
Decoupled Search for the Masses:
A Novel Task Transformation for Classical Planning

David Speck1,2, Daniel Gnad1
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Abstract

Automated problem reformulation is a common technique in
classical planning to identify and exploit problem structures.
Decoupled search is an approach that automatically decom-
poses planning tasks based on their causal structure, often sig-
nificantly reducing the search effort. However, its broad ap-
plicability is limited by the need for specialized algorithms. In
this paper, we present an approach that embodies decoupled
search for non-optimal planning through a novel task trans-
formation. Specifically, given a task and a decomposition, we
create a transformed task such that the state space of the trans-
formed task is isomorphic to that of decoupled search on the
original task. This eliminates the need for specialized algo-
rithms and allows the use of various planning technology in
the decoupled-search framework. Empirical evaluation shows
that our method is empirically competitive with specialized
decoupled algorithms and favorable to other related problem
reformulation techniques.

Introduction
Classical planning is concerned with finding a sequence of
actions that transforms the initial state of a problem into a
desired one. To solve planning tasks, a representation is re-
quired that allows to search for a solution within the induced
state space. Both theory and practice show that the way these
problems are represented has a significant impact on the per-
formance and success rate of planning approaches.

In domain-specific settings, problem reformulations can
be approached in a very targeted way. Common examples
include solving puzzles such as the Rubik’s Cube, where
the search is not over atomic actions but over macro actions
(Korf 1997). Similarly, in the design of algorithms for ma-
trix multiplication, the search is often not in the space of
arithmetic instructions, but encapsulated as a tensor decom-
position (Fawzi et al. 2022; Speck et al. 2023).

It is well-known that classical planning is PSPACE-
complete in general (Bylander 1994). Nevertheless, the rep-
resentation and modeling of a problem can significantly
affect practical performance due to aspects like acciden-
tal complexity (Haslum 2007). Thus, problem reformula-
tion is very relevant also in domain-independent planning
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with the underlying idea of exploiting the inherent struc-
ture of the planning problem. Reformulation can yield an
alternative state space that may differ significantly in size
and structure from the original one, while at the same time
facilitating search. An example of this is the merge-and-
shrink task reformulation, which was designed to search
in factored transition systems (Torralba and Sievers 2019).
In this work, we show that decoupled state-space search,
which is based on an alternative state representation, simi-
lar to binary decision diagrams (Bryant 1986; Torralba et al.
2017), can also be interpreted as a task reformulation. De-
coupled search automatically decomposes a planning prob-
lem into conditionally independent leaf components with a
synchronizing center factor that interacts with the leaves, al-
lowing the search to exploit this causal relationship (Gnad
and Hoffmann 2018). A major drawback of techniques like
the merge-and-shrink reformulation and decoupled search
is that they require specialized algorithms and implementa-
tions, because most methods are tailored to established plan-
ning formalisms. This often leads to challenges in transfer-
ring knowledge and novel techniques to these approaches.

In this paper, we show that it is possible to simulate de-
coupled search for non-optimal planning via a task transfor-
mation within the widely supported finite-domain represen-
tation formalism (FDR) (Helmert 2009). This alleviates the
need for specialized algorithms and enables the full toolbox
of planning technology in the decoupled-search framework.
More precisely, we demonstrate that given a SAS+ planning
task (a subset of FDR) (Bäckström and Nebel 1995), we can
decompose the task as usual for decoupled search and cre-
ate a FDR planning task for which the induced state space is
isomorphic to that of decoupled search on the original task.
Thus, a search algorithm on the transformed planning task
will behave in the same way as its native decoupled search
counterpart. We further show that a task reformulation by
Miura and Fukunaga (2017) is closely related to our work
and can be placed in the framework of decoupled search. We
show that our approach generalizes it in several dimensions.

Our experiments with different planning techniques
demonstrate that, just as specialized decoupled-search algo-
rithms, our task transformation performs favorably to search
on the original SAS+ representation and to other reformu-
lations techniques in multiple domains. It is even competi-
tive with a native implementation on a large number of do-
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mains. This highlights the versatility and usefulness of our
approach, which embodies the idea and workings of decou-
pled search through a task transformation.

Background
We next provide the necessary background for our work by
introducing classical planning and decoupled search.

Classical Planning
Each planning task consists of variables describing states.

Definition 1 (Variables and States). V is a set of state vari-
ables (primary variables), each v ∈ V with a finite domain
Dv . D is a set of binary derived variables (secondary vari-
ables) d ∈ D with domain Dd = {0, 1} and default value
0. A partial state is a consistent assignment to variables in
V ∪D. A state is a complete and consistent assignment to all
variables in V , and an extended state is an assignment to all
variables in V ∪ D. By S we refer to the set of all states.

In the context of partial variable assignments, we some-
times denote the variable-value pair (v, x) by writing v = x,
and for binary variables we also use v to denote the variable-
value pair (v, 1) and ¬v to denote (v, 0). For a partial
state p we denote the subset of variables defined in p by
V (p) ⊆ V ∪ D. Furthermore, we denote s[L] for a par-
tial state s and a set of variables L ⊆ V ∪ D to repre-
sent the restriction/projection of s onto the variables L, i.e.,
s[L] = {(v, x) ∈ s | v ∈ L} and s(v) = x for the assign-
ment of v to x made in s.

Planning operators encode the transitions between states.

Definition 2 (Operators). O is a set of operators where each
operator o ∈ O is a triplet ⟨pre(o), eff (o), ceff (o)⟩. The
precondition pre(o) is a partial state over V ∪ D, the effect
eff (o) is a partial state over V , and ceff (o) is a set of condi-
tional effects (cond ▷ v = x), where cond is a partial state
over V ∪ D, v ∈ V is a primary variable, and x ∈ Dv .1

We say that an operator o ∈ O affects a variable v ∈ V if
it has an effect on it, formally v ∈ V (eff (a)).

