
Control in Stochastic Environment with Delays: A Model-based Reinforcement
Learning Approach

Zhiyuan Yao, Ionut Florescu, Chihoon Lee
School of Business, Stevens Institute of Technology, Hoboken, New Jersey, USA

zyao9@stevens.edu, ifloresc@stevens.edu, clee4@stevens.edu

Abstract

In this paper we are introducing a new reinforcement learning
method for control problems in environments with delayed
feedback. Specifically, our method employs stochastic plan-
ning, versus previous methods that used deterministic plan-
ning. This allows us to embed risk preference in the policy
optimization problem. We show that this formulation can re-
cover the optimal policy for problems with deterministic tran-
sitions. We contrast our policy with two prior methods from
literature. We apply the methodology to simple tasks to un-
derstand its features. Then, we compare the performance of
the methods in controlling multiple Atari games.

Introduction
To introduce robots into our every-day life, researchers have
to transfer algorithms developed in simulated environments
to real environments. Existing research such as Mahmood
et al. (2018); Ramstedt and Pal (2019) has shown that apply-
ing general Reinforcement Learning (RL) methods to real-
time control systems, such as robotic arms and self-driving
cars is a challenging problem. One reason is that RL meth-
ods assume that the optimal action is directly applied to the
observed state of the system. However, in real applications,
the action may in fact be applied to a different state of the
system. This could be due to delays in transmission, or the
randomness of the system transitions. For example, in Fig-
ure 1, a real-world system is evolving while the optimal ac-
tion is calculated, transmitted, etc. All these translate into
time delays between the observed system state and the target
state, the system state on which the action is applied. Der-
man, Dalal, and Mannor (2020) show notable performance
degradation of RL methods when introducing such delays
in a control system. The performance further deteriorates in
an environment with increased uncertainty in the next state
transition.

The system evolves from the observed state to the tar-
get state by executing a sequence of prior submitted actions
whose effects have not been observed yet. Previous studies
Walsh et al. (2009); Firoiu, Ju, and Tenenbaum (2018); Der-
man, Dalal, and Mannor (2020) use the observed state and
the sequence of actions to estimate the target state and to

Copyright c© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of control in real-time applications.

select optimal actions based on the estimated state. These
methods have shown good performance in environments
with deterministic or slightly random state transitions. How-
ever, real-world applications can contain high level of ran-
domness in state transitions. For example, control schemes
have to cope with uncertain road/weather conditions as well
as delays in transmission. In Figure 2 we illustrate a situation
where we need to apply an action to the target state. Due to
delays, the target state is unknown, only its probability dis-
tribution may be estimated. In this paper, we show that the
aforementioned methods may not perform well in such en-
vironments where state transitions are stochastic. We design
a model-based RL method to control an agent in a stochas-
tic environment with a known constant delay. Our method
learns a probabilistic model of the environment to estimate
multiple possible target states and their probabilities. The
method evaluates the consequences of each possible action
taken.

The main contribution of our work is a new control
method, Stochastic Model Based Simulation (SMBS), for
problems in environments with stochastic transitions which
are observed with a constant delay. We illustrate how to train
the SMBS method in delayed environments. We show that
the new control method recovers the optimal policy in de-
layed environments with deterministic transitions. In the ex-
periments section, we illustrate the advantages of the pro-
posed method over two baseline methods in multiple envi-
ronments. We also demonstrate how the parameter of SMBS
policy function can shape its risk preference.

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

663

Figure 2: The stochastic environment evolution for 5 delay
steps.

