
Learning General Policies for Planning through GPT Models

Nicholas Rossetti§*, Massimiliano Tummolo, Alfonso Emilio Gerevini§, Luca Putelli, Ivan Serina,
Mattia Chiari, Matteo Olivato

Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Via Branze 38, Brescia, Italy
{nicholas.rossetti, massimiliano.tummolo, alfonso.gerevini, luca.putelli, ivan.serina, mattia.chiari, matteo.olivato}@unibs.it

Abstract

Transformer-based architectures, such as T5, BERT and GPT,
have demonstrated revolutionary capabilities in Natural Lan-
guage Processing. Several studies showed that deep learn-
ing models using these architectures not only possess re-
markable linguistic knowledge, but they also exhibit forms
of factual knowledge, common sense, and even program-
ming skills. However, the scientific community still debates
about their reasoning capabilities, which have been recently
tested in the context of automated AI planning; the litera-
ture presents mixed results, and the prevailing view is that
current transformer-based models may not be adequate for
planning. In this paper, we address this challenge differently.
We introduce a GPT-based model customised for planning
(PLANGPT) to learn a general policy for classical planning
by training the model from scratch with a dataset of solved
planning instances. Once PLANGPT has been trained for a
domain, it can be used to generate a solution plan for an input
problem instance in that domain. Our training procedure ex-
ploits automated planning knowledge to enhance the perfor-
mance of the trained model. We build and evaluate our GPT
model with several planning domains, and we compare its
performance w.r.t. other recent deep learning techniques for
generalised planning, demonstrating the effectiveness of the
proposed approach.

Introduction
Pre-trained Language Models and Large Language Mod-
els (LLMs) employing attention mechanisms represent
the state-of-the-art in Natural Language Processing (NLP)
tasks. Starting from the Transformer architecture (Vaswani
et al. 2017), and then with BERT (Devlin et al. 2019) and
GPT (Radford and Narasimhan 2018), LLMs have achieved
SOTA results in different NLP tasks, such as machine trans-
lation and summarisation. Although these models can cap-
ture some forms of general knowledge of real-world facts
(e.g., historical facts, geography, and medicine) (Petroni
et al. 2019; Jiang et al. 2020), basic common sense (Geva
et al. 2021) and programming skills (Wang et al. 2021), they

*N. Rossetti was enrolled in the National Doctorate on AI con-
ducted by Sapienza, University of Rome with the University of
Brescia. §Corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have limited reasoning capabilities, such as logical infer-
ence or AI planning. In particular, some studies suggest that
LLMs cannot generate valid plans to solve automated plan-
ning problems using simple prompting strategies or fine-
tuning (Valmeekam et al. 2023, 2022; Arora and Kambham-
pati 2023). However, the recent work on Plansformer (Pal-
lagani et al. 2023) shows that it is possible to fine-tune a pre-
trained language model with planning instances from simple
planning domains obtaining promising results.

In the context of generalised planning (e.g., (Hu and
De Giacomo 2011; Srivastava, Immerman, and Zilberstein
2008, 2011)), several works have demonstrated that deep
learning models can learn a general policy, i.e. a strategy
employed to solve a set of different problems in a given
planning domain (Groshev et al. 2018; Ståhlberg, Bonet,
and Geffner 2022a,b). An example of general policy for the
BLOCKSWORLD domain is to place all blocks on the ta-
ble and then stack them in the desired position. However,
deep learning approaches for creating general policies are
often used to heuristically evaluate search states, without di-
rectly tackling the problem of finding a valid plan. More-
over, they are often limited to image-based domains (Gro-
shev et al. 2018) or have logical restrictions, such as the one
in (Ståhlberg, Bonet, and Geffner 2022a) which limits the
approach to the two-variable fragment of first-order logic.

In this paper, we investigate generalised planning through
transformer-based architectures. We introduce a GPT-based
model customised for planning (PLANGPT) to learn a gen-
eral policy for classical planning by training the model from
scratch with a dataset of solved planning instances. Once
PLANGPT has been trained for a domain, it can be used to
generate a solution plan for an input problem instance in that
domain. Our training procedure exploits automated planning
knowledge to enhance the performance of the trained model.
In particular, to prevent overfitting in training, we design and
exploit an early-stopping technique validating the planning
performance of the model while being trained. We build and
evaluate PLANGPT with several planning domains, and we
compare its performance with respect to other recent deep
learning techniques for generalised planning, demonstrating
the effectiveness of the proposed approach.

The paper is organised as follows: first, we discuss re-
lated work and provide background information. Then, we
describe the preprocessing phase, the training datasets, and

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

500

how the GPT models are designed and trained. Finally, we
present the experimental results and draw our conclusions.

Related Work
Recently several researchers have leveraged pre-trained
LLMs to address planning and evaluate their reasoning capa-
bilities. For instance, the studies in (Valmeekam et al. 2022,
2023) assess how pre-trained GPT models (GPT-3.5 and
GPT-4) can generate plans. They do not modify the original
GPT model, but simply query it by exploiting some few-shot
prompting frameworks to tackle planning tasks across vari-
ous benchmark domains, such as BLOCKSWORLD and LO-
GISTICS. Their results highlight poor performance in gener-
ating valid plans that satisfy the problem goal.

