
MAPF in 3D Warehouses: Dataset and Analysis

Qian Wang*1, Rishi Veerapaneni*2, Yu Wu2, Jiaoyang Li2, Maxim Likhachev2

1University of Southern California
2Carnegie Mellon University

pwang649@usc.edu, {rveerapa, yuwu3, mlikhach}@andrew.cmu.edu, jiaoyangli@cmu.edu

Abstract

Recent works have made significant progress in multi-agent
path finding (MAPF), with modern methods being able to
scale to hundreds of agents, handle unexpected delays, work
in groups, etc. The vast majority of these methods have
focused on 2D “grid world” domains. However, modern
warehouses often utilize multi-agent robotic systems that
can move in 3D, enabling dense storage but resulting in a
more complex multi-agent planning problem. Motivated by
this, we introduce and experimentally analyze the applica-
tion of MAPF to 3D warehouse management, and release
the first (see http://mapf.info/index.php/Main/Benchmarks)
open-source 3D MAPF dataset. We benchmark two state-of-
the-art MAPF methods, EECBS and MAPF-LNS2, and show
how different hyper-parameters affect these methods across
various 3D MAPF problems. We also investigate how the
warehouse structure itself affects MAPF performance. Based
on our experimental analysis, we find that a fast low-level
search is critical for 3D MAPF, EECBS’s suboptimality sig-
nificantly changes the effect of certain CBS techniques, and
certain warehouse designs can noticeably influence MAPF
scalability and speed. An additional important observation
is that, overall, the tested 2D MAPF techniques scaled well
to 3D warehouses and demonstrate how the MAPF commu-
nity’s progress in 2D can generalize to 3D warehouses.

1 Introduction
Multi-Agent Path Finding (MAPF) algorithms try to find
a set of collision-free paths for multiple agents that min-
imize their aggregate cost, usually the sum of their travel
times. These methods were initially motivated by computer
games (Silver 2005). Since most computer games require
agents traversing in 2D gridworlds, MAPF methods focused
on these domains. In the last decade, the rise of large ware-
houses involving many robotic pick-up and drop-off agents
has inspired more MAPF works that consider additional
challenges in these tasks, as well as warehouse-specific 2D
gridworld maps.

However, modern warehouses and robotic systems are
no longer constrained to 2D navigation. Technologies like

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A 3D warehouse where blue lines denote edges
that robots can traverse. There are six main map parameters:
aisle length, number of aisles, aisle gap, number of levels,
level gap, and number of elevators.

Attabotics,1, Retanus Robotics2, and others3 utilize robotic
agents that travel in 3D grids along rails. This enables dense
and customizable storage at the expense of a more complex
MAPF problem. Agents now have increased flexibility in
planning by reasoning about the z-axis, which in turn leads
to a substantially larger variety of paths and conflicts than
are possible in 2D scenarios. Additionally, certain MAPF
techniques that rely on 2D geometry are not applicable in
a 3D environment. Given these changes, it is unclear how
state-of-the-art MAPF problems will scale to such 3D ware-
house environments.

Our objective is straightforward; analyze how MAPF
methods work in realistic 3D warehouse scenarios. We try
to address the following questions: How do MAPF methods
scale in 3D? What are the unique challenges in 3D ware-
houses that are not explored in existing 2D literature? How
does the geometry of the 3D warehouse affect performance?

1https://www.attabotics.com/
2https://www.renatus-robotics.com/
3https://wh-automation.com/solutions

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

623

Before we can start answering these questions, we first
need to create realistic 3D scenarios. To this end, we ob-
tained an approximate 3D warehouse vertex-edge schematic
from an industry partner and created a parametrized 3D
warehouse dataset that emulates real-world warehouses.
Furthermore, unlike typical MAPF instances where agents
just travel from start to goal locations, 3D warehouse agents
typically travel from one bin location to a drop-off goal
location and then back to their original position to return
their bin. This returning step is an important distinction as
it changes the difficulty of the task. These “start-goal-start”
problems can be used to evaluate congestion at drop-off goal
locations by having multiple agents have the same drop-off
location, which occurs in practice. Succinctly, our main con-
tributions are the following:

1. Creating a realistic open-source 3D warehouse domain
(at http://mapf.info/index.php/Main/Benchmarks)

2. Showing how certain warehouse geometries (e.g. aisle
length) can significantly impact MAPF performance.
Also evaluating the effect of goal congestion on MAPF
performance.

3. Conducting a large ablation study of EECBS and dis-
covering how suboptimality plays a big role in the ef-
fectiveness of (EE)CBS improvements and how certain
(EE)CBS improvements (e.g. Safe Interval Path Plan-
ning, Multi-Value Decision Diagrams) impact perfor-
mance differently compared to existing 2D literature.

2 Related Work
2.1 Benchmark
The vast majority of MAPF methods are run on 2D grid-
world environments. A non-comprehensive but representa-
tive list of MAPF works developed and tested in 2D envi-
ronments are Conflict-Based Search methods (Sharon et al.
2015; Barer et al. 2014; Boyrasky et al. 2015; Li, Ruml,
and Koenig 2021; Li et al. 2021), priority-based methods
(Erdmann and Lozano-Perez 1987; Ma et al. 2019; Li et al.
2022), and other MAPF solvers (Lam et al. 2022). In their
corresponding experiments, these methods are all tested
on MAPF scenarios which originate from the Moving AI
benchmark by (Sturtevant 2012). These original Moving AI
maps consist of several types of 2D gridworld maps, such
as city maps, computer game maps, mazes, etc that were
then used for MAPF. Later on, warehouse grids were added
to more closely replicate MAPF robotic planning in ware-
house settings. Stern et al. (2019) describes these scenarios
in detail and notes that although there are different ways of
assigning start-goal pairs, these scenarios contain randomly
sampled start-goal pairs.

