
Learning Generalised Policies for Numeric Planning

Ryan Xiao Wang1, Sylvie Thiébaux1, 2

1School of Computing, The Australian National University
2LAAS-CNRS, Université de Toulouse

Ryan.Wang@anu.edu.au, Sylvie.Thiebaux@anu.edu.au

Abstract

We extend Action Schema Networks (ASNets) to learn gen-
eralised policies for numeric planning, which features quan-
titative numeric state variables, preconditions and effects. We
propose a neural network architecture that can reason about
the numeric variables both directly and in context of other
variables. We also develop a dynamic exploration algorithm
for more efficient training, by better balancing the explo-
ration versus learning tradeoff to account for the greater com-
putational demand of numeric teacher planners. Experimen-
tally, we find that the learned generalised policies are capable
of outperforming traditional numeric planners on some do-
mains, and the dynamic exploration algorithm to be on aver-
age much faster at learning effective generalised policies than
the original ASNets training algorithm.

Introduction
Generalised planning is broadly concerned with the repre-
sentation, synthesis, and learning of plans, policies, heuris-
tics, and other forms of control knowledge applicable to
many problem instances (Srivastava, Immerman, and Zil-
berstein 2011; Hu and Giacomo 2011; Celorrio, Aguas, and
Jonsson 2019). Interest in generalised planning has steadily
increased in recent years, fueled in part by advances in ma-
chine learning, and by the development of new formalisms
to represent and reason about generalised planning tasks
and their solutions (Toyer et al. 2018; Francès et al. 2019;
Garg, Bajpai, and Mausam 2019; Bonet and Geffner 2020;
Aguas, Jiménez, and Jonsson 2020; Toyer et al. 2020; Shen,
Trevizan, and Thiébaux 2020; Karia and Srivastava 2021;
Aguas, Jiménez, and Jonsson 2021; Ståhlberg, Bonet, and
Geffner 2022; Lin et al. 2022).

An important limit of existing work on generalised plan-
ning is that it only allows for primitive forms of quantitative
information to be modelled,1 even though such information
is core to many real world problems – for example, mod-
elling a delivery robot requires modelling how much weight
it can hold, and modelling flights require reasoning about the
the product of distance travelled and fuel consumption per
unit of distance. This is despite the existence of the vibrant

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We are only aware of a single exception (Lin et al. 2022).

field of Numeric planning, which extends classical plan-
ning formalisms to allow modelling numeric fluents, condi-
tions and effects (Fox and Long 2003), and typically handles
them using new heuristic search, optimisation, or satisfiabil-
ity modulo theory based techniques (Hoffmann 2003; Coles
et al. 2013; Scala et al. 2016a,b, 2020; Kuroiwa et al. 2022;
Leofante 2023).

In this paper, we extend a state of the art generalised
planning approach, namely Action Schema Networks (AS-
Nets) (Toyer et al. 2018, 2020) to handle numeric planning
problems described in PDDL2.1 (Fox and Long 2003). AS-
Nets is a recent deep learning architecture capable of rep-
resenting policies for generalised planning, and designed to
learn from smaller planning tasks and then apply that knowl-
edge to tackle larger, more complex challenges within the
same domain. The architecture exploits the relational struc-
ture of planning problems and domains, and its connectivity
reflects the precondition-effect relationships captured in the
domain’s action schemas. This scheme makes it possible to
share weights between policy networks instantiated for dif-
ferent problems in a domain, and learn a single set of pa-
rameters which can be transferred to problems of arbitrary
size in that domain. ASNets are trained using an imitation
learning algorithm, which iteratively explores the state space
of the training problems using a teacher planner. Experi-
ments with classical and probabilistic domains have shown
that ASNets can outperform conventional planners when the
domain has simple tricks that are key to solving larger prob-
lems but which can be learned from small problems.

To extend ASNets to numeric planning, We first propose
a network module that enables ASNets to directly reason
about numeric fluents. Then, we illustrate why such rea-
soning is not always sufficient for learning effective gener-
alised policies. We argue that reasoning about the interac-
tion between individual fluents is crucial, and allow ASNets
to perform this interaction reasoning through numeric com-
parisons in the problem. To cope with the increased length
of numeric plans and run-time of numeric planning teachers
in comparison with their classical planning counterparts, we
also propose a new training algorithm which offers greater
control over the exploration versus learning balance.

Finally, we evaluate our proposed techniques on a rep-
resentative set of benchmarks from the latest International
Planning Competition, featuring both simple and linear nu-

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

633

meric planning domains. Our results show that our exten-
sions to ASNets allow it to learn generalised policies capa-
ble of solving problem instances significantly more complex
than those seen in training, and outperform non-learning
planners in several domains. We also find that the greater
control offered by our new training algorithm allows ASNets
to be trained much more quickly without compromising the
effectiveness of the learned generalised policies.

Numeric Planning
As in PDDL2.1 (Fox and Long 2003), a numeric planning
problem, denoted as P = ⟨D, I⟩, consists of a domain D
and an instance I . The domain includes predicates P , func-
tions F , and action schemas A; the instance I comprises
objects O and additional elements. Each predicate p ∈ P
and function f ∈ F applies to object arguments o1, . . . , on
from O to form ground proposition p(o1, . . . , on) and flu-
ents f(o1, . . . , on) respectively.2 Through grounding, the
sets P,F , and O define the set of all possible propositions
P and fluents F , which encode a state space S where a state
is an assignment of boolean values to each proposition and
real values to each fluent.