Arora and Kambhampati (2023) evaluated a fine-tuned
GPT-2 model for the BLOCKSWORLD domain. Starting from
a model pre-trained on text data, they built a generator of
single actions, which are also progressively verified by an-
other GPT-2 model fine-tuned on this specific task, report-
ing promising performance (about 60% of problems solved
over a custom-made test set of 200 instances). Another fine-
tuning approach, called Plansformer, is proposed in (Palla-
gani et al. 2023) starting from a Code-T5 model (Wang et al.
2021) fine-tuned with solved problems in several planning
domains. Although Plansformer obtains almost 90% valid
plans, these results are not directly comparable to those in
(Arora and Kambhampati 2023), since they are obtained us-
ing two different test sets.

Researchers also exploited different types of deep learn-
ing architectures in the context of learning general policies.
Toyer et al. (2020) use a custom feed-forward neural net-
work to represent states and actions as neural layers and
obtain the following action in probabilistic planning. The
work in (Groshev et al. 2018) employed Convolutional Neu-
ral Network (CNN) to plan in the Sokoban domain with the
current state represented as an image. To deal with propo-
sitional domains without image representations, they imple-
mented a Graph Neural Network (GNN) that solves the trav-
elling salesperson problem by building a plan selecting the
next city to visit at each iteration.

Similarly, Ståhlberg et al. (2022a; 2022b) adopt a GNN to
tackle various benchmark domains. Given the current state,
the system computes all the states reachable by applicable
actions and selects the state with the best heuristic value es-
timated by the GNN, choosing it as the new current state;
the procedure is repeated until a state is reached where the
goal is satisfied. Recently, heuristic based on learned gen-
eral policy have also been integrated into greedy best-first
search (Chen, Thiébaux, and Trevizan 2024). An impor-
tant difference of these approaches w.r.t our work is that
we use deep learning to directly generate the next actions
rather than to evaluate heuristic values of states. Moreover,
the expressive power of GNNs is restricted to the two-
variable fragment of first-order logic with counting quan-
tifiers (C2) (Ståhlberg, Bonet, and Geffner 2022a,b), while
CNNs can only elaborate states encoded as images (Groshev
et al. 2018).

Instead of fine-tuning or prompt-engineering a pre-trained
model, in our work, we build a custom transformer-based

model (trained from scratch) to learn a general policy for
planning. This approach is followed by many other re-
searchers to solve tasks with a high level of complexity, such
as genetics-related challenges (Jumper et al. 2021) and the
generation of programming code (Wang et al. 2021). In au-
tomated planning, Serina et al. (2022) trained a BERT model
from scratch with a dataset of plans across various domains
to solve the plan recognition problem of predicting missing
actions from an observed partial plan. However, this method
is not applicable for learning general policies as it ignores
information about the initial states and goal of the class of
problems handled by the policy.

Background
Classical Planning and General Policies
We assume that the reader is familiar with the standard plan-
ning language PDDL for representing deterministic, fully
observable planning problems, of which here we present
the most relevant elements following the formalisation given
in (Ståhlberg, Bonet, and Geffner 2022a).

A classical planning problem is a pair P = (D, I) where
D is a planning domain and I is a problem instance. The
planning domain D contains a set of predicate symbols
p and a set of action schemas with preconditions and ef-
fects given by atoms p(x1, ..., xk) where each xi is an ar-
gument of the schema. The problem instance is a tuple I =
(O, Init,Goal) where O is a (finite) set of objects names
ci, and Init and Goal are sets of ground atoms p(c1, ..., ck)
representing the initial state and the goal of the problem.
A classical problem P = (D, I) encodes a state model
S(P) = (S, s0, SG, Act, A, f) where each state s ∈ S is
a set of ground atoms from P , s0 is the initial state Init,
SG is the set of goal states s ∈ S such that Goal ⊆ s,
Act is the set of ground actions in P , A(s) is the set of
ground actions whose preconditions are true in s, and f is
the transition function so that f(a, s) for a ∈ A(s) repre-
sents the state resulting from applying action a to state s. An
action sequence a0, ..., an is applicable in P if ai ∈ A(si)
and si+1 = f(ai, si), for i = 0, ..., n, and it is a plan if
sn+1 ∈ SG. The cost of a plan is assumed to be given by its
length, and a plan is optimal if there is no shorter plan.

Generalised planning studies the representation and com-
putation of general policies to solve multiple problems in the
same planning domain (e.g., (Hu and De Giacomo 2011; Sri-
vastava, Immerman, and Zilberstein 2008, 2011)). A general
policy can be defined as a function π(s,Goal) providing the
next action in Act to apply given the current state s ∈ S and
the goal of the problem instance Goal. A policy π solves a
set of classical planning instances for the same domain D
if each of these instances I = (O, Init,Goal) is solved by
the sequence of actions π(s0, Goal), ..., π(sn, Goal), where
s0 = Init and Goal ⊆ sn+1.