Recent research studies have also been extended to ac-
commodate agents with large geometric shapes and vol-
umes (Li et al. 2019b) or impose kinematic constraints over
agents’ move actions (Hoenig et al. 2017). These works con-
sider variations in agents’ size and actions where we con-
sider a variation in the dimensionality of the environment.

To the best of our knowledge, our work introduces the first
realistic (3D) warehouse dataset for MAPF. Our hope is that
this dataset will spur new methods that handle complexities

in 3D warehouses and serve as a benchmark similar to the
existing 2D MAPF datasets.

2.2 MAPF and Start-Goal-Start Problems
The two most common MAPF problem variants are one-
shot and lifelong. In one-shot MAPF, we are given a graph
and a set of agents with unique start and goal locations. We
must find paths for agents to reach their goal locations that
avoid obstacle collisions, vertex collisions (two agents at
the same location at the same timestep), and edge collisions
(two agents swapping locations at consecutive timesteps).
When agents reach their goal locations, they rest (with-
out incurring cost) until the solution terminates when all
agents reach their goal locations. Lifelong MAPF has ini-
tial start-goal locations similar to one-shot MAPF. However,
when an agent reaches its goal location, it is assigned a
new goal location instead of resting. Since goals are con-
stantly changing, lifelong MAPF planners almost always re-
quire receding horizon planning, i.e. they repeatedly re-plan
conflict-free partial paths instead of full paths as in one-shot
MAPF. This requires additional hyper-parameters on meth-
ods like partial-plan length (e.g. horizon) and re-plan fre-
quency which affects performance. Lifelong evaluation also
suffers from “starved” tasks where certain start-goal tasks
are not completed, which is not allowable in real warehouse
scenarios.

Start-goal-start problems (s-g-s problems) are a simpli-
fied version of the multi-goal sequence MAPF problem in-
troduced in Li et al. (2020) or multi-label sequence MAPF
problem introduced in Grenouilleau, Hoeve, and Hooker
(2021). We report results for standard start-goal problems
as is typical. We additionally choose to include s-g-s results
as it is more realistic and evaluate the effect of goal con-
gestion. We do not report lifelong MAPF as it introduces
replanning as agents reach goals, possible hyper-parameters
that require tuning like replanning frequency (our experi-
mental section already includes plenty of hyper-parameters),
and potentially task starvation which is not allowed in real
warehouses. Future work should look into lifelong MAPF
performance in 3D warehouses.

A nice practical aspect of planning start-goal-start is that
we can now easily control goal congestion by changing the
number of agents that share the same intermediate goal.
For example, we could have an “8 start-goal-start” problem
where 8 agents share the same intermediate goal location.
Controlling the number of agents sharing goals (e.g. to 4
or 16) allows us to manipulate (less or more) congestion in a
way not as easily possible if we just planned start-goal paths.
This also mimics real-world applications where robots usu-
ally have many start bins but few drop-off locations.

2.3 Modern MAPF Methods
There are several different state-of-the-art MAPF ap-
proaches that can be used to benchmark how existing meth-
ods perform on 3D scenarios, like EECBS (Li, Ruml, and
Koenig 2021), BCP (Lam et al. 2022), and MAPF-LNS2
(Li et al. 2022). EECBS is a bounded sub-optimal method
that employs the popular Conflict Based-Search framework
with a focal low-level search and an explicit estimation

624

high-level search. It additionally employs CBS improve-
ments like Symmetry Reasoning (Li et al. 2021), Priori-
tized Conflicts (Boyarski et al. 2015), Bypassed Conflicts
(Boyrasky et al. 2015), and others. Branch-and-Cut-and-
Price (BCP) finds solutions by using linear programming
and the general branch-cut-price framework for reasoning
over sets of paths. Both EECBS and BCP are complete and
bounded-suboptimal methods. On the other hand, MAPF-
LNS2 modifies prioritized planning (Erdmann and Lozano-
Perez 1987) to find paths with minimum conflicts and then
replans groups of conflicting agents to find a solution. Ad-
ditionally, MAPF-LNS2 incorporated a version of Space-
Interval Path Planning (SIPP) (Phillips and Likhachev 2011)
which speeds up the low-level planner by reasoning away
wait actions, and found this speeds up planning by 5× com-
pared to regular space-time planning. MAPF-LNS2 retains
no theoretical guarantees but was found to perform faster
than EECBS while having near-optimal solutions.

We chose to focus on EECBS and MAPF-LNS2 for
our initial benchmark as this provides us with a modern
bounded-suboptimal and a non-bounded method. Running
these methods on the 3D scenarios provides an accurate pic-
ture of how strong state-of-the-art MAPF methods scale to
this new problem setting.

3 3D Warehouse Benchmark Suite
To ensure practicality and real-world accuracy, we collabo-
rated with an industry-leading 3D warehouse company that
provided us with an actual 3D warehouse schematic. Lever-
aging this resource, we derived six key attributes that param-
eterized the 3D warehouses: aisle length, number of aisles,
aisle gap, number of levels, level gap, and number of eleva-
tors depicted in Figure 1.

Aisle Length: Aisles are depicted as elongated lines on
the x-axis whose length is defined as the number of vertices.

of Aisles: The total number of aisles in the x-y plane.
Aisle Gap: The y-axis vertices between adjacent aisles.
of Levels: The number of stacked levels in the z-axis.
Level Gap: The vertices between levels along the z-axis.
of Elevators (per aisle end): “Elevators” are depicted as

vertical bars located at both ends of the aisles to interconnect
levels along the z-axis. This sparse arrangement of elevators
mimics the real-world map. Note “elevators” are not active
elements and solely refer to vertical edges that 3D agents
can traverse by themselves.

