to
the cost and weight in the context of the WCSP problem,
respectively. A path π is a solution of P iff it is from sstart
to sgoal and satisfies c2(π) ≤ W . We say that P is solvable
iff it has a solution. An optimal solution of P is a solution
with the minimum c1-value, denoted as c∗1, of all solutions.
Given a non-negative ε, a solution π is (1 + ε)-suboptimal
iff c1(π) ≤ (1 + ε) · c∗1. A bounded-suboptimal WCSP al-
gorithm takes a WCSP instance P and a parameter ε ≥ 0 as
input and computes a (1 + ε)-suboptimal solution.

A path π from sstart to sgoal is Pareto-optimal iff there does
not exist another path π′ from sstart to sgoal with c(π′) ⪯
c(π) and c(π′) ̸= c(π). The Pareto front Π∗ from sstart to
sgoal is the set of all Pareto-optimal paths from sstart to sgoal.
For a non-negative pair ε, a set of paths Πε from sstart to
sgoal is an ε-approximate Pareto front from sstart to sgoal iff
any path from sstart to sgoal is ε-dominated by at least one
path in Πε. Note that different ε-approximate Pareto fronts
can exist for the same sstart, sgoal, and ε.

A BOSP instance is a tuple ⟨G, sstart, sgoal⟩, where G is
a graph, sstart ∈ S is the start state, and sgoal ∈ S is the
goal state. An approximate BOSP algorithm takes a BOSP
instance and an approximation factor ε ⪰ (0, 0) as input and
computes an ε-approximate Pareto front from sstart to sgoal.

The following observation shows the connection between
a bounded-suboptimal WCSP algorithm and an approximate
BOSP algorithm.

Observation 1. For a solvable WCSP instance P =
⟨G, sstart, sgoal,W ⟩ and ε ≥ 0, any (ε, 0)-approximate
Pareto front Πε from sstart to sgoal contains a (1 + ε)-
suboptimal solution of P .

Proof. Let π∗ denote an optimal solution of P . By defini-
tion, there exists a path π ∈ Πε with c(π) ⪯(ε,0) c(π

∗) (i.e.,
c1(π) ≤ (1 + ε) · c1(π∗) and c2(π) ≤ c2(π

∗) ≤ W ). Thus,
π is a (1 + ε)-suboptimal solution of P .

See Figure 1 for a visualization of an ε-approximate Pareto
front and a (1+ε)-suboptimal solution of a WCSP instance.

In this paper, we focus on heuristic-search-based WCSP
algorithms. We assume that a heuristic function h : S →
R≥0 × R≥0, which provides a lower bound on the cost
from any given state s to sgoal, is always available. Addi-
tionally, we assume that the heuristic function is consis-
tent, that is, h(sgoal) = 0 and h(s) ⪯ c(e) + h(s′) for
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c1

c2

W π*
π̃

Figure 1: Example of the Pareto front (the costs of
whose paths are shown by the orange dots) and an (ε, 0)-
approximate Pareto front (the costs of whose paths are
shown by the blue dots, two of which overlap with orange
dots) for a WCSP instance. The shaded region shows the
costs that are (ε, 0)-dominated by at least one blue dot. Note
that all orange dots are within the shaded region. Solutions
π∗ and π̃ are an optimal solution and a (1+ε)-suboptimal so-
lution of the WCSP instance, respectively, with c(π̃) ⪯(ε,0)

c(π∗).

all e = ⟨s, s′⟩ ∈ E. It is a common practice in the exist-
ing WCSP and BOSP literature (Ahmadi et al. 2021, 2022b;
Hernández et al. 2023; Zhang et al. 2022a; Salzman et al.
2023) to use Dijkstra’s algorithm (starting from sgoal) to
compute the minimum cost c∗i (s) from any state s to sgoal
for the i-th objective, i = 1, 2, (while ignoring the other ob-
jective) and h(s) := (c∗1(s), c

∗
2(s)) as the heuristic function.

We call this heuristic function the perfect-distance heuristic.

Algorithmic Background
In this section, we review existing WCSP and BOSP al-
gorithms, with a focus on BOA* (Hernández et al. 2023),
WC-A* (Ahmadi et al. 2022b), and A*pex (Zhang et al.
2022a). All three algorithms fit the same best-first bi-
objective search framework: A (search) node n contains
a state s(n), a g-value g(n), and an f -value defined as
f(n) = g(n) + h(s(n)). Node n corresponds to a path
from sstart to s(n). The search algorithm maintains a priority
queue Open, which contains the generated but not yet ex-
panded nodes, and a set of solutions. Open is initialized with
a node that contains the start state sstart and the g-value 0.