Several approaches to generalised planning based on deep
learning, including PLANGPT, adopt this representation of
general policy (Groshev et al. 2018; Toyer et al. 2020). An
alternative method is to define a value function in which the
policy selects the successor state with the minimum value
given the current state, goals and action, as in (Ståhlberg,

501

Bonet, and Geffner 2022a,b).

Generative Pretrained Transformer
GPT (Radford and Narasimhan 2018), which stands for
Generative Pretrained Transformer, is a transformer-based
architecture (Vaswani et al. 2017) originally designed to
analyse sequences of elements in NLP tasks. In the NLP
context, these sequences are sentences or documents divided
into tokens (words or part of words). In our planning context,
we will consider sequences of fluents and actions derived
from the initial states, the goals, and the solution plans of
planning problems.

The division of the sequence into tokens is performed by
a probabilistic algorithm called tokenizer, which, through an
analysis of the training set, also collects all different tokens
into a vocabulary of size v. Typically, given a sequence of
tokens in input, a GPT model is trained to generate another
sequence in response, such as the translation of a sentence
into another language, an answer to a question, or, in our
case, a sequence of actions solving a planning instance. This
generation is done one token at a time. In the following, we
describe how the GPT architecture works considering the ith
token ti in a sequence of N tokens.

First, the model encodes the input token ti into an embed-
ding vector Ei ∈ Re. This operation is performed through
an embedding matrix E ∈ Rv×e that embeds each token
into a numeric vector of length equal to the embedding size
e. Then, the model sums Ei with the positional encoding
vector Pi ∈ Re obtaining the vector Ii ∈ Re. The main
component of GPT are N decoder blocks in sequence. After
the embedding phase, the first decoder block processes the
input through multiple masked self-attention mechanisms,
typically called heads and other neural network layers.

In a self-attention mechanism (without considering mask-
ing), the model projects Ii into three new representations
called key (Ki ∈ Rd), query (Qi ∈ Rd) and value (Vi ∈ Rd)
by multiplying it with three weight matrices Wk ∈ Re×d,
Wq ∈ Re×d and Wv ∈ Re×d, where d is the dimension
of the attention vectors. Then, the model calculates the dot-
product between Qi and all Kj in the sequence, where Kj

is the key vector of the jth token in the sequence. The model
concatenates the results and applies the softmax function,
obtaining a vector Ai ∈ RN , called attention weight. Each
element of the attention weight ai,j ideally represents the
interaction between the ith token and the jth token of the
sequence. The head then calculates a new representation of
ti, Ri ∈ Rd, by averaging the value representations of all
tokens in the sequence multiplied by the respective attention
weight. Whereas the traditional self-attention calculates the
attention weights considering all tokens in a sequence, in the
masked-self attention mechanism, for the ith token, only the
tokens with a position j ≤ i are considered and the attention
weights ai,j with j > i are set to 0.

Each block of GPT applies n heads at the same time
(multi-head attention). In order to create a single representa-
tion of the context, the model concatenates the result of each
head, obtaining a vector Mi ∈ Rq , where q = d× n, which
is passed to a feed-forward layer that transforms Mi into the
new output vector Oi ∈ Re. Then there is a feed-forward

Figure 1: Architecture of PLANGPT and example of in-
put/output for a planning problem with two fluents in the
initial state (F0 and F1) and two fluents forming the goal (G0

and G1). PLANGPT generates the plan A0, A1, ..., End.

layer and two residual connections with layer normalisation
which ends a GPT block. The overall task of these blocks is
to compute a more informative representation of each token
of the same size e. The output of a block is the input of the
next one. After the last block, the output of the last block is
multiplied by a weight matrix, obtaining a vector of length
N . A softmax layer then turns this vector into a probability
distribution among all the tokens in the vocabulary. Finally,
GPT outputs the token with the highest probability.

The overall process of GPT begins generating the first to-
ken; then this is added to the input and GPT continues gen-
erating the second token, added (concatenated) to the input
again to generate the third token, and so on. GPT repeats
the procedure until the special token <EndOfSequence> is
generated or reaches the maximum context length.

At training time, first the model generates the whole se-
quence. Next, the training algorithm compares it with the
sequence label in order to compute the loss function (typ-
ically, the cross-entropy loss). In our planning context, we
generate a sequence of (tokenized) actions, and the label is
a sequence of tokens forming a valid plan.

At inference/prediction time, the output plan can be de-
rived using three different strategies (Welleck et al. 2020):
• at each generation step GPT outputs the token with the

highest probability. (Greedy generation strategy);
• GPT keeps in memory the most likely N sequences and,

at each generation step, it extends them with the to-
kens that yield the most likely extended N sequences.
(Multibeam N generation strategy);

• at each generation step, GPT selects the smallest set
of tokens whose cumulative probability exceeds a given
threshold P. Their probability is then redistribuited in the
0/1 range and one token is sampled using such proba-
bilities. This is executed on N runs in parallel. (Top-P
nucleus sampling strategy).

The multibeam and top-P sampling strategies generate N
plans, while greedy strategy generates one plan.