Besides the six main attributes, we also attach two dense
grid structures at each end of the levels, which we refer to as
margins. In real-world warehouses, they are used as buffer
areas for robots to rest on while they are waiting for the pre-
vious agent to traverse the aisle, or used as placeholders for
non-moving robots. We keep the dimension of each margin
the same for every map. Agents are modelled to navigate this
3D warehouse by traversing connected edges at unit veloc-
ity (and each edge has length 1 by construction, so traversing
each edge takes 1 timestep).

We conducted experiments to identify the values for the
six parameters that would yield similar results to the real-
world map. Specifically, we found that the representative
values are as follows: aisle length = 50, number of aisles

= 10, aisle gap = 5, number of levels = 10, level gap = 5, and
number of elevators = 2. We ran EECBS and MAPF-LNS2
on the real map and this representative parameterized map
and validated that both algorithms produced similar results.

In order to investigate the diverse effects of different map
configurations on MAPF algorithms, we expand our anal-
ysis by generating 14 additional maps. The first 12 maps
are generated through systematic variations of individual pa-
rameters. For each of these maps, we selectively modify one
of the six parameters, either doubling or halving its value,
while keeping the remaining five parameters constant, fol-
lowing the specifications of the base map. This approach al-
lows us to discern the distinct influence of each parameter
on the MAPF algorithms’ behavior. The last two maps are
constructed by doubling or halving all six parameters.

By systematically generating these 14 additional maps,
we ensure a comprehensive exploration of the varying ef-
fects that different 3D map configurations can have on
MAPF algorithm performance. Additionally, this dataset
provides valuable insights for understanding algorithm be-
havior under diverse and representative scenarios.

4 General Implementation Changes
This section discusses general implementation changes for
3D MAPF and planning start-goal-start paths across all
MAPF planners. The next section discusses specific changes
required for EECBS.

We have two main sources of change that might require
modifying EECBS or MAPF-LNS2. First, running MAPF
on the 3D graph could require some algorithmic changes to
the single-agent planners or conflict-resolution algorithms.
Instead of finding (x, y, t) paths, we must find (x, y, z, t)
paths, which might seem like a combinatorially harder chal-
lenge. However, conceptually and implementationally, we
can think of our 3D graph as just a generic graph with ver-
tices v with corresponding edges to neighboring vertices v′.
In 2D, these vertices v have an associated (x, y), in 3D they
now have an associated (x, y, z). Regardless of 2D or 3D, we
are still searching over a (v, t) state space and thus require no
changes to the low-level or high-level search. Second, com-
puting start-goal-start paths could require changing how the
low-level planner works. This is easily done via small mod-
ifications to the state space and transition explained in the
next section.

4.1 Start-Goal-Start Paths
Most MAPF works just plan paths from start-goal locations.
However, many real-world warehouse applications require
the agent to pick up a bin from the start location, navigate to
a drop-off location, and then return back to the start location
to return the bin. We briefly describe how to change a MAPF
planner for start-goal-start paths but note these changes are
not novel Grenouilleau, Hoeve, and Hooker (2021); Li et al.
(2020).

We want the MAPF planner to directly plan “start-goal-
start” paths. This requires changing the state space from
(v, t) to (v, t, i) where i is a boolean indicating if we are
traveling either from start to goal (i = 0) or goal to start

625

(i = 1). The agent is not required to “hold” at the goal loca-
tion, it instead holds at the end of its path (so it will rest at
the start in the end).

This requires modifying the low-level planner for both
EECBS and MAPF-LNS2 as it must plan paths that reach
the goal and then navigate to the start. Implementationally,
our agent starts at (vstart, t = 0, i = 0) and must reach
(vstart, ∗, i = 1). i can only be switched to 1 when the
agent reaches (vgoal, ∗, i = 0). Thus, based on i, our search
should go towards vgoal or vstart. We can compute an accu-
rate heuristic ignoring constraints by using a backward Di-
jkstra that starts at (vgoal, ∗, i = 1).

5 Conflict Based Search Changes
EECBS is a bounded sub-optimal MAPF solver that em-
ploys a high-level search over Constraint Tree (CT) nodes
to resolve space-time conflicts (i.e. vertex, edge collisions)
in path proposals and a low-level search that proposes a new
path for a single agent given CT node space-time constraints.
By iteratively resolving conflicts in CT nodes, a goal CT
node will provide a solution (if there exists) free of conflicts.
Getting EECBS with all its optimizations working in the
3D scenario with start-goal-start paths requires some modi-
fications. Note that these modifications are mildly novel (as
prior work with multi-goal MAPF did not use these opti-
mizations), but are straightforward. MAPF-LNS2 does not
require any additional modifications other than the low-level
change described earlier.

5.1 Multi-Value Decision Diagram Changes
Multi-value Decision Diagrams (MDDs) are efficient data
structures that store all paths of length K between a start
and goal, where K is an input parameter based on the use-
case (Sharon et al. 2013). For our start-goal-start purposes,
the MDD is modified from finding start-goal paths of length
K to finding start-goal-start paths of length K (searches in
(v, t, i) space) similar to as done in Zhong et al. (2022).
MDDs are powerful data structures that reason about sets of
paths and are required for certain CBS improvements which
we discuss in the next section.

5.2 CBS Improvements
Recent works have created several improvements that can
speed up CBS. Several require modifications to work in the
3D setting as well as for start-goal-start path planning, while
others can work out of the box.

Directly usable. Bypassing conflicts (Boyrasky et al.
2015): This technique reasons that instead of creating chil-
dren N ′ CT nodes of CT node N , we can instead replace
N with N ′ if N ′ resolves a conflict and has cost(N ′) ≤
cost(N). Conceptually, this lets us produce smaller CTs and
improve performance. This technique does not need to be
modified and can be used out of the box.