Preliminaries
We consider an infinite time horizon control problem with
a finite action space. General RL methods model the non-
delayed environment as a Markov Decision Process (MDP)
in Sutton and Barto (2018). An MDP can be defined as
(S,A, P, r, µ) where S is the state space, A is the action
space, P (St+1 = s′ | St = s,At = a) is the probability
of transiting to next state s′, given current state s and action
a. The reward function r(s, a) : S × A → R, quantifies
the immediate reward obtained by applying action a to cur-
rent state s. Let µ denote the probability distribution of the
initial state s0. Given a deterministic Markov control policy
π : S → A, we can define the Q-function as the expectation
of the discounted cumulative rewards for state s and action
a:

qπ(s, a) = E

[∞∑
k=0

γkr(sk, ak) | s0 = s, a0 = a

]
where ai = π(si) and si ∼ P (· | si−1, ai−1) for i =
1, 2, Sutton and Barto (2018) show the optimal action
value function is defined as q∗(s, a) = maxπ qπ(s, a), and
maximizing the function produces the optimal control policy
π∗(s) = arg maxa q

∗(s, a).
In MDPs, actions are assumed to be applied immediately

to the current states. However, in real-world applications, the
action is applied to a later state than the observed state be-
cause of system delays. Previous studies Jeong and Kim
(1991); White (1988); Loch and Singh (1998); Bander and
White (1999) model control problems with delays as a spe-
cial case of a Partially Observable Markov Decision Pro-
cess (POMDP) due to the uncertainty of the target state. A
natural solution for POMDP problems is to create another
MDP with an augmented state space. Following this idea,
Katsikopoulos and Engelbrecht (2003) formulate the general
Augmented MDP (AMDP) for problems with constant de-
lays in observation and action. They show that observation
delays and action delays are equivalent from the perspec-
tive of the controlling agent. In our work we use delay steps
to indicate the sum of these two types of delay. We con-
sider a control problem with d delay steps. Let M denote

the non-delayed MDP. The corresponding augmented MDP
isMD(M, d) = (I,A, P ′, r′, ω′) where I = S × Ad, and
r′ is defined as r′(It, at) = r(st−d, at−d). Let q̃∗ denote the
optimal Q-function for this AMDP.

Although, Katsikopoulos and Engelbrecht (2003) show
that q̃∗ provides the optimal control for this delayed prob-
lem, Walsh et al. (2009) state that solving this problem in
practice is difficult since the size of state space I grows ex-
ponentially with the number of delay steps. This issue is
even more significant in modern applications, as the state
and action spaces are already large, even before state aug-
mentation.

Several recent studies use RL to find good control poli-
cies without solving the AMDP. We discuss these methods
and their connections to our method in detail in the next
section. We mention alternative approaches based on sim-
to-real learning by Tobin et al. (2017) and robust learning
by Pinto et al. (2017) to adapt models from simulations to
real world robots. Our work focuses on solving delay prob-
lems using RL. The methodology we develop could com-
plement a sim-to-real transfer but combining the ideas is be-
yond the scope of this work.

Stochastic Model Based Simulation (SMBS)
The methods developed by Derman, Dalal, and Mannor
(2020); Walsh et al. (2009); Firoiu, Ju, and Tenenbaum
(2018) can be classified as instances of deterministic plan-
ning. A deterministic planning strategy consists of two com-
ponents: a model of the system dynamics, and a non-delayed
policy function. This strategy obtains a single estimate of the
target state. Then, based on this estimate, the non-delayed
policy function selects an optimal action to be applied to
the target state. Walsh et al. (2009) state that this approach
performs well in deterministic tasks. Note that a fundamen-
tal requirement is the single estimate of the target state. In
stochastic environments, the estimator of the target state has
a distribution which may have a large variance. As the ac-
tion is chosen based on the estimator, this may lead to sub-
optimal actions if the estimator is far from the actual state.
Therefore, we must consider the effect of the action taken on
multiple possible target states, rather than a single one.