Architecture of PLANGPT
Our aim is to compute an effective general policy for a plan-
ning domain by training from scratch a custom GPT archi-

502

tecture for that domain. We build a different model for each
domain, training it from scratch using a set of training exam-
ples, each one made by an initial state, a set of goal fluents
and the corresponding solution plan, which is the label of
the example. In this section, we describe the preprocessing
of the input data, the overall working of the model, how we
train it, and how we evaluate the generated plans.

Preprocessing and Tokenizer
In the preprocessing phase, the initial state and the goal are
transformed into a format suitable for GPT (i.e. a sequence
of tokens). At training time, we also include the tokenized
version of the solution plan P as the label of our training
procedure. At inference time, the model has the objective of
generating P in the same format.

The tokenizer splits each input fluent in its components
(the predicate name and its objects); then these tokens are
concatenated to obtain a token sequence representing both
the initial state and the goal fluents. Similarly, this procedure
is applied for each action that is generated and provided as
input in the incremental generation of a solution plan: the
tokens of an action are its name and the objects of the action,
and a plan is a sequence of such tokens. For example, for
fluent (At Truck1 Loc1) we have three tokens: At, Truck1
and Loc1; for action (Drive Truck1 Loc1 Loc3), four tokens:
Drive, Truck1, Loc1 and Loc3.

The tokens of the initial state, the goal fluents, and the
(already generated) action sequence are then concatenated
to obtain a single sequence for GPT using some special to-
kens as follows: <start> to mark the start of the initial state;
<goal> to mark the end of the initial state and the begin-
ning of the goal fluents; <actions> to indicate the end of the
goal fluents and the beginning of the tokens of the action se-
quence; <end> to mark the end of the action sequence and,
consequently, of the entire plan generated to solve the plan-
ning problem.

As in many GPT models, the tokenization and prepara-
tion of the model input are performed by WordPiece (Devlin
et al. 2019). Since GPT models have a predefined vocabu-
lary, i.e., a predefined set of tokens, we define our vocabu-
lary using a predefined set of objects for each object type and
build the vocabulary using such objects, the predicate names
and the action names of the planning domain. Although the
predefined vocabulary is sensitive to the object names, in
our architecture this operation only requires setting a maxi-
mum number of objects. This is because we use a mapping
algorithm to translate new names into predefined ones. The
algorithm takes as input a PDDL problem and retrieves all
the objects, then checks if these objects are in the GPT vo-
cabulary. If an object is not in the vocabulary, it is substituted
with an unused object of the same type in the vocabulary.

PLANGPT Models
Figure 1 shows the architecture of our system, called
PLANGPT, in which we use the latest open-source version
of GPT (GPT-2).1 Given in input the initial state and goal of

1GPT-2 is significantly smaller than recent GPT versions, and
hence much less demanding in terms of training data and required

a problem in a planning domain, PLANGPT generates a se-
quence of ground actions (each one tokenized as described
above) forming a plan to reach the goal from the initial state.
First, the input is tokenized as described in the previous sec-
tion. After tokenization, the embedding layer converts the
tokens into embedding vectors, the decoder stack analyses
the input sequence, and the final layer outputs the first token
of the plan. Then, PLANGPT adds the generated token to the
input sequence and repeats the whole process for generating
the second token, and so on. Each token generated by GPT
is the name of an action or one of its objects. For example,
if the output of PLANGPT is the sequence Drive, Truck1,
Loc1, Loc3, ..., <end>, the first action of the generated plan
is (Drive Truck1 Loc1 Loc3). The tokens of each output ac-
tion are generated one after the other. E.g., first PLANGPT
generates Drive, then it adds Drive to the input sequence and
outputs Truck1, and so on. This is repeated until the end-of-
sequence token <end> is generated.

Tipically, GPT models are trained to generate all the to-
kens starting from token <start>, i.e., to replicate the entire
input sequence, which in our case represents the initial state,
the goal, and a solution plan. Since our goal is to generate
only a plan, we are not interested in learning how to repli-
cate the tokens of the initial state and the goal. Therefore, we
include a loss masking mechanism in the training procedure
to prevent the model from learning to generate these tokens.

Each training example consists of the sequence of to-
kens derived from a planning problem (initial state and goal)
and its label is the sequence of tokens from a solution plan
solving the problem. At training time, the model generates
a sequence of tokens corresponding to a sequence of ac-
tions. Such a sequence is compared against the example
label to compute the loss function and adjust the network
weights through backpropagation. As loss function we use
the widely used cross-entropy, i.e., for a single generated to-
ken, the loss function is −

∑|V |
t=1 log(ŷt) ∗ yt where ŷt is the

probability computed by GPT for token t, yt is the label for
token t (1 if it is the correct token, 0 otherwise) and |V | is the
dimension of the vocabulary. The loss for a complete plan is
the mean of the loss over all tokens in the plan.

Planning Coverage for Early Stopping in Training
Generally speaking, the use of the cross-entropy (CE) forces
the model to mimic the example label. Each time the model
generates a token, this token is compared with the corre-
sponding one belonging to the label. From this comparison
the loss is calculated, and then, the backpropagation algo-
rithm modifies the weights in order to generate a sequence
of tokens that is the closest possible to the label.