Axioms serve as a means of defining a background theory
that describes specific predicates based on other predicates.

Definition 3 (Axioms). A is a set of axioms a ∈ A of the
form a = h ← b, where the head h is a value assignment
of 1 to a derived variable d ∈ D, i.e, h = (d, 1) (or just
h = d), and the body b is a partial state over primary and
secondary variables V ∪ D.

A set of axioms A is partitioned into layers A1 ≺ · · · ≺
Ak. The layer of an axiom is defined by the layer of its head
which is determined by a partition of the set of derived vari-
ables into subsets D1 ≺ · · · ≺ Dk. We assume that this
partition forms a stratification, i.e., that for all i ∈ [k], and
for each di ∈ Di, it holds that (1) if dj ∈ Dj appears in
the body of an axiom with head di, then j ≤ i, and (2) if

1We assume well-formed effects, meaning that multiple condi-
tional effects assigning different values to the same variable cannot
trigger in the same state, and unconditional effects do not assign
different values to variables than the conditional ones.

dj ∈ Dj appears with its default value dj = 0 (so its nega-
tion ¬dj) in the body of an axiom with head di, then j < i.

The semantics of axioms are defined by the standard strat-
ified semantics (Apt, Blair, and Walker 1988; Thiébaux,
Hoffmann, and Nebel 2005). Given a state s ∈ S, the val-
ues of the primary variables are preserved, while the val-
ues of the derived variables d ∈ D are set to their default
value (false), i.e., ¬d. Then, a fixed-point computation is
performed for each axiom layer in turn to determine the fi-
nal values of the derived variables (Helmert 2009): For each
axiom d ← b in layer A1, d is set to 1 if b evaluates to true.
This process is repeated until no more variable changes oc-
cur. The values of the secondary variables defined in layer
i are then fixed, and the computation proceeds to the next
layer. Finally, the evaluated derived variables together with
the state s form the unique extended state A(s).

With this, we can define a planning task in finite-domain
representation as follows (Helmert 2009):
Definition 4 (FDR Planning Task). A FDR planning task is
a tuple Π = ⟨V ,D, I,G,O,A⟩, where V denotes a set of
primary variables, D denotes a set of secondary variables,
I denotes the initial state, G denotes the partial goal state,
O denotes a set of operators, andA denotes a set of axioms.

An operator o ∈ O is applicable in a state s ∈ S if
pre(o) ⊆ A(s). The result of applying the operator o to
a state s is a state t = sJoK, where t(v) = x for all
(v, x) ∈ eff (o), t(v) = x for all (cond ▷ v = x) ∈ ceff (o)
with cond ⊆ A(s), and t(v) = s(v) for all variables that do
not have such effects. Similarly, we define the application of
an operator to partial states p. An operator o is applicable
in p if pre(o)[V (p)] ⊆ p, and the resulting state is defined
as p′ = sJoK[V (p)]. Based on the semantics of axioms and
operators, we can define the state space of a FDR task.
Definition 5 (FDR State Space). The state space of a FDR
planning task Π is a labeled transition system Θ(Π) =
⟨S,O, T, I, SG⟩. The states S are that of Π, and the transi-
tion labels are the operatorsO. The initial state is I, and the
goal states are defined as the set SG = {s ∈ S | G ⊆ A(s)}.
A transition between two extended states s o−→ t is contained
in T if o ∈ O, o is applicable in state s, and t = sJoK.

In this paper, we focus on satisficing planning, aiming to
compute any path in the state space of a given FDR planning
task from the initial state I to some goal state sG ∈ SG .

A SAS+ planning task is a simplified version of a FDR
planning task that does not include derived variables, ax-
ioms, or conditional effects (Bäckström and Nebel 1995).
Definition 6 (SAS+ Planning Task). A SAS+ planning
task is a FDR planning task Π = ⟨V ,D, I,G,O,A⟩
where D = A = ∅ and for each operator o =
⟨pre(o), eff (o), ceff (o)⟩ ∈ O, it holds that ceff (o) = ∅.

To simplify the notation, we sometimes denote a SAS+

task as Π = ⟨V , I,G,O⟩, and exclude the empty com-
ponents of a SAS+ operator by representing it as o =
⟨pre(o), eff (o)⟩. Moreover, by V (o) = V (pre(o)) ∪
V (eff (o)), we refer to the variables in the precondition and
effect of such operators. It will be convenient to use the con-
cept of the preimage preimg(p′, o) of a partial state p′ and
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Figure 1: Illustration of the initial state (solid packages) and
goal (dashed packages) of the running example.

an operator o. We define this concept as the set of predeces-
sor partial states p such that they share the same variables
(V (p) = V (p′)), o is applicable in p (pre(o)[V (p)] ⊆ p),
and p′ results from the application of o to p (p′ = pJoK).

In the remainder of this paper, we will use the following
running example in the form of a SAS+ planning task.
Example 1 (Running Example). Let us consider a simple
logistics scenario with two connected locations, l1 and l2,
along with two packages, p1 and p2, and one truck t. These
are represented by the variables V = {t, p1, p2}, with do-
mains: Dt = {l1, l2} and Dp1

= Dp2
= {l1, l2, t}.

Initially, both the packages and the truck are at position
l1, modeled as I(v) = l1 for all v ∈ V . The goal is to trans-
port both packages to l2, given as G = {(p1, l2), (p2, l2)}.
Both the initial and goal states are illustrated in Figure 1.