To expand the deterministic planning method for stochas-
tic environments, we develop a stochastic model based sim-
ulation (SMBS) method. This method develops a strategy
which consists of a probabilistic model of the system and a
value-based non-delayed policy function. This policy func-
tion is generated by an optimal Q-function. We denote this
non-delayed optimal Q-function with q∗. The model of the
system, denoted as µ(s, a), maps a given state/action pair to
a probability measure on the state space S . Suppose the envi-
ronment has d delay steps. We form an augmented state us-
ing the delayed observation and a sequence of actions, It =
(st−d, at−d, · · · , at−1). Note that st−d is the latest observa-
tion of the system state, and the effect of {at−d, · · · , at−1}
has not been observed yet. As shown in Figure 3, we sam-
ple M estimates of the target states, {s(i)t }i=1,··· ,M using
the one-step transition model µ(s′ | s, a). To be specific, for
each path i, we let the initial state s(i)t−d = st−d. Then, we

664

Algorithm 1: Stochastic Model Based Simulation Policy
1: Input: A trained Q-function q∗, a trained system model
µ, It = (st−d, at−d, · · · , at−1), A.

2: Output: the action at which is applied on state st.
3: Initialize: a state container D, an expected Q value list
V

4: Planning:
5: for i = 1, 2, · · · ,M do
6: Let s(i)t−d = st−d;
7: for j = 0 : d− 1 do
8: s

(i)
t−d+j+1 ∼ µ(·|st−d+j , at−d+j);

9: end for
10: D = D ∪ {s(i)t };
11: end for
12: Evaluating:
13: for all a in A do
14: Initialize a new list L for all state-action values for

action a;
15: for all s(i)t in D do
16: L = L ∪ {q∗(s(i)t , a)};
17: end for
18: V[a] = mean(L)− α · std(L);
19: end for
20: return arg maxa V[a].

recursively sample the estimates of the next states s(i)t−d+k+1

using µ(· | s(i)t−d+k, at−d+k) for k = 0, 1, · · · , d−1. Finally,
we select the action using the following policy function

at = π1(It) = arg max
a∈A

(
Q̄M (a)− αQ̂M (a)

)
,

where Q̄M (a) =
1

M

M∑
i=1

q∗(s
(i)
t , a),

Q̂M (a) =

√√√√ 1

M − 1

M∑
i=1

(q∗(s
(i)
t , a)− Q̄M (a))2.

(1)

The function Q̄M (a) estimates the average state action value
for action a. The risk of executing action a when the target
state is unknown is measured using Q̂M (a). Mathematically,
Q̂M (a) is the sample standard deviation of the Q-value of
the target state. The hyper-parameter α controls the impor-
tance of Q̂M (a).

The policy function of SMBS (equation 1) uses the mean
and standard deviation of the sampled Q-values. Intuitively,
it will select optimal actions by maximizing the expected ac-
tion value while minimizing the deviation of the Q-values
from their mean value. Algorithm 1 contains the pseudo-
code used to create the delayed policy for the SMBS method.

The pseudo-code in Algorithm 1 contains q and µ which
have to represent the delayed environment. They are trained
in Algorithm 2 using this delayed environment. In the sam-
ple collection step, the delayed action at+d is selected using

Algorithm 2: Training the Q-function q and the system
model µ for the SMBS method

1: Input: An interactive environment E.
2: Output: a Q-function q and a model of the system dy-

namics µ.
3: Initialization: randomly initialize the parameter in q and
µ, a data container C for transition samples.

4: /* Collecting Samples */
5: Id = (s0, a0, · · · , ad−1)← E
6: for t = d, d+ 1, · · · , N do
7: at ← SMBS(It; q, µ);
8: st−d+1, rt−d ← E(at);
9: C ← (st−d, at−d, st−d+1, rt−d); /*non-delayed tran-

sitions*/
10: It+1 ← (st−d+1, at−d+1, · · · , at);
11: end for
12: /* Training */
13: for all sample c in C do
14: Update q using DDQN in Van Hasselt, Guez, and

Silver (2016);
15: Update µ using Maximum Likelihood Method;
16: end for
17: return q, µ

the SMBS policy in 1. We record the transition sequence of
the system and determine the actions corresponding to re-
spective state transitions. This will produce the non-delayed
transitions (st, at, st+1, rt) which are used to train q∗ and µ.
Similar procedures are also used by Schuitema et al. (2010);
Derman, Dalal, and Mannor (2020).