A comparison schema has the form ξ ⊵ γ, where ⊵∈ {≤
, <,=, >,≥}, ξ is an arithmetic expression over F , and γ
is a real constant. Once grounded, ξ becomes an arithmetic
expression over F , and the ground comparison is a map-
ping from S to a truth value. Each action schema α ∈ A
has a precondition pre(α) that is a conjunction of compar-
ison schemas and predicates. The effect of α, eff(α), is a
schema to assign boolean values to propositions and/or in-
crease/decrease/assign the value of arithmetic expressions
over F . Given objects O, action schemas in A ground to
a set of actions A. The problem P is linear if all arithmetic
expressions are linear, and simple if furthermore the numeric
action effects only involve increasing or decreasing fluents
by a constant.

The instance I , in full, is a tuple I = ⟨O, s0, G,M⟩. The
initial state s0 is any state in S, the goalG is a conjunction of
comparisons and propositions, and the plan metric M is an
optional arithmetic expression over F . An action is applica-
ble in a state when its precondition is satisfied, and its appli-
cation yields a new state according to its effect. Propositions
and fluents not included in the effect remain unchanged. A
plan is a sequence of actions. It is an executable plan if when
iteratively applied in s0, each subsequent state satisfies the
next action precondition, and it is a goal achieving plan if
the final state satisfies G. A valid plan is an executable goal
achieving plan. The cost of a valid plan is the value of M at
the final state if M is provided, or otherwise the number of
actions in the plan. For this paper, a generalised policy for
a domain D is a mapping from instances to executable (but
not necessarily goal achieving) plans. The effectiveness of
a generalised policy over a finite set of instances measures
the proportion of instances the policy maps to goal-acheving
plans. The more effective a generalised policy is, the larger
this number is.

2The value of n, or arity, is dependent on the particular predi-
cate or function.

Numeric Action Schema Networks
Action Schema Networks are a state of the art approach for
learning generalised policies for classical planning problems
(Toyer et al. 2020). Core to its effectiveness is its ability to
generalise from a small set of training problems to much
larger and unseen problems in the same domain, thereby
amortising training time. This original approach is unable to
perform numeric reasoning effectively due to a lack of archi-
tectural components dedicated to numeric reasoning. In this
section we propose Numeric Action Schema Networks (ν-
ASNets) for learning generalised policies for numeric plan-
ning.

A ν-ASNet is a neural network with weights θ that takes
in input vectors describing the current state s and outputs a
probability distribution πθ(a|s) over all applicable actions
a. For each problem instance, a ν-ASNet is constructed
with the weights θ shared between all instances in the
same domain. That is, the network architecture is instance-
dependent, but the weights are instance-agnostic through a
weight-sharing mechanism that we describe later.

For each instance, the ν-ASNet architecture includes lay-
ers of network modules that alternate between encoding ac-
tion and state information, as shown in Figure 1. Each ac-
tion layer contains an action module for each action a ∈ A.
The last layer of a ν-ASNet is always an action layer whose
outputs determine πθ, and we inherit the assumption from
ASNets that the first layer is also always an action layer.
Each state layer contains one state module for each piece of
state information, namely propositions, fluents, and compar-
isons. Each network fixes a hidden dimension dh, and net-
works modules propagate forward a hidden representation
vector in Rdh to connected modules in the next layer. Net-
work modules are connected sparsely to modules in adjacent
layers through a notion of relatedness.
Definition 1 (relatedness) An action a is related to a
proposition p, fluent f , or comparison c at position k, de-
noted byR(a, p/f/c, k), if p/f/c is a ground instance of the
kth unique predicate/function/comparison schema appear-
ing in the action schema of a, respectively.
Example 1 Consider the following action schema for a
robotic arm picking up an object of a given weight, subject
to a limit on the total load carried by the arm:
pickup(r, o):
prec : clear(o),weight(o) + load(r) ≤ limit(r)
eff : ¬clear(o), holding(r, o), load(r)+= weight(o)

The action pickup(r1, o1) for a particular robot arm r1 and
object o1 is related at position 1 to the proposition clear(o1),
at position 2 to the proposition holding(r1, o1), at position 1
to the fluent weight(o1), at position 2 to the fluent load(r1),
at position 3 to the fluent limit(r1), and at position 1 to the
comparison weight(o1) + load(r1) ≤ limit(r1).

The notion of relatedness extends naturally to the various
network modules introduced below.

Action modules. The action module for a ∈ A in the lth
action layer takes an input vector ula and produces a hidden
representation

ϕla = σ(W l
a · ula + bla)

634

Figure 1: (Left) Overview of an ν-ASNet with L state layers and L+ 1 action layers, with colours in state layer indicating the
different types of modules. (Right) example fluent module for the fluent weight(o1) in a problem instance with two robot arms
r1 and r2 from a domain where weight(o) occurs in two action schemas pickup(r, o) and drop(r, o).

where W l
a ∈ Rdh×dl

a and bla ∈ Rdh are the learnt weight
matrix and bias vector for the action module, σ is a non-
linearity, dh is the fixed hidden representation size, and dla
is the dimension of ula. The input vector is constructed by
concatenating the hidden representation of all related state
modules in the previous layer, ignoring relatedness position

ula =
[
ψl−1
1

T
. . . ψl−1

M

T
]T

where ψl−1
j is the hidden representation produced by a re-

lated state module in the preceding state layer. Since allψl−1
j

have dimension dh, ula has dimension M · dh.
The related state modules of an action a ∈ A can be de-

termined by enumerating all the predicates, functions, and
comparison schemas in its action schema grounding them
using the same objects used to ground a. If we impose an or-
dering on these constructs (e.g. using position), the structure
and dimension of ula across all actions with the same schema
is fixed even across different problem instances of the do-
main. Such structure is the key to weight-sharing. For ν-
ASNets of different instances of a domain, all actions mod-
ules with action schema α at layer l share the weight matrix
W l

α and bias vector blα. This allows us to apply the same set
of weights to any instance in a domain, as all actions in these
problem instances are grounded from the same set of action
schemas.