There are three types of operators in this example: drive
operators that drive the truck between locations, load oper-
ators responsible for loading a package onto the truck, and
unload operators for unloading a package from the truck.
Formally, we have for any i, j ∈ {1, 2}:
• drive(li, lj) = ⟨{(t, li)}, {(t, lj)}⟩ with i ̸= j
• load(pi, lj) = ⟨{(t, lj), (pi, lj)}, {(pi, t)}⟩
• unload(pi, lj) = ⟨{(t, lj), (pi, t)}, {(pi, lj)}⟩

A possible plan is to first load the two packages into the
truck, then drive the truck to l2, and unload both packages.

In Example 1, the number of states grows exponentially as
the number of packages grows. This can pose a significant
challenge to modern search algorithms.

Decoupled Search
Decoupled search (Gnad and Hoffmann 2018) is a paradigm
for reformulating the state space of SAS+ planning tasks. It
can efficiently solve problems like Example 1 by identifying
and exploiting causal structure via problem decomposition.
Definition 7 (Factoring). Let Π be a SAS+ planning task. A
pair F = ⟨C,L⟩ with {C},L ⊆ 2V is termed a factoring
for Π if either {C} ∪ L or L forms a partition of the set of
variables V . C represents the (possibly empty) center of F ,
while L denotes its leaves.

Let F = ⟨C,L⟩ be a factoring for Π. An operator o ∈ O
is a global operator if there does not exist an L ∈ L such
that V (pre(o)) ⊆ C ∪ L and V (eff (o)) ⊆ L. The set of all
global operators is denotedOG. Operators affecting any leaf
are called leaf operators, denoted OL.2 The operators that
affect a particular leaf L ∈ L are denotedOL. We define the
set of leaf-only operators of a leaf L asOL

̸C := OL\OG.OL
̸C

is the set of all leaf-only operators. A complete assignment
to C or to an L ∈ L is called a center state or leaf state,

2An operator can be both a global and a leaf operator.

respectively. SL is the set of all leaf states, and that of a
particular leaf L is denoted by SL.
Example 2. A natural factoring Ft for the planning task
outlined in Example 1 is Ft = ⟨{t}, {{p1}, {p2}}⟩. Here,
the truck forms the center C = {t}, while each package pi
forms a leaf Li = {pi}. The operators load and unload
are leaf-only operators, with preconditions concerning the
truck (center) and the respective package (leaf), and effects
concerning the package (leaf) only. Conversely, the truck
drive operators represent global operators, with precondi-
tions and effects that only affect the truck (center).

An alternative factoring,Fp = ⟨{p1, p2}, {{t}}⟩, puts the
package variables into the center, while assigning the truck
to a leaf. Thus, inFp, the roles of the operators are swapped,
i.e., the drive operators become leaf-only operators, while
the load and unload operators act as global operators.
Definition 8 (Decoupled State). A decoupled state sD is a
pair ⟨center(sD), leaves(sD)⟩ where center(sD) is a center
state and leaves(sD) ⊆ SL is a set of leaf states.

In essence, a decoupled state sD represents a collection
of explicit states from the original planning task Π, differ-
ing only in the variables of the leaves. A decoupled state
sD satisfies a partial state p, denoted by sD |= p, iff (i)
p[C] ⊆ center(sD) and (ii) for every L ∈ L, there exists
sL ∈ leaves(sD) such that p[L] ⊆ sL.
Definition 9 (Saturated Decoupled State). Let OL|sC :=
{oL | oL ∈ OL

̸C ∧ pre(oL)[C] ⊆ sC} be the set of of leaf-
only operators enabled by a center state sC . For a decoupled
state sD = ⟨sC , leaves(sD)⟩, sD∗ = ⟨sC , leaves∗(sD)⟩ is the
saturated decoupled state where leaves∗(sD) represents the
set of leaf states in the reflexive transitive closure of leaf
states reachable from leaves(sD) using OL|sC operators.

Intuitively, a leaf state tL ∈ leaves∗(sD) iff there exists
a (possibly empty) sequence of OL|sC operators that trans-
forms a leaf state sL ∈ leaves(sD) into tL ∈ SL.

With this, we define the decoupled state space as follows.
Definition 10 (Decoupled State Space). Let Π be a SAS+

planning task andF = ⟨C,L⟩ a factoring for Π. The decou-
pled state space is a labeled transition system ΘD(Π,F) =
⟨SF ,OG, TF , IF , SF

G ⟩ where:
1. SF is the set of all decoupled states.
2. The transition labels are the global operators OG.

3. TF contains a transition sD
oG−−→ tD ∈ TF whenever

oG ∈ OG and sD, tD ∈ SF such that:
(a) sD∗ |= pre(oG),
(b) center(tD) = center(sD)JoGK, and
(c) leaves(tD) = {sLJoGK | sL ∈ leaves∗(sD),
pre(oG)[L] ⊆ sL}.

4. IF = ⟨I[C], {I[L] | L ∈ L}⟩ is the initial state.
5. SF

G = {sD ∈ SF | sD∗ |= G} is the set of goal states.

Example 3. Consider our running example with the fac-
toring F = Ft. Part of the decoupled state space is il-
lustrated in Figure 2. In the unsaturated initial state IF
and its saturated counterpart IF∗ , the single center vari-
able t has the value l1. In IF , each leaf has a single
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IF : t = l1
l1 l2 t

p1 1 0 0
p2 1 0 0

IF∗ : t = l1

l1 l2 t

p1 1 0 1
p2 1 0 1

saturate

sD: t = l2
l1 l2 t

p1 1 0 1
p2 1 0 1

sD∗ : t = l2

l1 l2 t

p1 1 1 1
p2 1 1 1

saturate

drive(l1, l2)

Figure 2: Illustration of the decoupled state space needed to
determine a decoupled plan for the running example.

leaf state, (p1, l1) and (p2, l1), indicating the initial loca-
tion l1 of both packages. In the saturated initial state IF∗ ,
we have a total of four leaf states, namely leaves∗(IF ) =
{(p1, l1), (p1, t), (p2, l1), (p2, t)}. This is due to the applica-
bility of leaf-only operators load(l1, pi) for both packages.