The main difference SMBS and the planning policy in
Derman, Dalal, and Mannor (2020) is that the policy of Der-
man, Dalal, and Mannor (2020) plans for the most likely
next state. As a result, once trained the planned action path is
always the same for the same input It. This is why we term
this planning method as deterministic. In contrast, SMBS
(equation 1) obtains multiple target state estimates by sam-
pling trajectories using a probabilistic model of the system.
The action is selected to maximize the average Q-value sub-
ject to the penalty term.

Even though the SMBS method is designed to accommo-
date a stochastic environment, it also works in determin-
istic environments. In fact, the next result establishes that
the SMBS method provides the optimal control. A proof of
this theorem is provided in Yao, Florescu, and Lee (2024).
Briefly, when the environment has deterministic movements,
the policy function (equation 1) is reduced to the MBS pol-
icy function in Walsh et al. (2009). Theorem 3 and Corollary
1 in the paper show that the policy function achieves the op-
timality of the AMDP problem.
Theorem 1. Assume a discrete-time MDP with an infinite
time horizon. The Markovian movement is deterministic, i.e.,
for arbitrary (s, a) ∈ S × A, t ≥ 0, there exists an s′ ∈ S
such that P (St+1 = s′ | St = s,At = a) = 1 for all
t = 0, 1, . . . Then, the policy function of the SMBS method
(1) is equivalent to the following optimal policy:

πopt(It) = arg max
a∈A

q̃∗(It, a), (2)

665

Figure 3: An illustration of the policy function of the SMBS method.

where q̃∗ denotes the optimal Q-function for the AMDP.
When parameter α is set to 0, the SMBS method

is reduced to a Monte-Carlo procedure that estimates
Es[q∗(st, a) | It]. This conditional expectation is associ-
ated with the probability measure for st, given It. Thus, the
policy (1) in the SMBS method approximates the following
policy function

at = arg max
a∈A

Es[q∗(st, a) | It]. (3)

When the problem has a small discrete state space, the model
of the system may be expressed using one-step transition
matrices. In such cases, we compute the distribution of the
target state using these transition matrices. Then, we calcu-
late the expectations in (3) for all actions a ∈ A and se-
lect the action with the highest expected value. We note that
this procedure has been analyzed by Agarwal and Aggarwal
(2021). Interestingly, although the two policy functions are
similar, the two methods have been developed independently
from different perspectives. When the problem has a large
discrete state space or a continuous state space, the SMBS
method models the system model using an artificial neural
network (ANN). Thus, instead of learning transition matri-
ces, the algorithm focuses on learning the parameters of the
ANNs approximating the model. When the problem solved
involves a complicated state space, this change avoids multi-
plications between large matrices which are computationally
expensive and inefficient. Our method can solve complex
tasks by incorporating parametrized Q-functions which are
trained using well-known deep RL methods such as DQN in
Mnih et al. (2015), DDQN in Van Hasselt, Guez, and Silver
(2016), Dueling DQN in Wang et al. (2016), etc.

We also provide a probabilistic bound for the SMBS pol-
icy in (1) when α = 0.
Theorem 2. Assume a discrete-time MDP with a positive
reward function and a finite discrete action space A. For
any a ∈ A and augmented state It ∈ I, assume the ran-
dom variable q∗(st, a) has mean Q̄(a) and variance Q̂(a)2.
Then, for δ > 0, we have

P

(
max
a∈A

Q̄M (a) ≤ 1

|A|
E [V ∗(s) | It]

− δ√
M

max
a∈A

Q̂(a)

)
≤ |A|

δ2

The proof of this theorem is provided in Yao, Florescu,
and Lee (2024).

If the variance Q̂(a)2 exists for any a ∈ A, its sample
estimates converges to 0 when the sample size M goes to
infinite. This implies that if we plan for sufficiently large
amount of paths, the value of SMBS policy function is not
worse than 1

|A|E [V ∗(s) | It] with high probability.