Fluent modules. In each state layer, there is one fluent
module for each fluent in the problem. Fluent modules allow
the network to reason directly about the quantitative compo-
nents of the state space. Like action modules, a fluent mod-
ule for fluent f ∈ F in the lth state layer computes a hidden
representation

ψl
f = σ(W l

f · vlf + blf)

where W l
f ∈ Rdh×dl

f and blf ∈ Rdh are the learned weight
matrix and bias vector, σ is the same nonlinearity as before,
vlf is the input feature vector, and dlf is the dimension of vlf .

Like action modules, weight-sharing requires that the in-
put vectors vlf have a similar structure for fluents derived
from the same function. Unlike action modules, the number
of actions related to a fluent is not instance-agnostic, so sim-
ple concatenation of hidden representations of related action
modules from the preceding layer is not sufficient. We treat
this similarly to how proposition modules are constructed

in the original ASNets. From all the actions related to f at
various positions, we extract their action schemas and enu-
merate all unique pairs {(α1, k1), . . . , (αS , kS)} of action
schemas and position pairs. These pairs are only dependent
on the function of f . We then construct the input feature by

vlf =

pool({ϕla | op(a) = α1 ∧R(a, f, k1)})
...

pool({ϕla | op(a) = αS ∧R(a, f, kS)})

where op(a) is the action schema of a and pool is a pooling
function to combine multiple Rdh vectors into one Rdh vec-
tor. Like the original ASNets we use the element-wise max
function for pool. The structure of the resulting input feature
is only dependent on domain information, namely the action
schemas and functions, and hence enables weight-sharing
– all fluent modules across different ν-ASNets at the same
layer l with the same function share the same weight matrix
and bias vector.

Proposition modules. Like the original ASNets, in each
state layer we include a proposition module for each propo-
sition in the problem. Proposition modules are almost identi-
cal to fluent modules, with the same computation for hidden
representation, construction of input feature, and weight-
sharing property.

Comparison modules. By including fluent modules in the
network and fluent values in the network input, ν-ASNets
are able to learn generalised policies that reason directly
on the value of each fluent. Such reasoning is unfortunately
not always sufficient. Consider a domain D whose sole nu-
meric component involves robotic arms with load limits lift-
ing up items of varying weight, and suppose two problem
instances I and I ′ differ only in that all the load limit and
item weights in I ′ are double their counterparts in I . There
is no practical difference between the problem P = ⟨D, I⟩
and P ′ = ⟨D, I ′⟩, and an ideal generalised policy should
produce the same plan for both problems. Fluent modules
are unable to recognise this “symmetry” between P and P ′

– weights learned by training on P would not apply directly
to P ′.

More generally, the value of fluents are often only mean-
ingful in the context of other fluent values, and it is valu-
able to allow learned generalised policies to reason about
the interaction between fluents. In particular, fluents interact
in comparisons in action preconditions, which we capture

635

through comparison modules. Let comp(a) denote the com-
parisons in action a and C =

⋃
a∈A comp(a), in each state

layer there is one comparison module for each comparison.
A comparison module for the comparison c ∈ C in the lth
state layer computes a hidden representation

ψl
c = σ(W l

c · vlc + blc)

where W l
c ∈ Rdh×dl

c and blc ∈ Rdh are the learned weight
matrix and bias vector, σ is the same nonlinearity as before,
vlc is the input feature vector, and dlc is the dimension of vlc.

Similarly to fluent modules, we employ a pooling mech-
anism to enable weight-sharing between comparisons that
share the same schema. From all actions related to c at vari-
ous positions, we extract their action schemas and enumerate
all unique pairs {(α1, k1), . . . , (αS , kS)} of action schema
and position pairs. Again, these pairs only depend on the
comparison schema of c, and we construct the input feature
using them by

vlc =

pool({ϕla | op(a) = α1 ∧R(a, c, k1})
...

pool({ϕla | op(a) = αS ∧R(a, c, kS})

where pool is the same pooling function as before. The re-
sulting input feature vlc is again only dependent on domain
information, and hence enables weight-sharing where all
comparison modules across different ν-ASNets at the same
layer l with the same comparison schema share the same
weight matrix and bias vector.

Input. The first and last action layers take minor excep-
tions to the above as they are the input and output layers of
the network. For the first layer, there is no preceding state
layer and the input vector u1a is a vector encoding state and
heuristic information relevant to the current action. Specifi-
cally,

u1a =
[
vTp vTf vTc gTp gTf m ca c

T
L
]T

where vp, vf , vc are the values of the related propositions,
fluents, and comparisons of the action in the current state
respectively, gp and gf indicate if the related propositions
and fluents appear in the goal or not, m is a boolean value
indicating if the action a is applicable in the current state,
ca is the number of times a has been applied so far, and
cL is a boolean vector encoding landmark information. For
vc, we treat the value of a comparison as the boolean value
indicating if it is satisfied.

The lack of goal input gc for comparisons is a conse-
quence of the lack of overlap between comparisons in action
preconditions and comparisons in the goal. We also cannot
include goal comparisons directly in the input as there is no
notion of relatedness between them and actions. In domains
where all instances of interest have goals with the same
structure, one can define a “reach” action whose precondi-
tion is the original goal and effect is a proposition “goal-
reached” which also replaces the goal. This special action
would allow ν-ASNets to reason about goal comparisons.