However, this process is not fully adequate for learning
to solve planning tasks because a planning problem can be
solved by different plans. With the cross-entropy loss func-
tion, we may observe an error in the generated (tokenized)
plan just because it is not totally identical to the one that was
used as label. This problem is exacerbated by the tendency
of deep learning models to overfit the training data. With an
overfitted model, we may have a model that is capable of

computational resources for training.

503

generating plans for the training problems, but is uncapable
of solving other similar problems in the test set.

A typical technique to prevent overfitting is the Early
Stopping (Goodfellow, Bengio, and Courville 2016). The
mechanism uses a validation set of examples that are not
used for training. If the loss value for the validation set (the
validation loss) increases, which is a typical evidence of
overfitting, the model continues to train for a fixed number
of epochs. After these epochs, if the validation loss has not
improved, the model restores the weights that obtained the
best performance on the validation set and the training stops.

Since, for planning, optimising the standard cross-entropy
on the validation set suffers the problem outlined above, we
designed a new early stopping technique. Our technique,
called Planning Coverage Early Stopping (CES for short),
evaluates the capability of solving the planning problems in
a validation set with the current learned model. This metric
is based on verifying the correctness of the plans generated
by the model for the planning problems in the validation set.
The verification is performed using the PDDL specification
of the actions (preconditions and effects) through the stan-
dard validator VAL (Howey, Long, and Fox 2004).

At the end of each training epoch, the model generates
the solution plans for the validation problems. If at least one
action in a plan is not applicable or at least one goal fluents is
not reached, the plan is considered incorrect, otherwise it is
valid. The coverage metric value is defined as the percentage
of valid plans over the total number of generated plans.

The use of CES helps the model to generate valid plans
rather than plans identical to ones labelling the training set.
The CES metric is evaluated at each training epoch; if the
CES value has not improved for a predefined number of
epochs (in our experiments 5), the training stops and we
select the model’s weights which obtained the best perfor-
mance in terms of the coverage metric.

Dataset Generation
In this section, we describe the procedure depicted in Fig-
ure 2 to build the dataset used for training our GPT model.
First, we generate 70, 000 planning problems (written in
PDDL) for the considered domain using a problem genera-
tor; we used the one proposed in (Seipp, Torralba, and Hoff-
mann 2022).Depending on the number of objects involved,
we have problems of different difficulty. We chose the num-
ber of objects following the setups of the International Plan-
ning Competition (IPC). However, with such setups and the
problem generators we could derive a class of problems that
is too specific for training, limiting the generalisation capa-
bility of the learned model. When we observed this issue for
the domain considered, we generated additional problems
through a revised problem generator. For instance, the gen-
erator available for LOGISTICS always creates problems in
which all packages of the problem must be transferred to a
location specified in the goal. To address this bias, we also
create scenarios where the goal does not encompass all the
packages specified in the planning problem.

For a typed domain, we incorporated the type predicates
into the initial states of the problems. E.g., for problems
in LOGISTICS, predicates such as (City City1) or (Package

Figure 2: Dataset generation procedure. Given a PDDL do-
main and a set of objects, the problem generator outputs a
PDDL problem in that domain; then the planner generates up
to four solution plans solving it; finally the objects names of
the problem and of the corresponding plans are randomised.

Package1) are added to the initial state. This helps the model
to associate each object name with its corresponding type.

For each generated problem, we compute different sub-
optimal solutions (four in our implementation). This shows
the system that a single problem can have more than one
valid plan. Furthermore, generating multiple solutions for a
single problem augment the number of training samples. To
obtain multiple plans, we used LPG (Gerevini and Serina
2002), but other planners could be used (Richter and West-
phal 2010; Lipovetzky and Geffner 2017; Helmert 2006).

Then, we randomise the object names to mitigate potential
biases in the generated problems and plans. The names ran-
domisation is performed by replacing each object name obj
with a name of an object of the same type of obj randomly
taken from the vocabulary. This step is important because
it prevents a deep learning model to learn biases tied to the
conventions used in problem generators. In LOGISTICS this
issue arises for the following reason: the generator names
trucks and cities with increasing numbers and assigns them
in increasing order. E.g., assume we consider problems with
three cities (City1, City2, City3) and one truck for each city;
the generator always set in the initial states Truck1 at City1,
Truck2 at City2 and Truck3 at City3. Training a model using
only problems following this convention limits its general-
isation capability, since it would provide wrong results for
instances following other conventions.

In addition to LOGISTICS, we built datasets for other
seven well-known benchmark domains from different
IPCs: BLOCKSWORLD, DEPOTS, DRIVERLOG, FLOORTILE,
SATELLITE, VISITALL and ZENOTRAVEL.

504

We also analysed the previous biases in the IPC bench-
marks and available generators of these domains. We ob-
served that all the IPC problems of BLOCKSWORLD have
only one tower to build, while BLOCKSWORLD generator
always creates problems with more than one tower to build.
Therefore, we used a variant of the standard generator where
every problem requires to build from one to five towers.