In each iteration, the search algorithm extracts a node n
from Open with the lexicographically smallest f -value (i.e.,
extracts a node with the smallest f1-value and breaks ties
in favor of a smaller f2-value). It then performs a domi-
nance check to determine whether n or any of its descen-
dants have the potential to be added to the set of solutions. If
not, the search algorithm discards n. Otherwise, it expands
n: If s(n) = sgoal, then the search algorithm adds the path
corresponding to n, which is a solution, to the set of solu-
tions. If s(n) ̸= sgoal, then the search algorithm generates a
child node for each of the states in succ(s(n)). The search
algorithm then performs a dominance check for the gener-
ated node and adds it to Open if it passes the check. When
Open becomes empty, the search algorithm terminates and

returns the solution set.
Best-first bi-objective search algorithms differ mainly in

which information is contained in the nodes and how the
dominance checks work. The dominance checks of both
BOA* and A*pex check if the f -value of a node is weakly
dominated by the f -value of any expanded node with the
same state or sgoal.

BOA* and WC-A*
BOA* (Hernández et al. 2023) computes a Pareto front
for the given start and goal states. In BOA*, each node
n corresponds to a path from sstart to s(n) whose cost is
g(n). Hernández et al. (2023) show that, due to the con-
sistent heuristic function that BOA* uses, the f1-values
of the extracted nodes are monotonically non-decreasing.
Thus, the dominance checks do not need to consider the
f1-values. Consequently, BOA* stores only the minimum
g2-value gmin

2 (s) of all expanded nodes containing the same
state s. The dominance check for a node n containing state
s can then be done by checking if g2(n) < gmin

2 (s) and
f2(n) < gmin

2 (sgoal). This dominance check can be per-
formed in constant time (in contrast to earlier methods which
required time linear in the number of nodes that contain s).

WC-A* is an optimal WCSP algorithm built on BOA*. It
only maintains at most one incumbent solution. In addition
to discarding nodes via dominance checks, WC-A* also dis-
cards nodes (1) whose f2-values are larger than the weight
limit W or (2) whose f1-values are not smaller than the
c1-value of the incumbent solution. Since WC-A* extracts
nodes with monotonically non-decreasing f1-values, it ter-
minates (and returns the incumbent solution) once the mini-
mum f1-value in Open is not smaller than the one of the in-
cumbent solution. During the computation of the heuristics
with Dijkstra’s algorithm, the minimum-c1 and minimum-c2
paths from any state s to sgoal can also be obtained. We call
these paths the complementary paths of s. When generating
a node n, WC-A* tries to update the incumbent solution with
better solutions that extend the corresponding path of n with
the complementary paths of s(n).

WC-A* can be converted to a bounded-suboptimal WCSP
algorithm by terminating the algorithm when the minimum
f1-value in Open is no longer smaller than the f1-value of
the incumbent solution divided by (1 + ε). We include this
variant of WC-A*, called WC-A*-ε, in our empirical study.

Ahmadi et al. (2022b) propose WC-BA*, a bi-directional
variant of WC-A* that runs two WC-A* searches (one start-
ing from sstart and the other one starting from sgoal) concur-
rently. We omit WC-BA* from our empirical study because
Ahmadi et al. (2022a) later report that WC-BA* does not
dominate WC-A* in terms of runtime and, in fact, has larger
average runtime in several scenarios.

A*pex
A*pex computes an ε-approximate Pareto front for a given
BOSP instance and a given ε-value. In A*pex, a node is a
so-called apex-path pair AP = ⟨A, π⟩ that consists of a cost
pair A, called the apex, and a path π, called the representa-
tive path. We define the g-value of AP as g(AP) := A and
the state of AP as the last state of the representative path π.
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The f -value of AP is f(AP) := g(AP)+h(s(AP)). Con-
ceptually, an apex-path pair corresponds to a set of paths
that end at the same state, and its apex is the component-
wise minimum of the costs of these paths. AP is said to be
ε-bounded iff c(π) + h(s(AP)) ⪯ε f(AP).

Whenever A*pex inserts an apex-path pair to Open,
A*pex attempts to merge it with another apex-path pair in
Open that contains the same state on condition that the re-
sulting apex-path pair is ε-bounded. The implementation of
A*pex by Zhang et al. (2022a) uses, for each state, a list to
maintain the apex-path pairs in Open for that state and hence
can iterate over these apex-path pairs efficiently. The new
apex after merging two apex-path pairs is the component-
wise minimum of the apexes of the two apex-path pairs, and
the new representative path is either one of the two represen-
tative paths of the two apex-path pairs. See Figure 2(a) for a
visualization of the two possible outcomes.