The inclusion of ca and cL is to compensate for the re-
ceptive field problem discussed in the original paper (Toyer

et al. 2020). Essentially, longest chain of related action and
state modules the network can reason about is limited by its
fixed and finite depth. The inclusion of heuristic information
can effectively address this problem. The action count ca
helps the network apply different actions at the same state
depending on what actions have been applied before and
avoid cycling between adjacent states, and is found to be
empirically beneficial (Toyer et al. 2020). The numeric land-
mark encoding cL in ν-ASNets is an extension of the LM-
cut landmarks from the original ASNets, and is derived from
hybrid landmarks extracted from an AND/OR graph struc-
ture (Scala et al. 2017). Each such landmark ℓ has a target
tℓ along with a set of actions Aℓ and contributions for each
action {λaℓ | a ∈ Aℓ}, and represents the inequality∑

a∈Aℓ

λaℓ ya ≥ tℓ

where ya is the number of times action a is applied from the
current state. Given a set of hybrid landmarks, the resulting
landmark encoding cL is a vector in {0, 1}3, where c(1)L =
1 if the action a appears as the only action in Aℓ for any
landmark, c(2)L = 1 if the action a appears in any Aℓ with
other actions, and c(3)L = 1 if a does not appear in any Aℓ.

We have also experimented with other encodings of hy-
brid landmarks, specifically encodings that take into account
the contribution and target of landmarks. We additionally
experimented with removing all numeric components of the
numeric problem and encoding the LM-cut landmarks of the
resulting classical planning problem (Helmert and Domsh-
lak 2009), which were used in the original ASNets. We did
not find experimental success for either.

Output. The last layer of the network is the output layer.
The output ϕL+1

a of each action module in the last layer is
only a single real number, and the resulting output of the
network is the masked softmax of all individual outputs,

πθ(a | s) = ma exp(ϕ
L+1
a)∑

a′∈Ama′ exp(ϕL+1
a′)

wherema is a boolean mask of whether the action a is appli-
cable in the current state s, and πθ(a | s) is the probability
of selecting action a in state s.

Given weights θ for a domain, the resulting generalised
policy for a domain produces a plan for each instance by re-
peatedly selecting and applying actions using πθ, starting at
the initial state, and terminating upon reaching a goal state,
a state with no applicable action, or a fixed length limit. Like
ASNets, we use πθ during training by sampling from it, and
during evaluation by greedily selecting the action with max-
imum probability and breaking ties deterministically.

Miscellaneous. We have introduced comparison modules
and fluent modules together, along with their implications
for network input and action modules. It is important to note
that they can and are designed to be applied separately. We
term the network with only comparison modules C-ASNets
and the network with only fluent modules F-ASNets. This
specialisation can be empirically beneficial, we hypothesise

636

Figure 2: The exploration algorithm used by the original
ASNets, where all states from the sampled trajectories are
explored with the teacher planner. For all states shown, the
teacher planner is called on all applicable actions to mark
the actions leading to the lowest-cost plans.

that it allows the network to focus on a particular form of
reasoning, reduces computation burden, and potentially re-
duces overfitting. To disambiguate, we will use B-ASNets
to refer to the network with both modules, and ν-ASNets to
refer to the collection of architectural variations.

It is worth noting that ν-ASNets make no requirement
on the form of comparisons or numeric effects appearing
in the problem, and can be applied to the full numeric frag-
ment of PDDL 2.1 (Fox and Long 2003). Similarly, we in-
troduced action preconditions as conjunctions of compar-
isons and propositions only for simplicity, and they can in
fact be conjunctions of any quantifier free formula involving
conjunction, disjunction, and negation of propositions and
comparisons. Likewise, the goals do not have to be conjunc-
tions of comparisons and propositions either. However, in
order for ν-ASNets to generalise, the goals of the problem
instances it is applied to should have a consistent structure
such that experiences from reaching one instance’s goal is
useful to reaching the goal of other instances.

Additionally, we also include skip connections (Toyer
et al. 2020). That is, we append the output of each ac-
tion/proposition/fluent module to the input of the same mod-
ule in the next layer but omit these in equations for simplic-
ity. Skip connections make it easier for the network to prop-
agate information across layers.

Dynamic Exploration
Like the original ASNets, for each domain, we train ν-
ASNets on a small number of training problem instances
under the supervision and guidance of a teacher planner.
We use the state-of-the-art ENHSP numeric planner as our
teacher planner (Scala et al. 2020). The original algorithm
trains over a number of epochs. Each epoch involves an ex-
ploration phase and a learning phase. The exploration algo-
rithm used by the original ASNets first uses the current net-
work weights θ to sample a number of trajectories from πθ,
then explores all the states from these trajectories by call-
ing the teacher planner on them, and adding all the result-
ing states to a multiset state memory Smem, as illustrated in
Figure 2. For each state added to Smem, the teacher plan-

ner is called on the resulting state of applying each applica-
ble action, and the actions leading to the lowest-cost plans
are marked. The learning phase then updates the weights
through mini-batch gradient descent to choose the marked
actions using the cross-entropy-based loss

Lθ = − 1

|B|
∑
s∈B

∑
a∈A

[
(1− ys,a) · log(1− πθ(a | s))

+ ys,a log π
θ(a | s)

]
+

1

2
λ∥θ∥2

where B is a mini-batch of states from Smem, ys,a is a binary
variable indicating if action a is marked at state s, and the
last term is an ℓ2 regulariser.

In our preliminary experiments we find that the original
exploration algorithm is inadequate for effectively learning
generalised policies for numeric planning. We observe that
for numeric planning, the plan lengths of even simple train-
ing problems tend to be longer than that of classical plan-
ning, and ENHSP to be much slower than teachers used by
ASNets for classical planning. In each epoch, the number of
states added to Smem in the original exploration algorithm is
quadratic in the plan lengths of the training problems, result-
ing in a large number of states added for numeric planning.
This has a number of downstream consequences in the orig-
inal exploration algorithm:

1. For each state s added to Smem, the teacher is called
for each applicable action in s. An increased number of
states added to Smem therefore leads to a significant in-
crease in calls to the teacher planner, especially in do-
mains where states tend to have many applicable actions.