In ZENOTRAVEL, planes consume fuel transporting peo-
ple, and in general, a varying fuel level (among those avail-
able) is assigned to each plane in the initial state of a prob-
lem. However, in the ZENOTRAVEL problem generator, ev-
ery plane has zero fuel in the initial state. A model trained
with such problems could learn a simplified version of the
domain in which all planes used must always be refuelled,
without an understanding of the overall fuel management.
To solve this bias, we extended the ZENOTRAVEL generator
to randomise the initial fuel level of each aircraft.

For VISITALL, as in the approach of (Ståhlberg, Bonet,
and Geffner 2022b), we used the IPC-2011 optimal track
problems, and we generated problems with rectangular grids
of different sizes and different percentages of tiles to visit.

Experimental Results
We trained a custom GPT model for each of the eight do-
mains indicated above using GPT-2 Small, which has 12
blocks with 12 heads each, for a total of about 83M pa-
rameters2. We also tested bigger GPT configurations (which
require a higher number of training instances, more train-
ing time, and more computational power) without obtain-
ing significantly better results. Our models are trained on
a NVIDIA A100 GPU with 40 GB. We tested the three
standard generation strategies previously described: Greedy,
Multibeam N generation (setting N = 10) and Sampling
Top-P (setting P = 0.9 and N = 10). For each domain,
we employed 63,000 planning problems for training, 1000
for validation and 7000 for the testing (Tset). From these
problems, we generated up to 4 plans using LPG.

In the following, we evaluate our GPT-based models
in terms of percentage of valid generated plans (cover-
age). The generation takes, on average, less than 3 sec-
onds, with a maximum of 20 seconds for FLOORTILE using
Sampling. We also experimentally compare our approach
with Plansformer (Pallagani et al. 2023), the best perform-
ing transformer-based model applied to automated plan-
ning, and with a state-of-the-art approach for learning gen-
eral policies based on GNN (Ståhlberg, Bonet, and Geffner
2022b). This comparison is perfomed in terms of correct
plans, and scores IPCScore-Quality and IPCScore-Agile, as
defined in the last (2023) planning competition.

Effectiveness in Valid Plan Generation
Table 1 shows the results of PLANGPT with and with-
out the Planning Coverage Early Stopping (CES) for the
Greedy, Multibeam and Sampling generation strategies. For
this evaluation, we used a test set of more than 6000 prob-
lems for each domain; this test set, indicated with Tset, was

2PLANGPT and our datasets are available at
https://github.com/aiunibs/planGPT

Greedy Multibeam Sampling
Domain CE CES CE CES CE CES

BLOCKSWORLD 98.8 99.5 99.4 99.6 100.0 100.0
DEPOTS 72.9 78.7 77.1 85.4 90.3 94.5
DRIVERLOG 61.3 68.4 73.0 80.8 94.7 96.5
FLOORTILE 92.9 94.4 96.9 96.6 98.2 99.6
LOGISTICS 63.3 66.1 62.8 63.7 76.3 77.3
SATELLITE 68.0 75.3 71.6 78.3 81.3 90.1
VISITALL 94.0 94.0 97.8 97.8 99.9 100.0
ZENOTRAVEL 82.7 82.7 87.3 87.3 94.7 94.7

Table 1: Coverage for each domain with the greedy, multi-
beam and sampling generation of PLANGPT using standard
Cross Entropy without (CE column) and with the Coverage
Early Stopping (CES column) using the Tset test set.

created using the available generators modified as described
above to avoid original biases previously discussed.

Our system obtains very good results for most of the
considered domains. In particular, with Sampling the cov-
erage is higher than 90% for every domain except LOGIS-
TICS, where coverage is 77.3%. PLANGPT solves all the
BLOCKSWORLD and VISITALL problems and 99.6% of the
FLOORTILE problems with CES. Using the Multibeam and
Greedy strategies we have a lower performance, but the cov-
erage percentage is never lower than 60%.

We now evaluate the effectiveness of our coverage early
stopping (CES) technique, analyzing the coverage perfor-
mance with and without its utilization on the Tset test set.
The results are in Table 1. The use of CES improves per-
formance in all domains except ZENOTRAVEL, where the
performance remains the same. In particular, we have a re-
markable improvement for SATELLITE with all three gen-
eration strategies (7.3 points with greedy, 6.7 with multi-
beam, and 8.8 with sampling), DEPOTS and DRIVERLOG.
Even for domains where PLANGPT obtains very high per-
formance without CES, such as FLOORTILE, VISITALL and
BLOCKSWORLD, with CES we still have a small improve-
ment. These results confirm the usefulness of including our
planning evaluation technique in the training process.

In Figure 3 we examine the behaviour of the standard
(cross-entropy) loss function and the use of CES for three
domains during training. The black cross on the curves in-
dicates when the training stops using the standard cross-
entropy loss evaluated on a validation set (1000 randomly
generated problems for each domain not used for train-
ing PLANGPT) as the early stopping metric. The red star
markers indicates when the model stops the training us-
ing CES. For all three domains, using CES leads to train-
ing for a higher number of epochs w.r.t. not using it (i.e.,
with the standard cross-entropy technique). In these addi-
tional epochs, the loss function value worsens. Despite this
worsening of the loss function, the coverage increases un-
til the number of epochs indicated by the red star marker is
reached. This shows that using the CES improves the train-
ing process, obtaining higher coverage.