Target reasoning (Li et al. 2021): Target reasoning occurs
when an agent I traverses over another agent J’s goal after
agent J reaches it and is resting at its goal location. Target
reasoning applies a constraint on agent J reaching its goal

CBS Improvement Effective in (2D) Our Work
Common Intuition (2D & 3D)

SIPP Yes Yes
Bypassing Conflict Yes Yes
Prioritized Conflicts Yes Depends on wso

Corridor Reasoning Yes Depends on wso

Target Reasoning Yes Yes
WDG Yes Depends on wso

Table 1: A summary of which CBS improvements are ben-
eficial. We found that EECBS’s suboptimality (wso) signifi-
cantly affects the utility of certain improvements in both 2D
and 3D. SIPP is much more useful in 3D than 2D scenarios.

location before or after a specific time. Target reasoning is
directly usable when applied to (vstart, ∗, 1).

Corridor reasoning (Li et al. 2021): This method detects
if agents are conflicting in a corridor (defined by a consec-
utive set of vertices with degree 2) and applies constraints
on when the agents can exit the corridor. This method can
directly be applied in the 3D workspace and start-goal-start
paths without changes.

Usable with changes to MDD. Prioritized conflicts (PC)
(Boyarski et al. 2015): PC determines which conflict the CT
node should decide to split on. It uses MDDs to determine if
splitting on a conflict will increase the child CT node’s cost
and prefers such conflicts. Since we are able to generalize
the creation of MDDs as described in Section 5.1, we can
use PC without further modifications.

Weighted Dependency Graph heuristic (WDG) (Li et al.
2019a): The WDG heuristic is an admissible heuristic for
the high-level search. It computes pair-wise MDDs and uses
an edge-weighted minimum vertex cover to compute the
heuristic value. Again due to Section 5.1, we can use this
without further modifications.

Not usable. Rectangular reasoning (Li et al. 2021): Rect-
angular reasoning reasons for conflicts that occur in rectan-
gular regions in 2D grid maps, and avoids a large number
of space-time conflicts by placing barrier constraints around
the entire rectangular region. This method is unfortunately
not usable in our 3D warehouse graph as the rectangular
logic is not applicable as we can travel in the z-axis.

6 Experimental Results
We aim to answer the following questions:
1. How do modern MAPF methods (EECBS and MAPF-

LNS2) scale to the 3D scenario as there are many more
potential paths and conflicts?

2. How do EECBS and MAPF-LNS2 hyper-parameters af-
fect performance?

3. How does goal congestion via start-goal-start problems
affect performance?

4. How do map parameters affect performance?

6.1 Method Results and Analysis
As described in Section 2, we specifically choose to
use EECBS and MAPF-LNS2 as they are state-of-the-art

626

EECBS Parameters Scenario Parameters
Start-goal 1 start-goal-start 2 start-goal-start 8 start-goal-start

wso Improvements Max # Slowdown Max # Slowdown Max # Slowdown Max # Slowdown

5

Best (SIPP+T+BP) 700 1 650 1 650 1 500 1
Best-SIPP 500 22.77 250 37.19 300 20.46 200 44.49

Best-Bypass 550 1.37 500 1.74 500 1.67 450 1.39
Best+PC 550 1.27 550 1.20 600 1.19 450 1.07
Best+CR 700 1.17 550 1.05 650 1.02 450 1.05

Best-Target 500 1.21 500 1.48 500 1.38 500 1.33
Best+WDG 600 1.26 500 1.28 650 1.25 450 1.17

1.02

Best (All) 170 1 70 1 50 1 30 1
All-SIPP 130 1.30 60 1.14 40 1.52 30 1.94

All-Bypass 130 1.00 70 1.07 40 1.06 30 0.86
All-PC 130 0.84 50 0.95 50 0.51 30 0.88
All-CR 110 1.02 70 0.64 40 1.07 30 0.20

All-Target 100 2.44 50 1.12 40 1.04 30 0.35
All-WDG 170 0.84 70 0.94 40 1.00 30 1.17

Table 2: We conduct an “add-or-substract-one” ablation study of CBS’s improvements across different EECBS wso subopti-
malities and scenario configurations. We choose the “Best” configurations (SIPP+Target+Bypass) and “All” improvements as
the baseline for wso = 5 and wso = 1.02 respectively. We experiment with SIPP (Safe Interval Path Planning), Bypass/BP
(Bypass Conflicts), PC (Prioritized Conflicts), CR (Corridor Reasoning), Target/T (Target Reasoning), and WDG (Weighted
Dependency Graph high-level heuristic). For each configuration, we ran start-goal problems and start-goal-start problems with
group size 1, 2, 8. For each scenario, we ran a different number of agents in step sizes of 50 (wso = 5) and 10 (wso = 1.02),
and stopped when they timed out (60 seconds) on over half their seeds (10 total seeds, needs to fail ≥ 5 to stop). We report the
largest number of agents with ≥ 50% success rate in the “Max #” column, and the median relative slowdown across successful
runs compared to the corresponding baseline. Since each row contains adding/removing (+/-) certain parameters (e.g. Best-
SIPP means SIPP was removed from Best, resulting in T+BP), a slowdown > 1 means that making this change hurts EECBS
performance (as doing so slows EECBS). We highlight that the suboptimality significantly the impact of certain improvements
(e.g. PC, WDG).

bounded suboptimal and non-bounded methods, respec-
tively. Additionally, EECBS contains several Conflict-Based
Search improvements that have been effective in 2D search
but it is unclear how these will help in our 3D domain. We
report median statistics across 10 random seeds, with each
seed containing a unique set of start and goal locations sam-
pled from a uniform distribution.