Since IF∗ ̸∈ SF
G , we proceed by applying the only appli-

cable global operator, drive(l1, l2), resulting in the unsat-
urated decoupled state sD. Here, the center variable is up-
dated, while the reached leaf states remain unchanged, since
they satisfy the preconditions of the operator and are not af-
fected by it. The saturated decoupled state sD∗ matches the
goal condition due to the unload leaf-only operators, giving
us a decoupled plan: ⟨drive(l1, l2)⟩.

We remark that a decoupled plan – a sequence of labels
representing a path from an initial state to a goal state in
the decoupled state-space – is not a plan in the original task
because it considers only global operators and ignores the
leaf-only ones. However, it is efficiently possible to con-
struct a plan for the original task from the decoupled plan
by scheduling leaf-only operators along the global ones. In
this work we focus on finding decoupled plans, and simply
adopt the existing method of plan reconstruction as a post-
processing step. For further details we refer the interested
reader to the literature (Gnad and Hoffmann 2018).

A Novel Approach to Decouple the Search
In this section, we first formalize and exemplify our novel
task transformation that generates a FDR task by decou-
pling a SAS+ planning task based on a given factoring. We
prove the correctness of our transformation by showing that
the search space of the resulting FDR task is isomorphic to
that of decoupled search on the original task.3 We then de-
rive optimizations to the vanilla encoding that utilize spe-
cific causal relationships between factors. Finally, within our
new framework, we demonstrate that the approach by Miura
and Fukunaga (2017) represents a special form of decoupled
search by task transformation. We conclude by showing that
our approach generalizes it in multiple dimensions.

Task Transformation
We define a task transformation called dec that transforms a
given SAS+ planning task into a decoupled FDR planning
task given a factoring F .

3Detailed proofs for some results are omitted for space reasons,
but can be found in the appendix (Speck and Gnad 2024).

Definition 11 (Decoupled Transformation). Let Π =
⟨V , I,G,O⟩ be SAS+ planning task and F = ⟨C,L⟩ be
a factoring for Π. We define the decoupled transformation
dec as a function that produces a new FDR planning task
dec(Π,F) = Πdec

F = ⟨Vdec ,Ddec , Idec ,Gdec ,Odec ,Adec⟩.
The components of the task Πdec

F are detailed below.
The basic concept behind the task transformation is to em-

bed the leaf state space into the background theory repre-
sented by the axioms of the FDR task. The key idea is that
an unextended state in Πdec

F corresponds to an unsaturated
decoupled state for Π, while an extended state corresponds
to a saturated decoupled state. Leaf-only operators, essential
for saturating decoupled states, are transformed into axioms.

Primary variables. We define a set of primary variables
Vdec that consists of the center variables C with their orig-
inal domain and a binary variable vsL for every leaf state
sL ∈ SL. Intuitively, the primary variables describe an un-
saturated decoupled state, where the center state is repre-
sented by the center variables and the vsL variables represent
the reached leaf states after applying a global operator.

Vdec = C ∪ {vsL | sL ∈ SL} with DvsL
= {0, 1}

Secondary variables. The secondary variables Ddec con-
sist of three main components. First, we have a derived pred-
icate dsL for each leaf state. These variables, along with the
center primary variables, are used to represent a saturated
decoupled state. Second, for each leaf, we have a derived
variable to encode whether we have reached a leaf state that
satisfies G[L]. Third, similar to the goal condition, for each
global operator o and leaf L, we have a derived variable used
to encode whether we have reached a leaf state sL ∈ SL,
satisfying the precondition pre(o)[L] ⊆ sL.

Ddec = {dsL | sL ∈ SL} ∪ {dG[L] | L ∈ L,G[L] ̸= ∅} ∪
{dpre(o)[L] | L ∈ L, o ∈ OG, pre(o)[L] ̸= ∅}

Initial & Goal states. Initially, the center variables in Idec
retain the same values as those in I[C]. In addition, for each
leaf L ∈ L, exactly one variable vI[L] is true, representing
the leaf state I[L]. For the partial goal state Gdec , the center
variables maintain the values present in G[C]. Additionally,
for each leaf L with a non-empty goal condition, the goal is
expressed by the secondary variable dG[L] being true.

Idec = I[C] ∪ {vI[L] | L ∈ L}
Gdec = G[C] ∪ {dG[L] | L ∈ L, dG[L] ̸= ∅}

Operators. Each operator odec ∈ Odec in Πdec
F corre-

sponds to a global operator o ∈ OG in the original task Π.