The experimental results of Table 1 and Figure 3 indi-
cate that the standard loss function of GPT-2 is not fully ad-

505

(a) Cross Entropy Loss of PLANGPT. (b) Coverage Early Stopping of PLANGPT.

Figure 3: Cross Entropy Loss (on the left) and Coverage Early Stopping (on the right) for each epochs in the training phase
of PLANGPT for DEPOTS, FLOORTILE, and SATELLITE domain on the validation set. The black marker indicates the training
termination when the Cross Entropy Loss is at its minimum. The red marker indicates the termination of the training when
Coverage Early Stopping is at its minimum.

equate to learn planning policies because we can observe
that an improvement in the plan generation can be obtained
with a worsening of the loss function at training time. As
we already noticed, a possible reason is that the standard
loss forces the model to imitate the target plan (the sample
label), limiting the model capabilities of generating a valid
plan that is different from the target one.

We have also performed an analysis of the invalid plans
generated by PLANGPT with aim of understanding its main
mistakes. Most of the errors in the invalid plans are related
to a violation of a precondition. In particular, for LOGIS-
TICS the trained GPT-based model selects an object that is
not in the correct location for the truck/plane loading action.
Therefore, we argue that the main difficulty for the model is
understanding the relation of the objects involved in a single
action (the truck and the package must be in the same posi-
tion to perform a load-truck action). For the invalid plans in
SATELLITE, PLANGPT generates take-image actions with
unsatisfied preconditions of type supports instrument mode.
This is because, before these actions, PLANGPT powers on,
points, and calibrates the wrong instruments (that do not
support the mode needed later by the take-image actions).

Finally, we have evaluated PLANGPT to perform plan
completion tasks rather than plan generation from scratch.
In this setting, in input we have the additional information of
a plan prefix (an initial sub-sequence of its actions), and we
ask the system to complete the plan. Overall the results are
promising, reaching performances higher than when plan-
ning from scratch. E.g., for LOGISTICS (the domain with the
worst performance in Table 1), using the Sampling strategy
and an input plan prefix of 10%, 20%, 40% and 60% of a
valid plan, the obtained performance in term of coverage is
79.9%, 83.1%, 86.1%, and 90%, respectively.

Evaluation with the IPC Benchmarks
In this section, we evaluate PLANGPT using benchmark
problems from the International Planning Competition

(IPC). For this experiment we use CES and the Sampling
generation strategy, which we observed to perform gener-
ally better than the other two implemented strategies. When
an object name in an IPC problem is not in the PLANGPT
vocabulary, a name for that object is randomly selected from
the vocabulary, saving it into a conversion table. However, if
the number of objects is higher than those in the vocabulary,
the problem cannot be attempted by PLANGPT. This is the
case only for 4% of the IPC problems in the eight consid-
ered domains (2 problems in DEPOTS, 3 in SATELLITE and
2 in ZENOTRAVEL). In the following, we will consider both
sets of test sets, the original set without the problems that
PLANGPT cannot attempt (IPC− test set) and the original
one (IPC test set).

The results of this experiment are in Table 2. PLANGPT
solves all IPC problems in the domains of BLOCKSWORLD,
FLOORTILE and ZENOTRAVEL, and a very high percent-
age of problems in the domains of DEPOTS, VISITALL and
DRIVERLOG. These remarkable results are especially inter-
esting for FLOORTILE because its IPC problems have nu-
merous dead-ends and different grid conformations, which
make them hard to solve for state-of-the art planners such
as LAMA (Richter and Westphal 2010) and FastDownward
(Helmert 2006) (e.g., LAMA solves only 2 of the 20 FLOOR-
TILE problems with run time limit of 10 minutes). The do-
main for which we observe the lowest performance is LO-
GISTICS, where only 53.3% of IPC problems are correctly
solved. The observed performances for the original and the
restricted (IPC−) test sets are similar, with lower perfor-
mance for the original set because the 4% problems that are
not attempted are counted as unsolved problems in the re-
sults for the original test set.

Comparison with the State of the Art
We compare PLANGPT and state-of-the-art deep learning
models for computing general policies. We consider Plans-
former (Pallagani et al. 2023) and the Graph Neural Net-

506

Domain IPC− test set IPC test set

BLOCKSWORLD 100.0 100.0
DEPOTS 95.0 86.4
DRIVERLOG 95.0 95.0
FLOORTILE 100.0 100.0
LOGISTICS 53.3 53.3
SATELLITE 70.6 60.0
VISITALL 95.0 95.0
ZENOTRAVEL 100.0 90.0

Table 2: Coverage of PLANGPT using the Sampling strat-
egy and CES on the IPC/IPC− test sets.