EECBS We examine the effectiveness of the six EECBS
improvements: SIPP (Safe Interval Path Planning), By-
pass/BP (Bypass Conflicts), PC (Prioritized Conflicts), CR
(Corridor Reasoning), Target/T (Target Reasoning), and
WDG (Weighted Dependency Graph high-level heuristic).
A summary of their impact on performance under different
suboptimalities is given in Table 1.

We choose to use two suboptimalities wso = 1.02 (often
used in the literature) and wso = 5 in this study. We choose
wso = 5 for two reasons. First, existing unbounded meth-
ods, e.g. MAPF-LNS2 (Li et al. 2022) and LaCAM (Oku-
mura 2022) compare against EECBS with wso = 5 as a fair
comparison (they deemed that suboptimality should be suf-
ficiently high). Second, in real-life warehouse settings with
many agents, Table 2 shows that a larger suboptimality is re-
quired for scalability and significantly faster planning time.

For a small EECBS suboptimality (wso = 1.02), all six
improvements demonstrate clear benefits as shown in Table
2 where the first row in entry wso = 1.02 produces the best
max # agent result, which is consistent with existing findings
in 2D scenarios (Li, Ruml, and Koenig 2021). However, as

the suboptimality is increased to 5, PC, CR, and WDG neg-
atively impact runtime. We verified that this behavior also
occurred in a 2D map (warehouse-10-20-10-2-1) when wso

is changed from 1.02 to 5. Existing work has only explored
the effect of CBS improvements in the low suboptimality
regime, and our study of these parameters in the high sub-
optimality regime with the warehouse context leads to dif-
ferent optimal parameter settings. We encourage the reader
to take a look at Appendix A which contains a comprehen-
sive analysis of individual EECBS parameters and wso. The
only notable difference between 2D and 3D we found with
wso = 5 is that using SIPP in 3D yields a runtime speedup
of 20× and above while (Li et al. 2022) reports speedups
of roughly 5× in 2D scenarios. In general, this highlights
that making careful choices regarding which parameters to
activate becomes crucial in attaining optimal performance.

Our start-goal-start (s-g-s) results show that CBS im-
provements have a similar effect in start-goal-start across
multiple group sizes and with regular start-goal problems.
Additionally, we see that under wso = 1.02, s-g-s problems
are much harder than start-goal problems shown from a large
difference in max # agents achieved between the start-goal
and 1 start-goal-start column. We see goal congestion affects
the scalability of EECBS shown by the decrease in max #
agents across group sizes of 1, 2, and 8.

MAPF-LNS2 Table 3 compares “LNS2” (MAPF-LNS2
with SIPP), “LNS2-” (MAPF-LNS2 without SIPP), and
“EECBS” (EECBS with wso = 5, SIPP, BP, and Target)

627

Method Start-goal 1 s-g-s 2 s-g-s
Max # Slow Max # Slow Max # Slow

LNS2 1250 1 650 1 700 1
LNS2- 500 27.7 250 7.48 250 14.1
EECBS 700 1.80 650 1.22 650 1.19

8 s-g-s 32 s-g-s 64 s-g-s
LNS2 650 1 450 1 450 1
LNS2- 250 35.0 100 12.6 150 20.5
EECBS 500 1.19 400 1.04 450 0.86

Table 3: We compare LNS2 with SIPP (LNS2), LNS2 with-
out SIPP (LNS2-), and EECBS wso = 5 with the best im-
provements from Table 2 on different start-goal and start-
goal-start with different group sizes g. The “Max #” column
is the maximum number of agents where the method has
a success rate ≥ 50% across 10 seeds with a timeout of 1
minute. The “Slow” column is the relative runtime with the
LNS2 row (e.g. a slow of 2.56 means it took 2.56× longer to
plan a path than LNS2). We see that removing SIPP dramat-
ically slows down search and that EECBS performs around
1.8× slower for easier problems but starts performing simi-
larly to LNS2 when g becomes large.

across start-goal and g start-goal-start problems. The “Max
#” values are the maximum numbers of agents that the plan-
ner can solve in ≥ 50% of the 10 seeds with a 1-minute time-
out, while “Slowdown” is the median relative slowdown in
runtime comparing against “LNS2”. We first see that SIPP
significantly speeds up performance in LNS2 by approxi-
mately 20× on average. Additionally, we see that although
EECBS is just 1.8× slower on start-goal instances on solved
start-goal problems, LNS2 is able to scale significantly bet-
ter and solve 1250 agents while EECBS struggles after 700.

6.2 Goal Congestion Analysis
We investigate how goal congestion through g start-goal-
start problems (where g agents go to the same intermediate
goal location) differs from that of regular start-goal prob-
lems. Figure 2 depicts how the group size (the number of
agents per intermediate goal location) impacts path length
for EECBS and LNS2. We provide 2∗ the start-goal loca-
tion as a comparison if start-goal-start paths simply copied
start-goal paths on their way back. We see for small g that
this is roughly the case as they hug the 2∗ yellow dotted
line. However, as g increases ≥ 8, both methods need to
find longer solutions, suggesting that the problems are get-
ting harder. Additionally, we see that LNS2 performs a lit-
tle worse than EECBS for low g and starts finding highly
suboptimal paths for g = 32, 64. This highlights a possible
drawback with using prioritized planning as LNS2’s under-
lying low-level planner, which in these situations is forced to
take long detours when congestion is high. This also high-
lights how start-goal-start problems can be practical tools in
figuring out how different methods perform under different
levels of congestion.