Odec = {odec | o ∈ OG}
For an operator odec ∈ Odec , the preconditions and effects
on the center variables remain the same as for o. Addition-
ally, we replace the preconditions on the leaf variables in
pre(o) with a derived variable dpre(o)[L] for each leaf L.

pre(odec) = pre(o)[C] ∪
{dpre(o)[L] | L ∈ L, pre(o)[L] ̸= ∅}

eff (odec) = eff (o)[C]
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We use conditional effects to handle the variables that en-
code reached leaf states. The underlying concept is that these
conditional effects copy the reached leaf states from the pre-
vious states to the new one, provided that they match the
applied global operator o. The first set of conditional effects
denotes that a leaf state tL is reached in the successor decou-
pled state if a state sL exists such that tL = sLJoK. These
effect conditions are on the derived variables dsL , since they
correspond to the saturated decoupled state, while the actual
effect is on the primary variable vtL , which represents the
unsaturated successor state. The second set of conditional
effects encode that a leaf state tL becomes false if there is
no leaf state sL reached such that tL = sLJoK. The latter is
necessary because of the closed-world assumption in clas-
sical planning, which ensures that primary variables retain
their values if they are not affected by an operator.

ceff (odec) ={(dsL ▷ vtL) | L ∈ L, tL ∈ SL, dsL ∈ 1o
tL} ∪

{(0o
tL ▷ ¬vtL) | L ∈ L, tL ∈ SL} with

Xo
tL = {(dsL ,X) | sL ∈ preimg(tL, o)}

Axioms. The axioms form the final component of Πdec
F ,

which consists of four subcomponents for each leaf L ∈ L.

Adec =
⋃
L∈L

(AL
frame ∪ AL

pre ∪ AL
G ∪ AOL

̸C
)

After applying a global operator, all derived variable val-
ues are reset to false. Thus, the first set of axioms AL

frame is
concerned with restoring the previously reached leaf states,
which are stored in the vsL variables and set accordingly by
the conditional effects of the operatorsOdec . More precisely,
the value of dsL becomes true if vsL is true.

AL
frame = {dsL ← vsL | sL ∈ SL}

The second and third sets of axioms are used to determine
whether a leaf state sL satisfies the goal condition or the
precondition of an operator.

AL
G = {dG[L] ← dsL | dG[L] ∈ Ddec , sL∈SL,G[L] ⊆ sL}

AL
pre = {dpre(o)[L] ← dsL | dpre(o)[L] ∈ Ddec , sL ∈ SL,

pre(o)[L] ⊆ sL}

The fourth and last set of axioms AOL
̸C

is concerned with
simulating the saturation of a leaf L with leaf-only operators
OL

̸C . We have an axiom for leaf states sL, tL ∈ SL and leaf-
only operator o ∈ OL

̸C if sL is in the preimage of tL, which
implies the applicability of o in sL such that tL = sLJoK,
and if the center preconditions of o are satisfied.

AOL
̸C
= {dtL ← dsL ∪ pre(o)[C] | tL ∈ SL, o ∈ OL

̸C

sL ∈ preimg(tL, o)}

We next show that Πdec
F is a well-formed FDR task.

Lemma 1. Let Π be a SAS+ planning task and F be a fac-
toring for Π. Then Πdec

F is a well-formed FDR planning task.

A(Idec):
Idec : t = l1
v{∗} Val

(p1, l1) 1
(p1, l2) 0
(p1, t) 0
(p2, l1) 1
(p2, l2) 0
(p2, t) 0

d{∗} Val

(p1, l1) 1
(p1, l2) 0
(p1, t) 1
(p2, l1) 1
(p2, l2) 0
(p2, t) 1

extend

A(s):
s: t = l2
v{∗} Val

(p1, l1) 1
(p1, l2) 0
(p1, t) 1
(p2, l1) 1
(p2, l2) 0
(p2, t) 1

d{∗} Val

(p1, l1) 1
(p1, l2) 1
(p1, t) 1
(p2, l1) 1
(p2, l2) 1
(p2, t) 1

extend
drive(l1, l2)

Figure 3: Illustration of the state space of the transformed
task Πdec

F needed to determine a decoupled plan for the run-
ning example.

Proof sketch. Initial state, goal, preconditions, and uncon-
ditional effects are consistent by construction. Further, the
conditional effects do not assign conflicting values to the
same variable. Finally, a single axiom layer forms a valid
stratification, since no secondary variable appears in any ax-
iom body condition with the default value of 0.

Example 4. Consider the running example with factoring
F = Ft. Figure 3 illustrates parts of the state space of Πdec

F .
The primary variables include the center variable t and a
variable vsL for each leaf state sL. The secondary vari-
ables include a variable dsL for each leaf state, and vari-
ables indicating whether the global operator preconditions
or the goal condition are satisfied. The two global operators
drive, which also form the set Odec , lack preconditions on
leaf variables. Thus, there are no secondary variables for
the preconditions, there are no AL

pre -axioms, and the condi-
tional effects for both operators simply write the values from
the secondary variables dsL to the primary variables vsL .
The goal Gdec = d{(p1,l2)}∧d{(p2,l2)} refers to the leaf vari-
ables p1 and p2. Since we have single variables in the leaves,
it follows that dG[Li] = d{(li,l2)}. These variables already
exist as they represent leaf states. As a result, theAL

G -axioms
are trivial: d{(li,l2)} ← d{(li,l2)}. Note that this is not al-
ways true, e.g., if both packages were in the same leaf. The
transformed task concludes with the frame axioms, which
copy values from vsL to dsL variables, and the leaf-only op-
erator axioms, representing load (d(pi,t) ← (pi, lj)∧ (t, lj))
and unload operators (d(pi,lj) ← (pi, t) ∧ (t, lj)).

Figure 3 shows the initial state Idec and its extension,
A(Idec), where the truck and both packages are at l1. In
A(Idec), we can infer that the packages can be at l1 or in
the truck. After applying the only applicable operator, we
find a goal state s that yields the plan ⟨drive(l1, l2)⟩.

Isomorphism of State Spaces
To establish the relationship between the decoupled search
space ΘD(Π,F) and the state space of the transformed plan-
ning task Θ(Πdec

F ), we construct a function that maps be-
tween these two transition systems.
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Definition 12 (Mapping Function). Let Π be a SAS+ plan-
ning task, F be a factoring for Π, SF be the states of
ΘD(Π,F), and Sdec be the states of Θ(Πdec

F ). We define
the function φ : SF → Sdec as φ(sD) = s such that
s[C] = center(sD) and s(vsL) = 1 if sL ∈ leaves(sD)
and s(vsL) = 0 otherwise.