2. The learning phase uses states in Smem for training. We
observe that the size of Smem is sometimes a few orders
of magnitude larger than the number of states used in the
learning phase. In this case many states added to Smem

are rarely used, wasting memory and exploration effort.
3. The alternating exploration and learning phases mean

that states added to Smem early are explored using his-
torical network weights and hence less useful for learn-
ing than more recently added states.

We propose a dynamic exploration algorithm to address
these problems by removing stale states and dynamically ad-
justing the amount of exploration performed based on the
time spent on the learning phase, as shown in Algorithm
1. In each exploration phase, dynamic exploration first uses
the current network weights to generate Tgen trajectories for
each training problem, i.e. calling the network iteratively
starting at the initial state and sampling the action to ap-
ply from πθ (line 8). Each such trajectory terminates upon
reaching a goal, a fixed length limit, or a state with no ap-
plicable actions. The states in these trajectories are added to
an initially empty Straj multiset (line 3). We then repeatedly
randomly remove (or explore) states from Straj and call the
teacher planner for each removed state until a termination
condition is met (lines 12 to 13). All states in the resulting
teacher plan are added to Smem (line 14). This can be un-
derstood as asking the teacher planner to guide the network
back onto a valid trajectory. If Straj ever becomes empty,

637

Algorithm 1: Dynamic exploration. We group new
states in Sexpl and add to Smem with epoch number

Data: A set of training problems Ptrain; current ν-ASNets
weights θ; epoch number n

1 Procedure genTraj()
2 for ζ ∈ Ptrain do
3 Straj.extend(runPolicy(s0(ζ), πθ))

4 Procedure explore(n, Smem)
5 Straj ← ∅
6 Sexpl ← ∅
7 for i = 1, . . . , Tgen do
8 genTraj()

9 while not terminate() do
10 if |Straj| = 0 then
11 genTraj()

12 s← Straj.popRandom()
13 Sexpl.extend(teacherPlan(s))

14 Smem.extend((Sexpl, n))
15 while |Smem| > Nmem do
16 Smem.popOldestEpoch()

it is refilled by generating one trajectory from each training
problem from the initial state.

The termination condition (line 9) is based on the aver-
age time tlearn spent on recent learning phases and an hy-
perparameter r to control the ratio between spent on explo-
ration and learning. We terminate exploration when either
r · tlearn time has elapsed in the current exploration phase or
the number of states explored reaches an upper bound emax,
but never before at least emin states have been explored. For
the first exploration phase where tlearn is undefined, we ter-
minate once at least one state from each problem and at least
emin states overall have been explored.

To avoid a size explosion of Smem and ensure its states
are recent, we group states in Smem by the epoch they are
added in. Whenever the number of states in Smem exceeds a
limit Nmem, we repeatedly remove the oldest group till the
size of Smem falls back under the limit (line 16).

To address point 1, we adopt an alternative action mark-
ing method. Whenever a state s is added to Smem, instead
of checking if each applicable action can lead to a lowest-
cost plan, this option only marks the action selected by the
teacher planner, saving the need to call the teacher planner
for each applicable action.

Experimental Evaluation
For evaluation, we implemented ν-ASNets and dynamic ex-
ploration based on the original implementation of ASNets.
Code is available at (Wang and Thiébaux 2024).

Experimental Setup
Teacher planner and benchmark domains. We use the
state-of-the-art numeric planner ENHSP-20 (Scala et al.
2020) as the teacher planner, and use benchmarks from the

International Planning Competition 2023 Numeric Track3.
These domains only include simple or linear numeric plan-
ning problems, and do not fully demonstrate the applicabil-
ity of ν-ASNets to the entire numeric fragment of PDDL
2.1. For each domain, we use the 3 to 6 smallest instances
for training. ENHSP has a wide set of configurations based
on heuristic, search algorithm, and the use of methods such
as redundant constraints and helpful actions. From these
configurations, we select as the teacher ENHSP configura-
tion one that produces short plans quickly (within one sec-
ond) for the training instances. We do not experiment with
domains where such a teacher configuration could not be
found. The resulting benchmark domains and teacher con-
figuration used for each domain are shown in Table 1. We
classify domains by the proportion of reasoning that is nu-
meric versus propositional into heavily numeric and hybrid
domains.

For the domain Counters, we do not use the IPC instances,
but instead use a set of evaluation instances with 2 to 60
counters where all the counters start with value 0. We only
use one of these evaluation instances for training, and in-
clude for training another two instances similar to it but with
different initial states. This set up allows us to better under-
stand how the network would generalise across dimensions
(number of counters) unvaried during training.

Baselines and ν-ASNet variations. We use ENHSP as
the baseline for comparison using all configurations that are
used as teacher for at least one domain, and report its results
for the best and teacher configurations of each domain. We
also compare within the ν-ASNets variations, namely the
baseline network without either fluent or comparison mod-
ules (N-ASNets), F-ASNets, C-ASNets, and B-ASNets. We
also compare the original ASNets training algorithm and the
dynamic exploration algorithm for training F-ASNets and
C-ASNets, and use superscripted O or D on the ν-ASNets
variation to denote them. For fairness, we enable alternative
action marking method with the original algorithm.