WC-A*pex
In this section, we describe WC-A*pex, our bounded sub-
optimal WCSP algorithm that finds a (1+ε)-suboptimal so-
lution for a given ε. We first describe WC-A*pex and then
provide theoretical results and speed-up techniques.

Observation 1 shows that a (1 + ε)-suboptimal solution
of a WCSP instance can be found in a corresponding (ε, 0)-
approximate Pareto front. This motivates us to propose WC-
A*pex, which can be viewed as A*pex with ε = (ε, 0)
and additional node pruning. We use bold ε and regular ε
to distinguish between the approximation factor of A*pex
and the given suboptimality factor for the WCSP problem.
Similar to A*pex, a node of WC-A*pex is an apex-path
pair AP = ⟨A, π⟩. Since the second component of ε is 0,
when merging two apex-path pairs ⟨A, π⟩ and ⟨A′, π′⟩ with
c2(π) < c2(π

′), WC-A*pex cannot choose π′ as the new
representative path, in which case the resulting apex path
pair is not ε-bounded. Therefore, WC-A*pex chooses the
path with a smaller c2-value and breaks ties in favor of a
smaller c1-value. See Figure 2(b) for a visualization of merg-
ing two apex-path pairs for WC-A*pex.

Algorithm 1 shows the pseudocode of WC-A*pex. It
starts with an apex-path pair ⟨0, [sstart]⟩ in Open (Line 1). At
each iteration, WC-A*pex extracts an apex-path pair from
Open with the lexicographically smallest f -value (Line 5).
Similar to BOA*, WC-A*pex maintains a gmin

2 -value for
each state s that contains the smallest g2-value of all ex-
panded nodes with state s and updates it on Line 10. Both
after extracting (that is, after Line 5) and before generating
(that is, before Line 16) an apex-path pair AP with state s,
WC-A*pex discards the apex-path pair if (1) g2(AP) ≥
gmin
2 (s(AP)) or (2) f2(AP) > W . Case (1) holds iff there

exists an expanded node containing state s whose g-value
weakly dominates g(AP), which implies that any solution
found via AP is also (ε, 0)-dominated by a solution found
via the expanded node and AP thus can be safely pruned.
Case (2) holds only if the representative path of AP cannot
be extended to a solution (since the c2-value of any solution
cannot be larger than W ) and AP thus can be safely pruned.

When WC-A*pex expands an apex-path pair AP with
state s, it generates a child apex-path pair for each succes-

g1

g2

A π

A′ 

π′ 
g1

g2

A πnew

A′ 

π′ 

Anew

πnew

g1

g2

A π

A′ Anew

choose  
as the new representative path

π

choose  
as the new representative path

π′ 

merge

(a) A*pex (adapted from Figure 2 by Zhang et al. (2022a))

g1

g2

A π

A′ π′ 

merge

πnew

g1

g2

A π

A′ Anew

(b) WC-A*pex

Figure 2: Examples of merging apex-path pairs ⟨A, π⟩ (or-
ange) and ⟨A′, π′⟩ (blue) into apex-path pair ⟨Anew, πnew⟩
(green) for A*pex and WC-A*pex, respectively.

sor s′ of state s. The apex of the child apex-path pair is the
sum of the apex of AP and c(⟨s, s′⟩) (Line 12), and the
representative path of the child apex-path pair is the rep-
resentative path of AP appended with state s′ (Line 13).
Before adding the child apex-path pair AP ′ to Open, WC-
A*pex attempts to merge AP ′ with an apex-path pair in
Open[s(AP ′)] on condition that the resulting apex-path pair
is (ε, 0)-bounded (Lines 19-25), where ε is the input sub-
optimality factor and Open[s(AP ′)] is the set of apex-path
pairs in Open for state s(AP ′).

WC-A*pex terminates when it finds a solution (Line 9) or
when Open becomes empty (Line 17). In the latter case, the
given WCSP instance has no solution.