Intuitively, function φ establishes a one-to-one correspon-
dence between decoupled states sD in ΘD(Π,F) and states
s of Πdec

F . Two states sD and s are mapped to each other
iff they match in the center variables, and a leaf state sL is
reached in sD iff vsL is true in s. For example, φ(IF ) =
Idec and φ(sD) = s in our running examples as can be seen
in Figures 2 and 3.

It is also convenient to establish a relation between a sat-
urated decoupled state and the corresponding extended state
of Πdec

F . Lemma 2 shows that the saturation of a decou-
pled state sD and the extension of the corresponding state
φ(sD) are equivalent. This equivalence is proved by infer-
ring the reachability of the leaf states in sD∗ , symbolized
by leaves∗(sD), and in A(φ(sD)), denoted by the variables
dsL . Illustrative examples of this equivalence can be ob-
served in Figures 2 and 3, exemplified by IF and Idec , as
well as sD and s.
Lemma 2. Let sD ∈ SF be a decoupled state and sL ∈ SL

a leaf state. Then sL ∈ leaves∗(sD) iffA(φ(sD))(dsL) = 1.
Finally, we show that the decoupled search space and the

state space of the transformed planning task are isomorphic.
This implies that search algorithms applied to the trans-
formed planning task will behave identically to their spe-
cialized counterparts designed for decoupled search.
Theorem 1. Let Π = ⟨V , I,G,O⟩ be a SAS+ planning task
and F be a factoring for Π. Then the FDR state space of
Πdec

F and the decoupled state space of Π are isomorphic,
i.e., Θ(Πdec

F ) ∼ ΘD(Π,F).

Proof sketch. Let ΘD(Π,F) = ⟨SF ,OG, TF , IF , SF
G ⟩

and Θ(Πdec
F ) = ⟨Sdec ,Odec , T dec , Idec , Sdec

G ⟩. Function φ
is bijective since it establishes a one-to-one mapping be-
tween the different state sets. Furthermore, it holds that
1. φ(IF ) = Idec , 2. sD ∈ SF

G iff φ(sD) ∈ Sdec
G , and

3. sD o−→ tD ∈ TF iff φ(sD) odec−−→ φ(tD) ∈ T dec .

Optimizations: Operator and Leaf Types
In the introduced task transformation, every global opera-
tor and every leaf is treated in the same way, regardless of
the underlying structure. This results in an encoding that can
contain many conditional effects to represent the semantics
of the reached leaf states. However, we can exploit the fact
that certain global operators have varying and sometimes no
influence on the reachability of leaf states for a particular
leaf. This insight will help to derive a more compact encod-
ing of the effects of global operators on leaves.
Definition 13 (Irrelevant Operator). For a SAS+ task Π and
a factoring F = ⟨C,L⟩, a global operator oG ∈ OG

is L-irrelevant for a leaf L ∈ L iff both of the following
conditions hold: (1) V (oG) ∩ L = ∅, and (2) V (oG) ∩
V (pre(oL)) = ∅ for all leaf-only operators oL ∈ OL

̸C .

Intuitively, applying an L-irrelevant global operator oG

does not affect the reachability within a leaf L in any way.
Consequently, there’s no need to transfer the inferred values
from dsL to vsL for the successor state, since these values
can be inferred again from the unchanged vsL variables. This
shows that we can omit conditional effects on leaves L for
which an operator is considered L-irrelevant.

Next, we introduce the concept of conclusive operators
and conclusive leaves.
Definition 14 (Conclusive Operator). For a SAS+ planning
task Π and a factoring F = ⟨C,L⟩, a global operator oG ∈
OG is L-conclusive for a leaf L ∈ L iff V (oG) ∩ L = L.

The idea behind Definition 14 is that after applying an L-
conclusive global operator, exactly one leaf state sL ∈ SL is
reached, since all variables L are conclusively fixed by the
operator effect or precondition. Thus, no conditional effects
are required to represent the influence of an L-conclusive
global operator on the variables of L; setting vsL to true and
all other leaf state variables vtL to false is sufficient.
Definition 15 (Conclusive Leaf). For a SAS+ planning task
Π and a factoring F = ⟨C,L⟩, a leaf L ∈ L is conclusive
iff it holds that each global operator oG ∈ OG is either L-
conclusive or L-irrelevant.

For a conclusive leaf L (Definition 15), the application of
any global operator will either uniquely fix all variable val-
ues of L or not affect the reachability within L. This elim-
inates the need for new primary variables vsL for each leaf
state of conclusive leaves. Instead, we keep the original vari-
ables of L and adapt AL

frame to refer to sL instead of (vsL , 1)
in the body. Global operators keep their original effects on
variables v ∈ L in conclusive leaves, but preconditions are
on dpre(o)[L]. The initial state IF contains I[L], but the leaf
goal is dG[L]. Otherwise the transformation is as before.

Finally, for global operators oG ∈ OG that have no
preconditions and effects on a leaf L, along any transition

sD
oG−−→ tD if sL ∈ leaves(sD) then sL ∈ leaves(tD). We

can exploit this by dropping the conditional effects of oG

that make any variable vsL false.
Example 5. Consider our running example with Ft. Here,
the drive operators are neither conclusive nor irrelevant to
the two leaves. The leaf variables are not mentioned in the
operators, but the position of the truck t, which is affected
by these operators, appears in the preconditions of the leaf-
only operators. However, both leaves {p1} and {p2} are fork
leaves, so the global drive operators have no precondition
or effect on the leaves. Thus, we can omit the conditional
effects for those operators that make the vsL variables false.