6.3 Benchmark Results
Figure 3 presents a comprehensive analysis of the scalability
of the MAPF-LNS2 and EECBS algorithms across 15 maps
by examining the maximum number of agents achieved from

Figure 2: Our 3D scenarios have two different axes of
change, the total number of agents as well as the start-goal-
start group/congestion size g. We plot the average agent path
cost of successful seeds when running EECBS (dashed) and
LNS2 (solid) on different group sizes g. Each color corre-
sponds to a unique group size. We plot the solution cost of
start-goal problems in solid yellow, and 2∗ the cost in dotted
yellow to provide context. We see that for low group sizes,
e.g. 4, even 8, the path cost does not increase substantially
and stays fairly close to the 2∗ expectation. However, as con-
gestion at goals becomes large (g ≥ 16), agents start taking
large detours/waits causing the path cost to increase substan-
tially. Comparing the dashed (EECBS) and solid (LNS2)
lines within each color, we see LNS2’s solution cost de-
grades as g becomes large g = 32, 64, where LNS2 starts
finding large suboptimal paths while EECBS is able to find
significantly shorter paths.

different group sizes. To eliminate the confounding influ-
ence of varying map sizes, we present the data in two ways:
the left figures employ the maximum number of agents as
the y-axis, while the right ones use the maximum density
of agents (i.e., the ratio of the maximum number of agents
to the map size). We observe that the lines decrease sharply
from group size 0 to group size 1, and a shallow slope after
group size 1. This indicates that any start-goal-start problem
is much harder than the goal-start problem, and congestion
caused by larger group sizes does not hugely hinder perfor-
mance compared to that caused by smaller group sizes.

Figure 4 shows the normalized solution cost (the ratio of
the final sum of cost to the initial sum of cost) at different
agent densities across all maps. Higher values mean that we
need to find longer paths to avoid conflicts. It is interesting
to note that the relationship between cost and agent density
is roughly linear in most cases. Table 4 offers a perspective
on the impact of map parameters on algorithmic runtime for
200 agents on start-goal problems. Note that the change in
map size affects the agent density and can be a confounder
of the relative speedup in relation to the base map.

Together these visualizations describe how the map con-
figuration affects performance. Specifically, we see that aisle

628

Figure 3: We plot across different group sizes (0 denotes
start-goal) among all maps. Each colored line represents a
unique map, e.g. longAisles refers to the map where the aisle
length is doubled. The left subplots show the absolute max-
imum number of agents achieved, and the right ones show
the ratio of max # of agents to the total map size measured
as the number of nodes.

Figure 4: The y-axis of these figures represents the ratio of
the final sum of cost to the initial sum of cost denoted as
normalized solution cost. We only show the plots for group
size 0 as it shows a similar trend with all other group sizes.
The x-axis denotes the density of agents (# of agents over
map size) and is capped at a density of 0.075. The different
colored lines represent different maps. They clearly show
that longer aisle length increases solution cost.

length has the biggest impact affecting speedup (Table 4),
solution quality (Figure 4), and scalability (Figure 3). For
any 3D warehouse designer, decreasing aisle length seems
to boost performance across all metrics. Another interest-
ing parameter is the number of elevators which noticeably
impacts solution cost and speedup. This could imply that el-
evators are a computational bottleneck (e.g. many collisions
occur here) in the search algorithms.

Most existing work cast their focus on how different at-
tributes of algorithms affect performance. We hope this anal-

Change in Map Map EECBS LNS2
Parameters Size Speedup Speedup

base 1.0 1.0 1.0
aisle length×2 1.38 0.48 0.31
aisle length/2 0.81 2.00 4.63

aisles×2 2.05 0.97 1.85
aisles/2 0.48 0.72 0.84

aisle gap×2 1.41 0.91 1.17
aisle gap/2 0.75 0.79 1.03
levels×2 2.02 0.89 1.55
levels/2 0.49 0.78 0.61

level gap×2 1.14 1.07 0.86
level gap/2 0.92 1.03 1.19

elevators×2 1.14 1.21 1.82
elevators/2 0.93 0.96 0.72

∀ × 2 9.09 0.43 0.45
∀/2 0.11 0.22 0.29

Table 4: A summary of how different map parameters affect
performance on 200-agent start-goal problems. The first col-
umn varies each of the six map parameters by doubling or
halving it. The last two rows double and half all six param-
eters. The second column describes the relative change of
the number of map nodes to that of the base map. The third
and fourth columns show the runtime speedup for running
EECBS and MAPF-LNS2 respectively.

ysis motivates future work to investigate manipulating ware-
house structures to gain better performance.

7 Conclusion and Future Work
The main goal of our work is to create a realistic 3D ware-
house benchmark and evaluate how existing MAPF meth-
ods perform across different realistic scenarios. We found
that specific warehouse configurations exert a substantial in-
fluence on algorithmic performance. We additionally dis-
covered that the suboptimality of EECBS has implications
for the effectiveness of CBS-based enhancements. MAPF-
LNS2 demonstrates strong scalability, yet faces challenges
with solution costs under heightened congestion which we
were able to manipulate via our start-goal-start scenarios
that are frequently encountered in warehouse environments.
Overall we find that both EECBS and MAPF-LNS2 can
scale well to our 3D warehouse scenarios, which is gener-
ally good news to the MAPF community as it shows that
existing methods solely evaluated in 2D can generalize to
new domains. We see many exciting directions to build off
this work.
Evaluating more MAPF methods and variants: Recent
methods like LaCAM (Okumura 2022) have shown impres-
sive scalability on 2D environments at the expense of path
cost. It is unclear how they will work in 3D warehouses with
goal congestion. Likewise evaluating methods and hyper-
parameters for lifelong MAPF could produce meaningful in-
sights on their behaviour and shortcomings.
Speeding up MDD creation: Our results showed that con-
structing MDDs is a bottleneck for using certain CBS opti-
mizations, and is not practical when scaling to large num-
bers of agents. Future work should figure out efficient ways