We use an example WCSP instance to demonstrate how
WC-A*pex works. Figure 3(a) shows its graph. The
weight limit W and ε are 7 and 0.2, respectively. Fig-
ure 3(b) shows the costs of all paths from sstart to sgoal.
Path [sstart, s1, s3, s4, sgoal], whose cost is (7, 7), is the op-
timal solution of this WCSP instance. Moreover, since the
second-best solution [sstart, s1, s2, s3, s5, sgoal] has a large
c1-value of 13, [sstart, s1, s3, s4, sgoal] is also the only 1.2-
suboptimal solution of this WCSP instance. We use the
perfect-distance heuristic. Slightly abusing the notation, we
use tuple ⟨s(APi), f(APi), c(πi)⟩ to denote an apex-path
pair APi = ⟨Ai, πi⟩.
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Algorithm 1: WC-A*pex
Input : P = ⟨G, sstart, sgoal,W ⟩

ε
h

1 Open← {⟨0, [sstart]⟩}
2 for each s ∈ S do
3 gmin

2 (s)←∞
4 while Open ̸= ∅ do
5 AP = ⟨A, π⟩ ← Open.extract min()
6 if g2(AP) ≥ gmin

2 (s(AP)) ∨ f2(AP) > W then
7 continue
8 if s(AP) = sgoal then
9 return π

10 gmin
2 (s(AP))← g2(AP)

11 for s′ ∈ succ(s(AP)) do
12 A′ ← A+ c(⟨s(AP), s′⟩)
13 π′ ← π.append(s′)
14 if A′

2 ≥ gmin
2 (s′) ∨A′

2 + h2(s
′) > W then

15 continue
16 insert to Open(⟨A′, π′⟩)
17 return None

18 Function insert to Open(AP ′ = ⟨A′, π′⟩):
19 for AP = ⟨A, π⟩ ∈ Open[s(AP ′)] do
20 Anew ← (min(A1, A

′
1),min(A2, A

′
2))

21 πnew ← the one of π and π′ with the smaller
c2-value, breaking ties in favor of a smaller
c1-value

22 if ⟨Anew, πnew⟩ is (ε, 0)-bounded then
23 remove AP from Open
24 add ⟨Anew, πnew⟩ to Open
25 return
26 add AP ′ to Open
27 return

• In Iteration 1, WC-A*pex expands apex-path pair
AP1 = ⟨sstart, (5, 5), (0, 0)⟩ and generates two child
apex-path pairs AP2 = ⟨s1, (5, 5), (1, 2)⟩ and AP3 =
⟨s2, (6, 6), (3, 2)⟩.

• In Iteration 2, WC-A*pex expands apex-path pair AP2

and generates two child apex-path pairs AP4 =
⟨s2, (5, 7), (2, 3)⟩ and AP5 = ⟨s3, (7, 5), (5, 3)⟩. AP4

is merged with AP3 in Open, resulting in apex-path pair
AP6 = ⟨s2, (5, 6), (3, 2)⟩. AP6 is (ε, 0)-bounded be-
cause (3, 2) + h(s2) = (6, 6) ⪯(ε,0) (5, 6).

• In Iteration 3, WC-A*pex expands apex-path pair
AP6 and generates child apex-path pair AP7 =
⟨s3, (5, 6), (4, 4)⟩. AP7 is not merged with AP5 be-
cause, given that the new representative path would have
a cost of (5, 3) and the new f -value would be (5, 5),
(5, 3) + h(s3) = (7, 5) does not (ε, 0)-dominate (5, 5).

• In Iteration 4, WC-A*pex expands apex-path pair AP7

and generates two child apex-path pairs AP8 =
⟨s4, (5, 8), (5, 6)⟩ and AP9 = ⟨s5, (13, 6), (9, 5)⟩. AP8

is pruned because f2(AP8) > W .
• In Iteration 5, WC-A*pex expands apex-path pair AP5

and generates two child apex-path pairs AP10 =
⟨s4, (7, 7), (6, 5)⟩ and AP11 = ⟨s5, (15, 5), (10, 4)⟩.

sstart
(5,5)

s1
(4,3)

s2
(3,4)

sgoal
(0,0)

(1,2)
s4

(1,2)

s5
(5,1)

s3
(2,2)

(1,2)

(3,2)

(1,2)

(5,1) (5,1)

(4,1)

(1,2)

(1,1)

(a)

c1

c2

2 4 6 8 10 12 14
2
4
6
8
10
12

0

[sstart, s1, s2, s3, s4, sgoal]
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[sstart, s2, s3, s4, sgoal]
[sstart, s1, s3, s4, sgoal]

[sstart, s1, s2, s3, s5, sgoal]
[sstart, s2, s3, s5, sgoal]
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Figure 3: An example WCSP instance. (a) shows the graph
of this WCSP instance, where the pair of numbers inside
each state is its h-value and the blue arrows show the optimal
solution for weight limit W = 7. (b) shows the costs of all
paths from sstart to sgoal in the graph.