Experiments
In order to understand how the SMBS method performs in
delayed environment with different levels of randomness in
transitions. We train and test the SMBS method with other
baseline methods in multiple tasks. We choose the following
baseline methods for comparison.

1. AMDP in Katsikopoulos and Engelbrecht (2003), which
forms an AMDP and directly solve the problem using
Double DQN by Van Hasselt, Guez, and Silver (2016).

2. Delayed-Q in Derman, Dalal, and Mannor (2020), which
is, to the best of our knowledge, the latest determinis-
tic planning method. This method follows the following
policy

π2(It) = arg max
a∈A

q∗(ŝt, a), (4)

where ŝt is obtained by a recursive propagation us-
ing a deterministic model of the system m̂(s, a) =
arg maxs′ P (St+1 = s′ | St = s,At = a). That is,

ŝt−d+1 =m̂(st−d, at−d),

ŝt−d+2 =m̂(ŝt−d+1, at−d+1),

· · ·
ŝt =m̂(ŝt−1, at−1).

We note that while the Delayed-Aware Trajectory Sam-
pling (DATS) method in Chen et al. (2021) may be used as a
baseline comparison, it does require knowledge of the exact
reward function. As the other three methods learn the reward
function, we excluded DATS from our analysis.

When comparing the SMBS with the baseline methods,
we are trying to address the following questions:
1. Does the SMBS method obtain better average rewards?
2. Is there less performance degradation of the SMBS

method than the baseline methods when the number of

666

(a) Stormy and Swampy
Road

(b) Cartpole

(c) Frozen Lake (d) Puddle World

Figure 4: Illustrations of tasks used for comparison.

delay steps increases and when randomness in the envi-
ronment increases?

Tasks
We perform the experiments on these four tasks: Stormy and
Swampy Road, Frozen Lake (4-by-4), Cartpole, and Puddle
World.

Stormy and Swampy Road is a simple control problem
with a 1-dimensional state space and a discrete action space
with 4 actions. Figure 4a illustrates this environment. The
task requires the agent to maneuver a car on a narrow road
during a storm. The road is through a large swamp. The car
can fall off the road and get stuck in the swamp on both
sides of the road. There are four actions possible represent-
ing 4 forces with different directions and magnitudes, i.e.,
steering to left/right aggressively/mildly. If the car runs into
the swamp, an aggressive steering to the road has a higher
chance to move the car back to the road than a mild steering.
If the agent cannot return the car to the road immediately,
the agent will receive a large penalty. The storm randomly
pushes the car to the left or the right. The level of random-
ness is adjusted by a parameter r. A higher r increases the
variability of transition. We test r = 0.05/0.1/0.15 in our
experiments.

Frozen Lake is a maze-like problem which is implemented
in Brockman et al. (2016). Figure 4c illustrates the 4-by-4
Frozen Lake task. We use the 8-by-8 Frozen Lake in our
study for a larger state space. The goal is to reach the Goal
State (G) starting from the Initial State (S). The agent goes
back to the Initial State if at any time reaches a Hole state (in
blue in Figure 4c). This environment has a slippery param-
eter p (1/3 ≤ p ≤ 1) which controls the randomness of the
transition. This parameter indicates the probability of mov-
ing to the intended target square. That is, if the agent chooses
to go right, it will arrive to the state to its right with proba-
bility p. Otherwise, the agent may move to the two other
adjacent states (up and down) with equal probabilities 1−p

2 .
We denote r = 1−p

2 , we test r = 0.05/0.1/0.15 in our ex-

periments.
Cartpole is a classic benchmark task, and has been imple-

mented in Brockman et al. (2016). The agent applies left-
/right forces onto the cart to keep the pendulum balance. A
normally distributed noise with zero mean is added to the
force. The standard deviation of the noises is a parameter
r = 0.1/0.2/0.3.