Now let us reconsider the example with an additional
truck and a factoring similar to Fp, where the two packages
are the center, and the two trucks form individual leaves.
When a global load operator is applied to load a package
onto truck t1, its influence is only on the reachability of leaf
{t1}, by requiring that the truck be positioned at the same
location as the package. So this operator is {t1}-conclusive
and {t2}-irrelevant. Thus, for this particular operator, there
is no need to encode the conditional effect associated with
the {t2} leaf. Finally, all leaves are actually conclusive,
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since all load and unload operators are either irrelevant or
conclusive for each leaf.

Miura and Fukunaga (2017) describe methods to trans-
form a given planning task into a more concise represen-
tation by introducing derived predicates and axioms. They
propose two methods, one based on mutexes, which we will
not discuss further as it is orthogonal to our work, and a
method called τ -axiom extraction that identifies operators
with specific properties. This method turns these operators
into axioms and casts their effect variables into derived vari-
ables. More precisely, their approach searches for a cardi-
nality maximal set of variables L ⊆ V , where each operator
o either affects only variables of L, i. e., V (eff (o)) ⊆ L, and
is then transformed into axioms, or determines all values of
L, i. e., L ⊆ V (pre(o)), and remains an operator. A closer
look reveals that this is a weaker form of searching for a set
of global operators that are L-conclusive for a single leaf.

Overall, this means that the approach introduced by Miura
and Fukunaga (2017) is a special case of our decoupled task
transformation. The approach presented in this paper ex-
tends their concept in several dimensions, embodying de-
coupled search in its full generality: allowing arbitrary and
multiple leaves instead of a single conclusive one, and al-
lowing arbitrary global operators instead of supporting ex-
clusively conclusive ones.

Experiments
We implemented our decoupled task transformation in the
Fast Downward 23.06 framework (FD) (Helmert 2006). Our
experiments were conducted on a cluster of Intel Xeon Gold
6130 CPUs using Downward Lab 8.0 (Seipp et al. 2017),
with runtime and memory limits of 30 min and 8 GiB,
on all 2106 STRIPS instances from the satisficing sequen-
tial tracks of the International Planning Competitions 1998–
2023. Our code and experimental data are available online
(Speck and Gnad 2024).

We extended FD’s task transformation interface for our
own transformation, such that we can (1) run a search di-
rectly on the transformed task, or (2) write the transformed
task to disk in (grounded) PDDL or FD’s own *.sas for-
mat. To reconstruct full plans from the obtained global-
operator sequences, we integrated the solution reconstruc-
tion of the decoupled-search planner of Gnad and Hoffmann
(2018). In the following, we evaluate our approach by per-
forming search directly on the transformed task with two dif-
ferent configurations: lazy greedy best-first search (GBFS)
with the hFF heuristic (Hoffmann and Nebel 2001) and a
dual-queue open list with preferred operators (PO) (Richter
and Helmert 2009), and the first iteration of LAMA (Richter
and Westphal 2010). We always use an operator cost of one
and impose the 30-min runtime limit on the entire process,
i. e., transformation and search.

We compare our decoupled task representation with the
outlined optimizations (dec) to the original SAS+ encod-
ing of FD (sas). To see the effect of the optimizations, we
also show data for the non-optimized basic transformation
(dec ̸o). Furthermore, we compare to the native decoupled-
search implementation of Gnad and Hoffmann (2018) (gh),

Time <1s <5s <10s <30s <60s ≥60s DNF

# Inst. 955 47 24 14 3 12 4

Table 1: Decoupled transformation runtime statistics.

and the transformation by Miura and Fukunaga (2017) (mf ).
For the latter we reimplemented their variable-based axiom
extraction in our planner, which serves as a factoring for the
transformation. Finally, we include the Merge-And-Shrink
task reformulation method proposed by Torralba and Sievers
(2019) (ts), which to our knowledge is the only alternative
technique that extensively restructures the state space.

As factoring strategy for our transformation and native
decoupled search, we pick the best configuration reported
by Gnad, Torralba, and Fišer (2022) for satisficing planning,
called F20s, giving it a time limit of 30s. As a minor modifi-
cation, we restrict the set of potential leaf factors to variable
sets with domain-size product smaller than one million. The
original strategy uses 232 as limit, but we observed that too
large leaf factors incur a significant overhead in our transfor-
mation. We say that the strategy is successful if it terminates
in the limits and results in a factoring with at least two leaf
factors. Otherwise, like prior work on decoupled search, we
abstain from solving the task, assuming that a linear search-
space reduction does not usually pay off. We use the IBM
CPLEX solver in version 12.10 to compute the factorings.

Transformation statistics. Table 1 shows runtime statis-
tics of our transformation. When the factoring is success-
ful, the transformation takes negligible time in most cases,
finishing in less than 10 seconds for 97% of the instances.
The maximum runtime is 541 seconds. There are only 4 in-
stances in which the transformation runs out of time or mem-
ory. In Figure 4 we analyze the task sizes under the transfor-
mation. The size of a task is measured as the encoding size
in the same way as this is done by FD’s translator component
(Helmert 2009). The left plot compares the original encod-
ing to the optimized decoupled task. As expected, the trans-
formation can lead to a significant increase in the encoding
size, up to more than four orders of magnitude. The majority
of instances only sees a moderate increase of up to a factor
of 10, though. The right plot shows that our optimizations
are indeed effective in reducing the encoding size, yielding
savings of almost four orders of magnitude. We highlight
the ratio of conclusive leaves over the total number of leaves
in different colors/shapes. This nicely illustrates that if most
leaves are conclusive then the transformed task is usually
only larger by a constant factor than the original task. That
is because our optimizations effectively reduce the encoding
size in that case, as seen in the right plot.