AP11 is merged with AP9 in Open, resulting in apex-
path pair AP12 = ⟨s5, (13, 5), (10, 4)⟩. AP12 is (ε, 0)-
bounded because (10, 4) + h(s5) = (15, 5) ⪯(ε,0)

(13, 5).

• In Iteration 6, WC-A*pex expands apex-path pair
AP10 and generates child apex-path pair AP13 =
⟨sgoal, (7, 7), (7, 7)⟩.

• In Iteration 7, WC-A*pex expands apex-path pair AP13

and returns a solution with cost (7, 7).

In this example, WC-A*pex finds the optimal solution. Two
merges happen during the entire process, namely in Iter-
ation 2 between AP3 = ⟨s2, (6, 6), (3, 2)⟩ and AP4 =
⟨s2, (5, 7), (2, 3)⟩ and in Iteration 5 between AP9 =
⟨s5, (13, 6), (9, 5)⟩ and AP11 = ⟨s5, (15, 5), (10, 4)⟩. The
representative paths of AP3 and AP4 are π3 = [sstart, s2]
and π4 = [sstart, s1, s2], respectively. Compared to AP5,
which is expanded in Iteration 5 and eventually extended to
the returned solution, AP3 and AP4 have lexicographically
smaller f -values and appear to be more promising. However,
the two possible extensions of AP3 and AP4 to sgoal ei-
ther violate the weight limit (via [s2, s3, s4, sgoal]) or have
large c1-values (via [s2, s3, s5, sgoal]), as WC-A*pex finds
out in Iterations 3 and 4. Without merging, previous WCSP
algorithms, like WC-A*, would represent π3 and π4 as two
different nodes and spend more search effort. This example
demonstrates how merging can speed up the search.
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Theoretical Results
In this section, we show that WC-A*pex returns a (1 + ε)-
suboptimal solution for any solvable WCSP instance.

Lemma 1. If g2(AP) ≥ gmin
2 (s(AP)) on Line 6 or 14,

then there exists an expanded apex-path pair AP ′ with state
s(AP ′) = s(AP) and f(AP ′) ⪯ f(AP).

This lemma is rephrased from Lemma 2 by Zhang et al.
(2022a), and the same proof applies.

For the remainder of this section, we use π∗ = [s∗1 (=
sstart), s

∗
2 . . . s

∗
ℓ (= sgoal)] to denote an optimal solution

for the given solvable WCSP instance. We use π∗
j =

[s∗1, s
∗
2 . . . s

∗
j ], j = 1, 2 . . . ℓ, to denote a prefix of π∗.

Lemma 2. At the beginning of any iteration (i.e., before ex-
ecuting Line 5), if WC-A*pex has expanded an apex-path
pair AP with s(AP) = s∗j and g(AP) ⪯ c(π∗

j ) for some
j ∈ {1, 2 . . . ℓ− 1}, then there exists an apex-path pair AP ′

in Open with s(AP ′) = s∗k and g(AP ′) ⪯ c(π∗
k) for some

k > j.

Proof. We prove this lemma by induction on j, starting
with j = ℓ − 1 and going backward. Consider an ex-
panded apex-pair AP with s(AP) = s∗ℓ−1 and g(AP) ⪯
c(π∗

ℓ−1). When expanding AP , WC-A*pex generates a
child apex-path pair AP ′ that contains state s∗ℓ (= sgoal).
We have gmin

2 (sgoal) = ∞ because, if WC-A*pex had ex-
tracted any apex-path pair from Open that contained sgoal,
it would have terminated on Line 9 and could not have
reached Line 10 to update gmin

2 (sgoal). We have g(AP ′) =
g(AP)+c(⟨s∗ℓ−1, s

∗
ℓ ⟩) ⪯ c(π∗

ℓ−1)+c(⟨s∗ℓ−1, s
∗
ℓ ⟩) = c(π∗).

Since the heuristic h is consistent, we have h(s∗ℓ ) = 0 and
hence f2(AP ′) = g2(AP ′) ≤ c2(π

∗) ≤ W . Therefore,
AP ′ is not pruned on Line 15 but inserted to Open. If AP ′

had been extracted from Open, WC-A*pex would have ter-
minated. Therefore, AP ′ remains in Open.