Puddle World is another classical task mentioned in De-
gris, White, and Sutton (2012). The goal is to navigate to
the goal state (1.0, 1.0) on a 2D world at the soonest with-
out stepping in the high penalty zone (grey area in Fig-
ure 4d). The movement noise is controlled by a parameter
r = 0.005/0.01/0.02.

Training/Evaluation Procedure
For each environment setting (level of randomness and num-
ber of delay steps), we train 5 models (with different random
seeds attached to the clock) using each of the three methods.
Each model is trained in the delayed environment with 105

steps. The policy with the highest average reward is recorded
for evaluation. Each model is evaluated using the 104 steps.
We report the average rewards by the top four models in the
next section.

The system dynamics model and the Q-function are
trained using the dataset collected from the delayed envi-
ronments. For the Stormy and Swampy Road and for the
Frozen Lake environments we estimate the transition ma-
trices using the observed frequency of transition. For the
Puddle World and for the Cartpole environments we model
system dynamics using Gaussian based probabilistic neural
networks, which are often used for continuous control prob-
lems in Duan et al. (2016); Mnih et al. (2016). The neu-
ral networks have two layers, each layer has 64 units. For
the SMBS method, we plan 50 trajectories for each decision
(M = 50). The small number of paths is chosen so that the
algorithm converges in a reasonable amount of time. The α
parameter controls the importance of the variability of the
estimated future cumulative rewards. A large alpha produce
policies that produce stable future rewards. However, these
may not be optimal from the perspective of maximizing re-
ward. After an extensive number of experiments, we choose
α = 0.01 in our studies.

Results
The average rewards from three methods are reported in Fig-
ure 5. Figure 5a shows SMBS and AMDP both perform
better than Delayed-Q in all settings. SMBS outperforms
AMDP when the environment has 20 steps of delay and
the random factor r = 0.15. This result is not surprising
as the task is simple and easy to solve. AMDP can produce
the optimal strategy given sufficient amount of samples (105

steps). In Figure 5b, the bar plots indicate that SMBS has the
overall best performance among three methods. The perfor-
mance degradation is relatively smaller than the other meth-
ods. When the level of randomness is small (r = 0.1/0.15),
AMDP and SMBS have better performance than Delayed-Q.
When r = 0.2, the performance of AMDP significantly de-
grades, SMBS still outperforms the other two methods. Fig-

667

(a) Stormy and Swampy Road

(b) Cartpole

(c) Frozen Lake (8× 8)

(d) Puddle World

Figure 5: Illustrations of tasks used for comparison.

ure 5c and 5d both indicate that SMBS and Delayed-Q have
similar performance and are consistently better than AMDP.

Moreover, to understand how the SMBS method can out-
perform the Delayed-Q method in Stormy and Swampy
Road task, we evaluate the both methods using the same sys-
tem model and the same Q-function. Figure 6 shows a com-
parison of performance between SMBS and the Delayed-
Q with a slight change of the estimated Q-function. The
two Q-functions in Figure 6a and 6b are two non-optimal
Q-functions that are consecutively recorded during training
(Q1 is closer to the real Q-function than Q2). Figure 6d dis-

Figure 6: An illustration of robustness of the SMBS method
with respect to the Q-function approximation errors. Fig-
ures (a) and (b) show the values of two Q-function approx-
imations which have slight discrepancies magnified in (d).
Figure (c) shows the difference in performance for the two
methods.

plays the main difference between two Q-functions. When
the state is close to 1,Q1 indicates the action a1 has a higher
value than a2, while Q2 indicates a2 has higher value than
a1. As a result, the policy of Delayed-Q method produces
different actions when the estimated target state is close to
1. In contrast, the SMBS policy is less affected by small
changes in the Q-function since it considers the expected
Q-value.

Atari Learning Environments
Atari Learning Environments (ALEs) in Bellemare et al.
(2013) offer intricate environments for training and testing
RL methods. Mnih et al. (2015) has shown that RL agents
can surpass human-level strategies using RL methods. With
delayed observations, Derman, Dalal, and Mannor (2020)
shows the Delayed-Q method can outperform baseline meth-
ods such as AMDP and Obvious-Q method on ALE.