629

to create MDDs or use them more selectively.
Generalizing rectangular reasoning: Rectangular reason-
ing could potentially be generalized to 3D geometry. Careful
consideration is required as the 3D “rectangle” may not be
fully connected as in our warehouses.
Developing specialized techniques for handling goal con-
gestion: We saw that goal congestion can negatively affect
performance, especially for MAPF-LNS2. Developing tech-
niques like special constraints or developing conventions
(e.g. always entering/leaving the goal along specific edges
near the goal) could improve goal congestion performance.
Warehouse structure optimization: Our analysis showed
how the aisle length and elevators have outsized impacts on
performance. Additional warehouse structure like elevators
in the middle could have non-trivial impacts. Directed edges
could also decrease goal congestion degradation.
Drop off location optimization: Given a warehouse struc-
ture, optimizing the (goal) drop-off locations could reduce
start-goal-start congestion and boost overall performance.
Using Machine Learning for 3D MAPF: Nearly all cur-
rent machine learning approaches for MAPF have been de-
signed for 2D environments. A crucial design in their models
is inputting the graph as an image and using CNN architec-
tures. A 3D warehouse renders CNNs useless and requires
non-trivial consideration of what the inputs and network ar-
chitecture should be. Additionally, it is possible that goal
congestion is a specific task that learned models could ex-
ceed as they could potentially learn non-trivial congestion-
avoiding behavior and coordination.

A EECBS Analysis
We recap Table 2 and then discuss our additional analysis.

Apart from the actual high and low-level searches,
EECBS can utilize the many different CBS improvement
mechanisms that have been robustly validated in 2D grid-
worlds as listed in Section 5.2. Table 2 shows a large ab-
lation study on the base map where we remove or add a
single CBS optimization to analyze its effect on perfor-
mance. We ran the same experiments on a 2D warehouse
map (warehouse-10-20-10-2-14) and briefly verified simi-
lar results except for SIPP described later. For EECBS with
wso = 5, we found that SIPP+BP+Target performed the best
and used it as the reference method accordingly (top row),
and for wso = 1.02, we found that all improvements en-
abled performed the best. Each row consists of experiments
done over 4 different scenario settings. The first “start-goal”
column denotes results run on start-goal problems, while the
rest three are g start-goal-start problems which denote that g
agents share the same intermediate goal locations. For each
of these problem settings, we ran an increasing number of
agents in step-sizes of 50 for wso = 5 and step-sizes of
10 for wso = 1.02 and reported two aggregate statistics.
The “Max #” column is the maximum number of agents that
could be run with ≥ 50% success rate over 10 seeds within
the 60-second timeout. The “Slowdown” column is the rel-
ative median slowdown of the addition/removal of a single

4https://movingai.com/benchmarks/mapf/warehouse-20-40-
10-2-1.pdf

wso Improvements # atp # succ % Overhead

5

SIPP N/A N/A 24.67
Bypass 482 59 N/A

PC 140 1 9.25
CR (≤650) 257 0 5.17
CR (700) 690 17 1.42

Target (≤300) 39 0 0.7
Target (350-700) 381 35 1.6

WDG 268 N/A 6.55

1.02

SIPP N/A N/A 12.1
Bypass 7151 15 N/A

PC 3615 1951 6.72
CR 3637 275 32.16

Target 3637 21 0.63
WDG 7120 N/A 19.59

Table 5: Each CBS improvement is associated with 3 met-
rics, the number of attempts made to detect/build (# atp),
the number of successful activations from those attempts (#
succ), and the corresponding percentage of runtime with re-
spect to the total runtime (% Overhead). We present two
groups of statistics one for each suboptimality aggregated
across all successful runs on the base map to reveal the
change of each parameter.

optimization with respect to the referenced best configura-
tion.

We also provide an EECBS parameter improvement deep-
dive in Table 5 for wso = 5, 1.02 on the base 3D map across
successful agents. Statistics were aggregated across all suc-
cessfully solved start-goal problems from 50 to 1000 agents
(step size 50). Each row describes one of the improvements
with its associated numerical insight in the right 3 columns,
e.g. Prioritizing Conflict takes an average of 140 attempt-
s/checks with only 1 actually being a cardinal conflict and
the total overhead occupies 9.25% of the total runtime when
running EECBS wso = 5 (Best+PC). We follow the results
from Tables 2 and 5 with an individual EECBS parameter
analysis.

SIPP—Removing SIPP dramatically hurts performance
by lowering the max # of agents and drastically slowing
down runtime. Additionally, SIPP is more impactful in the
high suboptimality than the low suboptimality instances as
using SIPP in EECBS with wso = 5 gets speedups of 20×
and above while in EECBS with wso = 1.02 reports the
speedup is below 2×. This is because the high suboptimal-
ity problems shift attention from the high level to the low
level, thus, having a fast low-level planner can boost per-
formance significantly. SIPP’s percent overhead seems large
but is misleading. SIPP’s overhead ranges between 0.1 to 2
seconds, therefore SIPP’s percent overhead is large on easy-
to-solve problems (e.g. total runtime less than 2 seconds) but
is small on difficult problems with more agents.

Bypass—Bypassing conflicts is another generally bene-
ficial optimization, especially in high suboptimality prob-
lems. This is because the high suboptimality allows a higher
chance for a child CT node to satisfy as a valid BP conflict,
producing a high success rate (59 out of 482). In low subop-
timality, BP makes much fewer successful attempts (15 out
of 7151) due to the lower chance of being pruned. More-

630

over, BP only requires a negligible detection time, which is
mainly why it’s beneficial for different suboptimalities.