Now we assume that the lemma holds for j = i + 1,
i ∈ {1, 2 . . . ℓ − 2}. Consider an expanded apex-path pair
AP with s(AP) = s∗i and g(AP) ⪯ c(π∗

i ). When ex-
panding AP , one of its child apex-path pairs, denoted as
AP ′, contains state s∗i+1. We have g(AP ′) = g(AP) +
c(⟨s∗i , s∗i+1⟩) ⪯ c(π∗

i ) + c(⟨s∗i , s∗i+1⟩) = c(π∗
i+1). We dis-

tinguish two cases:

1. AP ′ is pruned on Line 15. Since f2(AP ′) = g2(AP ′)+
h2(s

∗
i+1) ≤ c2(π

∗
i+1) + h2(s

∗
i+1) ≤ c2(π

∗) ≤ W , the
reason for pruning AP ′ can only be that gmin

2 (s∗i+1) ≤
g2(AP ′). Then, from Lemma 1, there exists an ex-
panded apex-path pair with state s∗i+1 and whose g-
value weakly dominates g(AP ′) and hence c(π∗

i+1). Be-
cause the lemma holds for j = i + 1, there exists an
apex-path pair AP ′′ in Open with s(AP ′′) = s∗k and
g(AP ′′) ⪯ c(π∗

k) for some k > i + 1. Thus, the lemma
holds for j = i.

2. AP ′ is not pruned on Line 15 but is inserted to Open,
perhaps after merging it with another apex-path pair.
Thus, an apex-path pair with state s∗i+1 whose g-value
weakly dominates c(π∗

i+1) is inserted to Open. The
lemma holds for j = i as long as this new apex-path pair

remains in Open. If this new apex-path pair is extracted
and then either pruned or expanded, then there is an ex-
panded apex-path pair with state s∗i+1 and whose g-value
weakly dominates c(π∗

i+1). Because the lemma holds for
j = i+ 1, it thus also holds for j = i.

Therefore, the lemma holds for all j ∈ {1, 2 . . . ℓ− 1}.

Theorem 1. WC-A*pex returns a (1+ ε)-suboptimal solu-
tion for any solvable WCSP problem instance.

Proof. In the first iteration, there is one apex-path pair
AP init = ⟨0, [sstart]⟩ in Open. We have s(AP init) = s∗1
and g(AP init) ⪯ c(π∗

1). AP init is then expanded in the
first iteration, and, from Lemma 2, Open always contains
at least one apex-path pair at the beginning of all future it-
erations. Therefore, WC-A*pex will not reach Line 17 and
return None . Since there are only a finite number of paths
whose c2-values are not larger than W , there are only a fi-
nite number of expanded apex-path pairs, and hence a fi-
nite number of iterations before WC-A*pex terminates. Let
πsol and APsol be the path returned by WC-A*pex and the
apex-path pair that contains πsol, respectively. πsol is a so-
lution because it is from sstart to sgoal (due to the condition
on Line 8) and its c2-value is not larger than W (otherwise,
APsol would have been pruned on Line 7). Because APsol

is (ε, 0)-bounded (which is due to the conditions on Line
22 and since the heuristic function is consistent), we have
(1 + ε) · f1(APsol) ≥ c1(πsol). We prove that πsol must be
(1+ε)-suboptimal by contradiction: Assume that πsol is not
(1 + ε)-suboptimal, i.e., c1(πsol) > (1 + ε) · c1(π∗). Put
together, we have (1 + ε) · f1(APsol) ≥ c1(πsol) > (1 +
ε) · c1(π∗) and hence f1(APsol) > c1(π

∗). From Lemma 2,
there always exists an apex-path pair AP ′ ∈ Open with
s(AP ′) = s∗k and g(AP ′) ⪯ c(π∗

k) for some k. We have
f(AP ′) = g(AP ′)+h(s(AP ′)) ⪯ c(π∗

k)+h(s∗k) ⪯ c(π∗)
(and hence f1(AP ′) ≤ c1(π

∗) < f1(APsol)). WC-A*pex
must extract AP ′ before extracting APsol, which is a con-
tradiction.

Speed-up Techniques
In this section, we describe some speed-up techniques for
an efficient implementation of WC-A*pex. Some of these
techniques are also used by existing algorithms like WC-A*,
and hence we omit the theoretical results for them.

Efficient data structures: Similar to WC-A*, we let
WC-A*pex use a bucket queue to implement Open. Addi-
tionally, for each state s, we use a doubly-linked list to keep
track of all apex-path pairs in Open with state s. Therefore,
WC-A*pex can efficiently iterate over Open[s] for any state
s on Lines 19-25 and efficiently update the doubly-linked
list when an apex-path pair is extracted from or inserted
to Open. Our preliminary results confirmed that these data
structures speed up the original implementation of A*pex by
an order of magnitude.