Hyperparameters. For each domain, we train the network
and evaluate it once on each problem instance. Unless other-
wise specified, the hyperparameters for ν-ASNets are fixed
across domains and architectural variations. These hyper-
parameters are based on the original ASNets hyperparam-
eters with minor tuning. We use three action layers and two
state layers, with a hidden representation size (dh) of 15
and an ELU as the non-linearity σ (Clevert, Unterthiner, and
Hochreiter 2016). When using dynamic exploration, in each
exploration phase we collect Tgen = 2 trajectories initially,
terminate exploration with parameters r = 1, emin = 10,
and emax = 1000, and impose an Nmem = 15000 limit
on the size of Smem. When using the original algorithm, we
collect two trajectories per problem and explore all states
within the collected trajectories. After exploring, the learn-
ing phase performs weight optimisation using the Adam op-
timiser (β1 = 0.9, β2 = 0.99, and ϵ = 10−7). Mini-batch
gradient descent is performed with a learning rate of 0.0003,
batch size of 50, and 60 batches per epoch. We addition-

3https://ipc2023-numeric.github.io/

638

Domain Classification Teacher

Numeric ASNet ENHSP

BD FD CD FO CO NO best teacher best

Block Grouping (20, 4) HN, simple hadd-gbfs 15 (8.0) 11 (8.0) 17 (8.0) 10 (15.5) 15 (9.8) 2 (24.0) 17 20 20
Counters (59, 1) HN, simple hrmax-astar 9 (0.2) 7 (0.1) 14 (6.4) 10 (0.1) 17 (1.3) 1 (14.8) 17 8 39
Delivery (20, 4) hybrid, simple hadd-astar 5 (8.0) 5 (5.3) 20 (1.9) 9 (9.9) 18 (6.7) 17 (3.3) 20 8 16
Drone (20, 4) HN, linear hadd-astar 9 (8.0) 4 (8.0) 3 (8.0) 7 (24.0) 3 (24.0) 0 (24.0) 9 11 19

FO-Counters (20, 3) HN, linear hrmax-astar 4 (3.6) 5 (1.6) 3 (8.0) 6 (7.3) 3 (10.2) 2 (15.4) 6 4 5
MPrime (20, 4) hybrid, simple hmrp-ha-gbfs 16 (3.1) 19 (1.8) 12 (7.9) 18 (4.4) 16 (24.0) 6 (24.0) 19 16 18
Rover (20, 4) hybrid, simple hmrp-ha-gbfs 7 (8.0) 4 (8.0) 4 (8.0) 5 (24.0) 4 (24.0) 4 (24.0) 7 7 7
TPP (20, 3) hybrid, linear hadd-gbfs 0 (8.0) 0 (8.0) 19 (8.0) 0 (24.0) 20 (24.0) 16 (22.7) 20 4 4

Zenotravel (20, 6) hybrid, linear hadd-gbfs 0 (8.0) 0 (8.0) 17 (0.6) 0 (24.0) 16 (0.8) 16 (0.6) 17 20 20

Table 1: Number of instances solved (coverage) by each system, with the ν-ASNets training time in hours shown in paren-
thesis. The number of instances for evaluation and the number of evaluation instances seen during training are shown in
parenthesis after the domain. We also show the classification of the domain (see text) by heavily numeric (HN) versus hy-
brid (hybrid) and simple versus linear. We additionally show the teacher configuration used for each domain in the format
{heuristic}−{search algorithm}, with the optional “ha” indicating the use of helpful actions.

ally apply an ℓ2 regulariser with a coefficient of 0.005 and
a dropout probability of 0.1. We stop training when all col-
lected trajectories reach the goal for 20 consecutive epochs.

Computational limits. When training, we apply a time
limit of 8 hours for dynamic exploration and 24 hours for
the original training algorithm. During evaluation, we apply
a 1800 seconds time limit per problem for ENHSP and ν-
ASNets. Training of ν-ASNets and evaluation of ENHSP is
performed on a virtual machine with 32GB of memory and
a single dedicated core clocked at 4.5 GHz. Evaluation of ν-
ASNets is performed on the same virtual machine with only
8GB of memory.

Results
Table 1 shows the coverage achieved by the ν-ASNets vari-
ations and ENHSP by domain. The learned generalised poli-
cies are able to achieve coverages competitive with ENHSP,
and outperform it on several domains, namely Delivery, FO-
Counters, MPrime and TPP. Interestingly, except for FO-
Counters, the other three domains all involve some forms
of graph traversal and logistics. On Block Grouping, Rover,
and Zenotravel, the ν-ASNets achieve coverages commen-
surate with ENHSP. On the remaining two domains, Coun-
ters and Drone, ν-ASNets are able to generalise from the
small training problems to bigger problems and perform
similarly with or outperform its teacher, but not the best
ENHSP configuration.

To better understand how well ν-ASNets are able to gen-
eralise, we examine the particular problem instances to see
if it is only generalising to problems with similar size to
those seen during training. On Block Grouping, the largest
training instance has 10 blocks on a 15 by 15 grid, whereas
the largest solved instance has 25 blocks on a 100 by 100
grid. The training instances for Counters all have 4 coun-
ters, while ν-ASNets variations are generally able to solve
evaluation instances with up to 15 counters. This result on
Counters shows that ν-ASNets are able to generalise across
factors (number of counters in this case) kept constant dur-
ing training. The largest Delivery training instance has 10

items to deliver, while the largest solved instance has 42.
Similar scales of generalisation are achieved on other do-
mains, and demonstrate the strong generalisation capabili-
ties of ν-ASNets.