We apply our method to ALE and compare it with the
AMDP method and the Delayed-Q method. Across all ex-
periments, additional randomness in movements is intro-
duced by setting a 0.2 probability for sticky actions. Sticky
actions simulate scenarios where the controller ignores the
input action and repeats the prior action. We perform train-
ing and testing of the three methods across 7 Atari games
when the number of delay steps equals to 5 and to 25. In each
experiment setting, we train models with the three meth-
ods with the same amount of steps, and we load the best-
performing model for evaluation. In the SMBS method, we
set the number of planning paths M as 20 to create a trade
off between efficiency and accuracy. We set the risk prefer-
ence parameter α as 0 because we would like to only maxi-
mize the expected reward.

The evaluation results are reported in Figure 7. It can be
seen that the AMDP method performs worse than the other
two methods in most of the games. The AMDP method also
suffers from stronger performance degradation than the two
other methods when the number of delay steps increases

668

Figure 7: Comparisons of SMBS, AMDP, and Delayed-Q in
different Atari games with delayed feedback.

from 5 to 25. This is evident in Freeway and RoadRun-
ner. The performance of Delayed-Q and SMBS is consis-
tent when the number of delay steps increases. Their two
algorithms performance is comparable in Freeway, MsPac-
man, NameThisGame, and Qbert. When the number of de-
lay steps equals 5, Delayed-Q performs better than SMBS in
StarGunner, and SMBS performs better in RoadRunner and
TimePilot. When the number of delay steps increases to 25,
SMBS outperforms Delayed-Q in StarGunner, and TimePi-
lot.

Risk Parameter α
To explore how different risk preferences impact the pol-
icy function in 1, we examine the policy function in Cliff,
a classic control problem from Sutton and Barto (2018). In
Cliff, the agent navigates a maze-like path from start to end
(refer Figure 8) . The agent needs to avoid falling off the
cliff during the movement. When the agent moves, the agent
has a chance to slip towards the cliff. Due to delays in ob-
servations in this problem, the actual location of the agent
is unclear when the action is chosen. Therefore, the agent
faces the choice between a risky move to the right or a safer
move upwards. We select this task to demonstrate the impact
of the risk preference parameter because the risk involved in
this problem is easy to understand. A more risk-averse agent
would prefer moving away from the cliff due to the risk of
falling.

We construct the SMBS policy functions using the opti-
mal Q-function and different risk preference parameters α.
We then run these policy functions in the Cliff environment.
Figure 8 presents the average path for different risk pref-
erence parameters. When the slippery parameter is small,
the risk preference parameter has small impact on the pol-
icy functions and the resulting paths are very similar. How-
ever, when the slippery parameter is large, thus more ran-
domness in movements, it can be seen that higher risk pref-
erence parameters lead to paths distant from the cliff edge.
This demonstrates that policies with higher α values exhibit
greater risk aversion. In Figure 9 we illustrate the SMBS
method performance for varying α values in the Cliff en-
vironment. Increasing alpha produces less variable results
which means that the policy becomes more and more conser-

Figure 8: Average paths in Cliff environments with different
risk preference parameters (α). Left: Paths overlap in a more
deterministic environment, indicating minimal influence of
α. Right: Divergent paths in a more stochastic setting; higher
α values result in paths farther from the cliff edge, depicted
by darker colors.

Figure 9: Comparison of the expected SMBS policy reward
for varied risk preference parameters (0 to 3) in the Cliff
environment.

vative. This aligns with expectations, as a risk-averse agent
tends to move farther from the cliff to reduce the risk of
falling, consequently prolonging the time taken to reach the
goal.