Early solution updates: Similar to WC-A*, we let WC-
A*pex maintain and update an incumbent solution using
complementary paths. An apex-path pair AP is pruned if
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Road ε WC-A* (-ε) WC-A*pex Speed-Up
Network Runtime Expansions Runtime Expansions

Avg Max Avg Max Avg. Max Avg Max
FLA 0 0.085 4.482 1,217K 49,400K

0.01 0.081 5.121 1,083K 47,994K 0.023 0.707 142K 3,543K 3.48
0.05 0.050 3.753 731K 41,380K 0.013 0.454 81K 2,290K 3.88
0.10 0.035 4.482 458K 41,380K 0.008 0.443 49K 2,128K 4.43
0.20 0.015 2.321 176K 18,578K 0.004 0.250 19K 1,291K 4.31

NE 0 0.184 8.376 1,877K 59,122K
0.01 0.153 5.284 1,577K 44,032K 0.047 2.503 251K 8,302K 3.24
0.05 0.071 3.014 841K 26,694K 0.018 0.620 109K 2,461K 3.94
0.10 0.024 0.861 361K 9,610K 0.008 0.192 52K 1,160K 2.91
0.20 0.005 0.401 76K 6,914K 0.002 0.123 13K 810K 1.93

LKS 0 4.609 129.534 32,448K 721,867K
0.01 3.813 97.928 27,285K 551,673K 0.655 17.383 2,128K 40,169K 5.82
0.05 2.112 60.093 15,441K 327,693K 0.219 4.275 836K 11,486K 9.64
0.10 0.944 38.345 7,590K 200,622K 0.107 3.046 493K 9,306K 8.83
0.20 0.077 4.093 1,003K 31,143K 0.016 0.502 91K 2,062K 4.92

E 0 5.485 138.313 36,554K 763,176K
0.01 4.614 132.302 31,488K 715,655K 0.845 16.960 2,714K 51,904K 5.46
0.05 2.629 76.859 18,918K 473,144K 0.216 4.427 876K 14,754K 12.16
0.10 0.972 40.358 8,248K 279,604K 0.110 3.486 493K 12,604K 8.81
0.20 0.212 21.542 1,777K 138,240K 0.026 2.079 112K 6,464K 8.13

W 0 4.615 227.762 33,610K 1,096,261K
0.01 3.945 180.262 30,536K 920,302K 0.567 33.271 2,248K 86,746K 6.96
0.05 2.323 70.197 19,962K 553,971K 0.260 7.167 1,233K 21,667K 8.93
0.10 0.967 57.564 10,048K 467,409K 0.122 3.521 666K 16,178K 7.92
0.20 0.292 41.619 3,220K 304,128K 0.041 2.768 241K 12,997K 7.05

CAL 0 0.382 21.479 3,897K 138,645K
0.01 0.333 20.423 3,476K 131,590K 0.111 4.786 508K 16,659K 3.01
0.05 0.166 6.520 2,030K 54,052K 0.052 1.560 257K 5,771K 3.21
0.10 0.093 3.991 1,222K 46,152K 0.030 1.209 160K 5,771K 3.09
0.20 0.033 3.383 502K 38,419K 0.014 1.199 73K 5,325K 2.36

CTR 0 17.561 243.423 94,661K 1,106,707K
0.01 14.711 222.586 82,911K 1,013,655K 1.536 29.957 4,592K 67,054K 9.57
0.05 8.757 185.336 50,288K 804,131K 0.531 11.827 1,942K 32,594K 16.48
0.10 4.173 99.930 24,928K 468,607K 0.291 6.359 1,119K 18,877K 14.36
0.20 0.599 39.787 4,719K 233,685K 0.061 3.008 267K 10,624K 9.84

Table 1: Average and maximum runtimes (in seconds), average and maximum numbers of node expansions, and speed-ups of
WC-A*pex over WC-A*-ε in average runtimes for WCSP instances on different road networks.

(1 + ε) · f1(AP) is not smaller than the c1-value of the in-
cumbent solution. WC-A*pex then terminates when Open
becomes empty and returns the incumbent solution.