Table 1 also shows the training time of various ν-ASNets
variations. By comparing the training times of CD-ASNets
with CO-ASNets and FD-ASNets with FO-ASNets, our re-
sults show that dynamic exploration is able to achieve much
lower training times than the original exploration algorithm.
This is not a consequence of the lower training time limit we
apply for dynamic exploration, as the trend continues even
when neither training methods reach their respective time
limits, see e.g. in Delivery or FO-Counters. Furthermore,
we do not observe any notable reduction in coverage for dy-
namic exploration when compared to training with the orig-
inal algorithm. This suggests that dynamic exploration con-
sistently enables learning generalised policies faster without
compromising the effectiveness of the learned generalised
policies. The only notable exception on Counters with C-
ASNets is likely due to a high variance in training time that
we found during multiple training runs.

Figure 3 shows the plan cost and evaluation runtime pro-
duced by the learned generalised policies and ENHSP with
the teacher configuration. When both produce valid plans,
they produce plans with similar costs. On Zenotravel ν-
ASNets tend to produce better plans, while on Block Group-
ing ENHSP tends to produce better plans. For runtime, when
both produce plans quickly (less than 10 seconds), ENHSP
tends to be quicker than the generalised policies. This is
likely due to the higher constant overhead required by ν-
ASNets to construct the network and load the weights. On
more complex problem instances, ν-ASNets tend to pro-
duce plans faster than the ENHSP teacher configuration. The
large number of points on the top line in the runtime plot
demonstrates that the learned generalised policies are able
to solve many instances the teacher cannot solve.

Why do we need F-ASNets or C-ASNets? Results in Ta-
ble 1 show that the specialisation in reasoning offered by
F-ASNets or C-ASNets often allow one of them to perform

639

Figure 3: Plan cost (left) and runtime in seconds (right) for each problem instance of the best ν-ASNets variation versus the
teacher ENHSP configuration. Points in the bottom-right triangle favour ENHSP and on the top-left triangle favour ν-ASNets.
Problems unsolved by a system have value set to the maximum of the axis. A constant of 1 is added to ensure all points lie
within view.

better than if they are both included. For example, compari-
son modules alone on Delivery or fluent modules alone in
MPrime achieve notably higher coverages than when the
other is included.

Why do fluent modules result in coverages of 0 in TPP
and Zenotravel? In both domains, whenever fluent mod-
ules are included in the network, the learned generalised
policies fail to solve any problem. In these domains, except
for fluents used to help the plan metric, all the other fluents
are only meaningful in context of each other. We suspect that
when fluent modules are included, the network attempts to
learn to reason directly on the fluent values, but receive con-
flicting information on how to do so on the different training
instances. This results in training never being able to con-
verge, and ultimately the coverage of 0.

Which ν-ASNets variation is the best? The best ν-
ASNets variation by coverage depends on the nature of the
domain. Generally, C-ASNets tend to perform well on all
benchmark domains, while F-ASNets and B-ASNets per-
form well on particular domains such as MPrime and Rover
respectively.

How can N-ASNets perform well on some domains? N-
ASNets is not equipped with network modules for numeric
reasoning, but it still has the capability for classical planning
reasoning. Unsurprisingly, this allows it to still be effective
on hybrid domains where there is a sizeable classical plan-
ning component. However, on heavily-numeric domains its
unsuitability for numeric reasoning is clear from the poor
coverage it achieves.

How do ν-ASNets compare with the IPC 23 competition
planers? On domains where we use the same problem sets
as IPC 23 (i.e. all but counters), ν-ASNets achieve better
coverages than the reported coverage4 of the IPC 23 compe-
tition planners except on Drone and Rover.

How beneficial are the numeric landmarks? Table 2
shows that the impact of numeric landmark varies notably by
domain. For Block Grouping, Counters, and FO-Counters,

4https://ipc2023-numeric.github.io/results/presentation.pdf

Domain CD CD(NL) FD FD(NL)

Block Grouping 17 1 11 2
Counters 14 2 7 1
Delivery 20 20 5 4
Drone 3 2 4 5

FO-Counters 3 2 5 1
MPrime 12 14 19 16
Rover 4 4 4 4
TPP 19 17 0 0

Zenotravel 17 17 0 0

Table 2: Number of instances solved (coverage) depend-
ing on the use of numeric landmarks. NL (no landmark) in
parenthesis indicates that the landmark was not used.

numeric landmarks are essential for ν-ASNets to perform
well. This is expected, as on these domains the goal in-
cludes a heavy amount of numeric information, which the
network would be uninformed about without numeric land-
marks. On other domains, not providing the network with
numeric landmarks has little impact on coverage.

Related Work
Existing work on generalised planning is severely limited
when it comes to dealing with numeric information. Popular
approaches based on Qualitative Numeric Planning (QNP)
(Srivastava, Immerman, and Zilberstein 2011; Bonet and
Geffner 2020), can represent a fixed number of positive
numeric variables that can only be increased or decreased
by a positive non-deterministic amount in action effects,
and boolean combinations of comparisons of these variables
with 0 in action preconditions, initial states and goals. Other
approaches allow for incrementing or decrementing a finite
set of positive counters by a constant in a deterministic fash-
ion (Srivastava, Immerman, and Zilberstein 2010; Srivastava
et al. 2015). The more recent Generalised Integer Numeric
Planning (GLINP) (Lin et al. 2022) supports non-simple
numeric effects, but is limited to integer variables. In con-
trast our work support the full numeric fragment (level 2) of
PDDL2.1 (Fox and Long 2003), including nonlinear effects

640

(Scala et al. 2016a) and numeric variables whose number
grows with the number of objects. On the other hand, the
above works provide guarantees on the effectiveness of gen-
eralised policies, whereas our learning approach cannot.