Planning performance. Considering the factoring that
embodies the mf approach, we can observe that it is not ap-
plicable in the vast majority of instances due to the restric-
tion to a single conclusive leaf. On our benchmark set, the
mf approach is effective on 311 instances, of which 271 are
solved with GBFS and hFF, respectively 306 with LAMA.
The sas baseline solves 268, respectively 307, instances on
that instance set, so performs very similarly in terms of cov-
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Figure 4: The plots compare task sizes on a per-instance
basis. The left plot compares the original task size to that
of the optimized transformed task, the right plots compares
the non-optimized to the optimized encoding. The different
colors indicates the ratio of leaves that are conclusive.

erage. Runtime-wise, we see a maximum speed-up factor of
242; in terms of arithmetic/geometric mean mf is faster than
sas by a factor of 1.93/1.01. However, it turns out that some
strategies reported in Gnad, Torralba, and Fišer (2022) result
in factorings that outperform mf when a single leaf factor is
considered, leading to a larger reduction.

Turning to the full benchmark set, Table 2 shows coverage
results (number of instances solved) for all instances where
F20s is successful (omitting the already discussed results for
mf ). For GBFS with hFF and PO we observe a huge impact
of our encoding optimizations, with +76 solved instances
distributed over many domains. While our transformation-
based approach is generally behind the native implementa-
tion (gh), it clearly outperforms the original encoding (sas),
even if that uses LAMA. Notably, our approach beats gh
in four domains. Compared to the Merge-And-Shrink refor-
mulation (ts), either of the methods outperforms the other
in some domains, in total dec is ahead by 29 instances. We
remark that both gh and ts would require a specialized adap-
tation of the landmark heuristic in LAMA, whereas our ap-
proach works out of the box. When using LAMA, our ap-
proach shows particularly good results in childsnack, floor-
tile, and nomystery, and beats the baseline with SAS+ en-
coding by 20 instances overall.

Conclusion
We introduced a novel task transformations for classical
planning that exactly mimics the behavior of decoupled state
space search, emphasizing the power of task reformulations.
Our transformation works for arbitrary tasks in SAS+ for-
mat, encoding the leaf dynamics of decoupled search as ax-
ioms into a FDR task. We prove the correctness of our trans-
formation by showing that the state space of the transformed
task is isomorphic to the decoupled state space when em-
ploying the same problem decomposition. This allows any
search technique to be applied to the decoupled task without
specific adaptation, opening up numerous possibilities for
the use of decoupled search. In our evaluation, we demon-
strate this using the well-known LAMA planner.

While the overall search performance on the transformed

GBFS(hFF, PO) LAMA
Domain dec ̸o dec sas gh ts dec sas

airport 25 9 12 14 11 13 12 11
childsnack 20 20 20 7 20 8 20 6
data-network 20 6 9 10 5 11 10 13
depot 22 20 20 18 21 22 21 20
elevators-11 20 20 20 19 20 20 20 20
floortile-11 20 13 14 8 17 8 19 7
floortile-14 20 14 14 2 20 5 20 2
grid 5 5 5 4 5 5 5 5
hiking 18 18 18 18 18 17 18 18
logistics98 35 30 32 33 35 35 31 35
maintenance 4 1 1 1 0 0 0 1
mystery 7 4 4 4 3 4 4 4
nomystery 20 14 16 9 19 10 18 12
openstacks-11 20 11 18 20 20 20 20 20
openstacks-14 20 0 16 20 20 15 20 20
organic-split 15 6 8 11 10 3 10 14
pathways 30 23 23 21 23 23 22 23
quantum-layout 20 17 19 19 19 20 20 20
recharging-robots 15 6 12 11 14 13 12 13
rovers 40 36 39 40 40 40 39 40
satellite 36 36 36 36 36 31 36 36
scanalyzer-08 3 0 0 3 3 3 0 3
scanalyzer-11 3 0 0 3 3 3 0 3
slitherlink 3 0 0 1 2 0 0 1
tetris 17 1 9 14 11 2 5 14
tidybot-11 18 14 14 16 14 15 15 16
transport-08 30 30 30 28 30 30 30 30
transport-11 20 13 20 11 20 20 20 19
transport-14 20 6 20 9 20 20 20 17
trucks 30 13 13 19 18 16 14 16
woodwork-11 20 19 19 20 20 20 18 20
others 463 463 463 463 463 463 463 463

Sum 1059 868 944 912 980 915 962 942

Table 2: Coverage of GBFS with hFF and preferred opera-
tors, respectively LAMA, projected on the set of instances
in which our factoring method is successful. Best coverage
is highlighted in bold face.

task may fall slightly behind a native decoupled search im-
plementation, we observe that it is competitive on many do-
mains. Depending on the properties of the factoring, it occa-
sionally even outperforms the native approach. As a result,
planners of different kinds can now be “automatically de-
coupled” while maintaining near-native performance.

For future work, we plan to further investigate approaches
that reduce the size of the transformed task. This could be
achieved by employing the irrelevance pruning of Torralba
et al. (2016), which admissibly prunes the leaf state spaces.
Another interesting question is whether it is feasible to adapt
our approach to be suitable for optimal planning. If leaf op-
erators have no costs, our current transformation ensures
optimality. However, in the general scenario, tracking leaf-
operator costs along with derived predicates remains an open
question. Finally, we are curious to see if it is possible to
encode other reduction techniques like symmetry breaking
(Domshlak, Katz, and Shleyfman 2012) or partial-order re-
duction (Wehrle and Helmert 2012) as a task transformation.
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