Prioritized Conflicts—Adding prioritized conflicts hurts
performance in high suboptimality wso = 5, but benefits
performance in low suboptimality wso = 1.02. Prioritized
conflicts requires constructing an MDD which in 3D is a
large overhead (9.25% of runtime) that outweighs its ben-
efits as it is barely used (1 out of 140 is successful) in
high suboptimality problems. However, PC is still useful in
small suboptimality problems due to a much higher activa-
tion rate (1951 out of 3615) so that the benefits outweigh the
overhead (6.72%). Similar behavior was observed in the 2D
warehouse, but not investigated in depth. In some particu-
lar problems in 3D with a large number of agents, creating
the MDD takes an incredible amount of time shown in our
experiments that are not shown in the tables.

Corridor Reasoning—Adding corridor reasoning hin-
ders performance to a small extent in high suboptimality
wso = 5, but greatly benefits performance in low subopti-
mality wso = 1.02. Even though the 3D warehouse seems
to have many corridors, Table 5 shows they are barely used
(0 corridor conflict is detected until reaching 700 agents) in
wso = 5. This occurs due to EECBS’s high suboptimality
which allows agents to traverse other corridors and prevent
conflicts. However, this improvement does show effective-
ness in low suboptimality 3D scenarios (275 out of 3647
conflicts are activated), especially in the start-goal problems.
This is because the occurrence of corridor conflicts takes
place more often when more agents are present. Thus, an
easier problem (start-goal) enables a higher allowance of
agents for which corridor reasoning can be effective. In ad-
dition, there exist some particular hard problems for which
detecting corridor conflicts causes a drastic runtime slow-
down. These outliers drag the average overhead to 32.16%
in wso = 1.02.

Target Reasoning—Removing Target Reasoning hurts
performance, especially seen in smaller group-size prob-
lems. Table 5 shows that when we have a problem with ≤300
agents (Target (≤300)), 0 out of the 39 attempts are success-
ful. On the other hand, when we have a problem with 350-
700 agents (Target (350-700)), 35 out of the 381 attempts
are successful on average. We deduce that similar to corri-
dor conflicts, target conflicts are heavily distributed on the
problems that contain more agents.

Weighted Dependency Graph Heuristic—Adding the
WDG heuristic decreases performance under high subop-
timalities. This is because there is no need to build more
informative heuristic information when the suboptimality is
large. In addition, there exists some particular complex prob-
lem for which to build a WDG that causes a drastic runtime
slowdown.

B Formulation of 3D Maps
Unlike 2D environments which are typically represented by
2D voxels (i.e. grid cells), the 3D environment is represented
via an adjacency list due to its relatively sparse nature. Each
node has a unique id and (x, y, z) location, while each edge
has a (startNodeId, endNodeId) and a boolean specifying
whether it is a bi-directional edge or not. Table 6 shows an

NodeID X Y Z
0 1.2 3.5 2.2
1 1.2 4.4 2.2
2 1.2 4.4 1.1
3 3.1 3.5 2.2

EdgeID Start End Bidirectional
0 0 1 True
1 0 2 False
2 1 2 True

Table 6: Examples of node and edge information that de-
fine a 3D scenario. Edges are defined by their start and end
NodeIDs. Note that in our warehouse scenario, all edges are
grid-aligned but this is not a requirement for arbitrary 3D
scenes.

example of some grid-aligned nodes and edges that can de-
fine a 3D scenario. Our 3D warehouses have all bidirectional
grid-aligned edges which are unit-length.

Acknowledgements
The authors would like to thank their industry partner for
providing their 3D warehouse environment. R.V. also thanks
his labmates, and V.J. for her motivation. This material
is partially supported by the National Science Foundation
Grant IIS-2328671.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Seventh Annual
Symposium on Combinatorial Search.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin,
D.; Betzalel, O.; and Shimony, E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, 740–746. AAAI Press.
Boyrasky, E.; Felner, A.; Sharon, G.; and Stern, R. 2015.
Don’t Split, Try To Work It Out: Bypassing Conflicts in
Multi-Agent Pathfinding. Proceedings of the International
Conference on Automated Planning and Scheduling, 25(1):
47–51.
Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2(1): 477–521.
Grenouilleau, F.; Hoeve, W.-J. v.; and Hooker, J. N. 2021.
A Multi-Label A* Algorithm for Multi-Agent Pathfinding.
Proceedings of the International Conference on Automated
Planning and Scheduling, 29(1): 181–185.
Hoenig, W.; Kumar, T.; Cohen, L.; Ma, H.; Xu, H.; Ayanian,
N.; and Koenig, S. 2017. Summary: Multi-Agent Path Find-
ing with Kinematic Constraints. 4869–4873.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J.
2022. Branch-and-cut-and-price for multi-agent path find-
ing. Computers & Operations Research, 144: 105809.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path
Finding via Large Neighborhood Search. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(9): 10256–
10265.
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding

631

with Conflict-Based Search. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, 442–449. International Joint Conferences
on Artificial Intelligence Organization.
Li, J.; Harabor, D.; Stuckey, P. J.; and Koenig, S. 2021. Pair-
wise Symmetry Reasoning for Multi-Agent Path Finding
Search. CoRR, abs/2103.07116.
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Li, J.; Surynek, P.; Felner, A.; Ma, H.; Kumar, T. K. S.;
and Koenig, S. 2019b. Multi-Agent Path Finding for Large
Agents. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01): 7627–7634.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’20, 1898–1900. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. 7643–7650. AAAI Press.
Okumura, K. 2022. LaCAM: Search-Based Algorithm for
Quick Multi-Agent Pathfinding. arXiv:2211.13432.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. In 2011 IEEE In-
ternational Conference on Robotics and Automation, 5628–
5635.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195: 470–495.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, AIIDE’05, 117–122. AAAI
Press.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symposium on Com-
binatorial Search (SoCS), 151–158.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144 – 148.
Zhong, X.; Li, J.; Koenig, S.; and Ma, H. 2022. Optimal and
Bounded-Suboptimal Multi-Goal Task Assignment and Path
Finding. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), 10731–10737.

632