Conclusion
In this study, we investigate control problems in stochastic
environments with constant delayed observations. We de-
velop a new method (SMBS) designed to approximate op-
timal control for such problems. We show that the SMBS
method is optial when the system has deterministic move-
ment. We compare the performance of the SMBS method,
with two other baseline methods using 4 classical control
environments and 7 Atari Learning Environments. We ob-
serve performance degradation as the number of delay steps
increases and as the level of randomness in transitions is in-
creased. Our experiments show that the SMBS method out-
performs AMDP in most experiments and is no less than
the Delayed Q method in most Atari games. Further, the
SMBS method is more robust to errors in estimation of the
Q-function. We also showcase the impact of the risk prefer-
ence parameter in the SMBS policy function. This parameter
may be used to further tune the agent behavior in response
to perceived delays.

669

References
Agarwal, M.; and Aggarwal, V. 2021. Blind Decision Mak-
ing: Reinforcement Learning with Delayed Observations. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 31, 2–6.
Bander, J. L.; and White, C. 1999. Markov decision pro-
cesses with noise-corrupted and delayed state observations.
Journal of the Operational Research Society, 50(6): 660–
668.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. Journal of Artificial Intelli-
gence Research, 47: 253–279.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chen, B.; Xu, M.; Li, L.; and Zhao, D. 2021. Delay-aware
model-based reinforcement learning for continuous control.
Neurocomputing, 450: 119–128.
Degris, T.; White, M.; and Sutton, R. S. 2012. Off-policy
actor-critic. In Proceedings of the 29th International Cofer-
ence on International Conference on Machine Learning,
179–186.
Derman, E.; Dalal, G.; and Mannor, S. 2020. Acting in De-
layed Environments with Non-Stationary Markov Policies.
In International Conference on Learning Representations.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking deep reinforcement learn-
ing for continuous control. In International conference on
machine learning, 1329–1338. PMLR.
Firoiu, V.; Ju, T.; and Tenenbaum, J. 2018. At human
speed: Deep reinforcement learning with action delay. arXiv
preprint arXiv:1810.07286.
Jeong, B.-H.; and Kim, S.-H. 1991. Partially Observable
Markov Decision Process with Lagged Information over In-
finite Horizon. Journal of the Korean Operations Research
and Management Science Society, 16(1): 135–146.
Katsikopoulos, K. V.; and Engelbrecht, S. E. 2003. Markov
decision processes with delays and asynchronous cost col-
lection. IEEE transactions on automatic control, 48(4):
568–574.
Loch, J.; and Singh, S. P. 1998. Using Eligibility Traces
to Find the Best Memoryless Policy in Partially Observable
Markov Decision Processes. In ICML, volume 98, 323–331.
Mahmood, A. R.; Korenkevych, D.; Komer, B. J.; and
Bergstra, J. 2018. Setting up a reinforcement learning
task with a real-world robot. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
4635–4640. IEEE.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, 1928–1937.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control

through deep reinforcement learning. Nature, 518(7540):
529.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In International
Conference on Machine Learning, 2817–2826. PMLR.
Ramstedt, S.; and Pal, C. 2019. Real-time reinforcement
learning. Advances in neural information processing sys-
tems, 32.
Schuitema, E.; Buşoniu, L.; Babuška, R.; and Jonker, P.
2010. Control delay in reinforcement learning for real-
time dynamic systems: a memoryless approach. In 2010
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 3226–3231. IEEE.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 23–30. IEEE.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Walsh, T. J.; Nouri, A.; Li, L.; and Littman, M. L. 2009.
Learning and planning in environments with delayed feed-
back. Autonomous Agents and Multi-Agent Systems, 18(1):
83.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016. Dueling network architectures for deep
reinforcement learning. In International conference on ma-
chine learning, 1995–2003. PMLR.
White, C. C. 1988. Note on “A partially observable Markov
decision process with lagged information”. Journal of the
Operational Research Society, 39(2): 217–217.
Yao, Z.; Florescu, I.; and Lee, C. 2024. Control in Stochastic
Environment with Delays: A Model-based Reinforcement
Learning Approach. arXiv preprint arXiv:2402.00313.

670