Independently and concurrently to our work, Tariq, Valen-
zano and Soutchanski (2023) experimented with handling
numeric planning problems with the original ASNet policy
representation. They reduced the set of values each fluent
takes to a finite range, which they then manually discretised
into consecutive intervals, each represented by a new pred-
icate. Numeric conditions in the action schemas are then
compiled into a disjunction over these predicates. As Tariq
et. al observe, this approximation of the original numeric
problem creates a large number of related propositions for
each action, which leads to impractically large networks and
compromises the sparseness of the ASNets policy represen-
tation. The empirical evaluation conducted by Tariq et al.
only used four unseen test instances per domain. These are
only marginally larger than the training instances and solved
within less than a second by both ENHSP and ASNets. In
contrast, we have proposed an architecture that treats fluents
and comparisons as first-class citizens and explicitly reasons
about them. Its performance is competitive with ENHSP
over the latest numeric planning competition instances.

Conclusion and Future Work

We have introduced ν-ASNets and its variations, neural net-
work architectures for learning generalised policies for nu-
meric planning based on ASNets. The network is able to
reason directly about numeric values through fluent mod-
ules, and about numeric contexts through comparison mod-
ules. We also introduced dynamic exploration, which trains
ν-ASNets much faster than the original algorithm used by
ASNets, without harming the effectiveness of the learned
generalised policies.

Our work leaves significant room for future research. A
common trait in plans for numeric planning problems is the
repetition of actions. We believe that a network architecture
capable of not just predicting the action to apply, but also the
number of times to apply it, can be highly effective. Addi-
tionally, while our work has focused on numeric planning,
the method we use to construct comparison modules can in
principle be applied to other components of actions mod-
elled in PDDL, to include constructs such as action effects
and universal/existential quantifiers. This leads to a network
that can potentially learn generalised policies for a much
more expressive class of problems than numeric planning.

Acknowledgments

This work was supported by Australian Research Council
grant DP220103815, by the Artificial and Natural Intelli-
gence Toulouse Institute (ANITI) under the grant agreement
ANR-19-PI3A-000, and by the European Union’s Horizon
Europe Research and Innovation program under the grant
agreement TUPLES No. 101070149.

References
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2020. General-
ized Planning with Positive and Negative Examples. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 9949–9956.
Aguas, J. S.; Jiménez, S.; and Jonsson, A. 2021. Generalized
Planning as Heuristic Search. In International Conference
on Automated Planning and Scheduling (ICAPS), 569–577.
Bonet, B.; and Geffner, H. 2020. Qualitative Numeric Plan-
ning: Reductions and Complexity. J. Artif. Intell. Res., 69:
923–961.
Celorrio, S. J.; Aguas, J. S.; and Jonsson, A. 2019. A review
of generalized planning. Knowl. Eng. Rev., 34: e5.
Clevert, D.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and Accurate Deep Network Learning by Exponential Lin-
ear Units (ELUs). In International Conference on Learning
Representations (ICLR).
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. J. Artif. Intell. Res., 46: 343–412.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res., 20: 61–124.
Francès, G.; Corrêa, A. B.; Geissmann, C.; and Pommeren-
ing, F. 2019. Generalized Potential Heuristics for Classical
Planning. In International Joint Conference on Artificial In-
telligence (IJCAI), 5554–5561. ijcai.org.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In International Con-
ference on Automated Planning and Scheduling (ICAPS),
631–636.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In International Conference on Automated Planning and
Scheduling (ICAPS).
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating “Ignoring Delete Lists” to Numeric State Variables. J.
Artif. Intell. Res., 20: 291–341.
Hu, Y.; and Giacomo, G. D. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
International Joint Conference on Artificial Intelligence (IJ-
CAI), 918–923.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 8064–8073.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2022. The LM-Cut Heuristic Family for
Optimal Numeric Planning with Simple Conditions. J. Artif.
Intell. Res., 75: 1477–1548.
Leofante, F. 2023. OMTPlan: A Tool for Optimal Planning
Modulo Theories. J. Satisf. Boolean Model. Comput., 14(1):
17–23.
Lin, X.; Chen, Q.; Fang, L.; Guan, Q.; Luo, W.; and Su,
K. 2022. Generalized Linear Integer Numeric Planning.

641

In International Conference on Automated Planning and
Scheduling (ICAPS), 241–251.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
4384–4390.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016a.
Interval-Based Relaxation for General Numeric Planning.
In European Conference on Artificial Intelligence (ECAI),
655–663.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2020.
Subgoaling Techniques for Satisficing and Optimal Numeric
Planning. J. Artif. Intell. Res., 68: 691–752.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016b.
Numeric Planning with Disjunctive Global Constraints via
SMT. In International Conference on Automated Planning
and Scheduling (ICAPS), 276–284.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In International Conference on Automated Plan-
ning and Scheduling (ICAPS).
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2010.
Computing Applicability Conditions for Plans with Loops.
In International Conference on Automated Planning and
Scheduling (ICAPS), 161–168.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell., 175(2): 615–647.
Srivastava, S.; Zilberstein, S.; Gupta, A.; Abbeel, P.; and
Russell, S. 2015. Tractability of Planning with Loops. In
AAAI Conference on Artificial Intelligence (AAAI), 3393–
3401.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022. Learn-
ing General Optimal Policies with Graph Neural Networks:
Expressive Power, Transparency, and Limits. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 629–637.
Tariq, A.; Valenzano, R.; and Soutchanski, M. 2023. Ac-
tion Schema Networks for Numeric Planning. In ICAPS
2023 Heuristics and Search for Domain-Independent Plan-
ning Workshop.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. J. Artif.
Intell. Res., 68: 1–68.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies With Deep
Learning. In AAAI, 6294–6301.
Wang, R. X.; and Thiébaux, S. 2024. Code for the ICAPS-
24 paper “Learning Generalised Policies for Numeric Plan-
ning”. https://doi.org/10.5281/zenodo.10819937.

642