Experimental Results
In this section, we evaluate WC-A*pex with WCSP in-
stances on road networks from the 9th DIMACS Implemen-
tation Challenge: Shortest Path.1 We investigate WC-A*pex
with different ε-values and compare the runtimes and num-
bers of node expansions of WC-A*, WC-A*-ε, and WC-
A*pex. We implemented WC-A*pex in C++ from scratch2

and implemented WC-A*-ε based on the C++ implementa-
tion of WC-A* provided by the original authors.3

We choose seven road networks, namely FLA (1.1M

1http://www.diag.uniroma1.it/challenge9/download.shtml.
2https://github.com/HanZhang39/MultiObjectiveSearch
3https://bitbucket.org/s-ahmadi/biobj/src/master/

states and 2.7M edges), NE (1.5M states and 3.9M edges),
CAL (1.9M states and 4.7M edges), LKS (2.8M states and
6.9M edges), E (3.6M states and 8.8M edges), W (6.3M
states and 15.2M edges), and CTR (14.1M states and 34.3M
edges) from the DIMACS data set. The c1- and c2-values
for each edge are its travel time and distance, respectively,
both available from the DIMACS data set. Each WCSP in-
stance thus corresponds to computing a path that is bounded-
suboptimal with respect to its travel time and with its travel
distance being no larger than a given limit. For each road
network, we use the same 100 sstart and sgoal pairs used
by Sedeño-Noda and Colebrook (2019) and Ahmadi et al.
(2021). Following previous work (Cabrera et al. 2020; Ah-
madi et al. 2022b), for each sstart and sgoal pair, we generate a
WCSP instance with the weight limit W = clb2 +δ·(cub2 −clb2 )
based on a tightness factor δ, where clb2 and cub2 are the min-
imum and maximum c2-values of all Pareto-optimal paths
from sstart to sgoal, respectively. A smaller δ-value thus cor-
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Figure 4: Runtimes of WC-A*pex and WC-A*-ε with different suboptimality factors on all WCSP instances.

responds to a tighter weight limit. For each sstart and sgoal
pair, we use the tightness factors 0.25, 0.5, and 0.75. There-
fore, we have 300 WCSP instances for each road network.

For each WCSP instance, we evaluate WC-A*-ε and WC-
A*pex with the ε-values 0.01, 0.05, and 0.1. Table 1 shows
the average and maximum runtimes (in seconds) and the
numbers of node expansions of WC-A*, WC-A*-ε, and WC-
A*pex over all WCSP instances. The results for WC-A* are
shown in the rows with ε = 0. We choose not to show the
results for different tightness factors (δ-values) separately
because, as we will show in Figure 4, they do not affect
the results significantly. With ε = 0.01, i.e., a guaranteed
suboptimality of at most 1%, the average speed-up of WC-
A*pex over WC-A* is more than 11× on the largest road
network (CTR). However, the average speed-up of WC-A*-ε
with ε = 0.01 over WC-A* is only about 20% because WC-
A*-ε still needs to expand a large number of nodes to prove
that the incumbent solution is bounded-suboptimal. The run-
times and numbers of node expansions of WC-A*pex are al-
ways smaller than the ones of WC-A* and WC-A*-ε with the
same ε-value on all road networks, which shows that merg-
ing apex-path pairs greatly reduces the runtimes and num-
bers of node expansions.

Figure 4 shows the individual runtimes (in seconds) of
WC-A*pex and WC-A*-ε for all WCSP instances and ε-
values. We use different markers for different tightness fac-
tors δ used to generate the WCSP instances. The diagonal

dashed lines and the numbers along them denote different
speed-ups (1×, 10×, and the maximum speed-up) of WC-
A*pex over WC-A*-ε . For different tightness factors, the
trends of the speed-ups of WC-A*pex over WC-A*-ε are
similar. Although WC-A*pex is slower than WC-A*-ε on
easy WCSP instances (which both algorithm solve mostly
within around 0.1 seconds), WC-A*pex achieves significant
speed-ups over WC-A*-ε on more difficult instances (repre-
sented by the points on the top-right corners).

Conclusions

In this paper, we proposed the bounded-suboptimal WCSP
algorithm WC-A*pex. WC-A*pex is built on A*pex, a state-
of-the-art approximate BOSP algorithm. Its empirical per-
formance on benchmark road networks highlights two im-
portant computational aspects of it. First, huge gains in run-
time (namely, up to an order of magnitude) are possible with
only a small compromise on the cost of the solution (namely,
a 1% suboptimality). Second, the merged representation of
paths reduces the number of node expansions and is critical
to the success of WC-A*pex over WC-A* and WC-A*-ε.

In future work, we intend to generalize WC-A*pex to
multiple costs, multiple weights (Skyler et al. 2022), or both.
We also intend to enhance WC-A*pex with recent algorith-
mic advancements (Zhang et al. 2022b) and make it into an
anytime algorithm.
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