Coverage IPC-A IPC-Q
Domain GPT GNN GPT GNN GPT GNN

BLOCKS 100.0 81.4 1763.1 1093.7 1847.1 1459.0
LOGISTICS 77.3 21.6 4752.2 791.7 5125.1 772.1
VISITALL 100.0 96.0 5754.5 3176.4 6046.4 6002.0

Table 3: Comparison of PLANGPT (GPT) and GNN
in terms of problem coverage, IPCScore-Agile (IPC-A)
and IPCScore-Quality (IPC-Q) on the Tset test set.
BLOCKSWORLD is abbreviated with BLOCKS.

works (GNNs) proposed in (Ståhlberg, Bonet, and Geffner
2022b).

Plansformer is a transformer trained on code written in
several programming languages (CodeT5) and fine-tuned
on planning problems. In general we observed that our
PLANGPT models perform much better than the available
models of Plansformer. For instance, on the IPC problems
of BLOCKSWORLD and DRIVERLOG the coverage results
are 100% versus 11%, and 95% versus 5%, respectively.
Plansformer’s inability to generalise to complex instances
(the IPC benchmarks) could be explained by the excessive
simplicity of the problems in its training set (up to 5 blocks
in BLOCKSWORLD compared to 20 in our training dataset,
and up to 4 packages in DRIVERLOG compared to 25 in our
training). We tried to re-build Plansformer by fine-tuning
CodeT5 using our LOGISTICS and DRIVERLOG datasets.
Even in this case, Plansformer obtained much lower perfor-
mance for the two tested domains (coverage 30% and 5%
versus 53.3% and 95% of PLANGPT).

We now compare our GPT-based approach and the ap-
proach based on GNNs proposed in (Ståhlberg, Bonet, and
Geffner 2022b), which in the following is indicated sim-
ply with GNN. For this comparison we use three domains:
BLOCKSWORLD, LOGISTICS and VISITALL.3

Starting from the problem initial state, GNN evaluates the
successor states using a Graph Neural Network as heuristic
function, and chooses the action that leads to the best suc-

3We could not use the other domains examined in (Ståhlberg,
Bonet, and Geffner 2022b) because either they are too simple, or no
generator is available, or they have particularly long lists of pred-
icates in the problems that exceed the PLANGPT context window
(2048 tokens). This implementation limitation could be solved by
using GPT models with larger context windows.

cessor state; this is repeated for such successor state, and
so on until a state satisfying the goal is reached. The GNN
models were trained by the authors with the IPC problems,
augmenting the training set with traces obtained during the
heuristic search of planner BFWS (Lipovetzky and Geffner
2017). Therefore, we can not use the IPC problems also as
test set, and so we use our test set (Tset) as benchmark.

Table 3 shows the performance of PLANGPT and GNN
in terms of coverage and IPC scores. For BLOCKSWORLD,
given that the GNN models were trained with the IPC bench-
marks, in which the goal of every problem has exactly one
tower of blocks, for testing we considered only the instances
in Tset with one tower. Nonetheless, PLANGPT solves all
these problems while GNN solves only 81.4% of them.

For LOGISTICS, PLANGPT obtains a coverage of 77.3%
versus 21.6% of GNN. The authors of GNN notice that LO-
GISTICS is a challenging domain for GNN due to its be-
longing to the C3 logic fragment (Ståhlberg, Bonet, and
Geffner 2022b). For this reason, they also modified this do-
main (changing the used fragment of logic to C2), adding
a predicate to link packages, trucks, and planes to loca-
tions in the problems. With this modification of the domain,
coverage increases to 44.7%, which is still lower than the
coverage result of PLANGPT. We also trained PLANGPT
with this modified version of LOGISTICS, observing a cover-
age performance similar to the one of GNN. For VISITALL,
PLANGPT obtains a coverage of 100% versus 96% of GNN.

Regarding the comparison in terms of IPC scores reported
in Table 3, we observe that, for the considered domains,
PLANGPT performs generally better than GNN in terms of
both run time to generate a valid plan (IPC-A column) and
length of the generated plan (IPC-Q column). Note that the
definitions of the IPC scores take account of the problems
that are unsolved.

Conclusions
We have investigated generalised planning as a deep learn-
ing task using transformer-based architectures. We propose a
system based on GPT, called PLANGPT, that learns to solve
an extensive class of problems for a given planning domain.
Our training procedure exploits a technique that we designed
to take into account the planning capability of the model in
the validation phase, which we show helps to increase the
performance of the trained system w.r.t. just using the stan-
dard cross-entropy loss.

An experimental analysis demonstrates the effectiveness
of our approach. For several domains, PLANGPT solves the
large majority of the IPC benchmark problems, as well of
other larger test sets.

Current and future work includes improving the training
process through a tighter integration of planning knowledge
in the loss function, and to overcome the current limits due
to maximum number of objects in the vocabulary and the
length of the context window. Finally we are exploring the
use of PLANGPT to provide useful plan seeds to a plan-
repair system like LPG with very encouraging preliminary
results.

507

Acknowledgements
This work was supported by EU H2020 project AIPlan4EU
(GA 101016442), EU ICT-48 2020 project TAILOR (GA
952215), MUR PRIN project RIPER (No. 20203FFYLK),
and Climate Change AI project (No. IG-2023-174).

References
Arora, D.; and Kambhampati, S. 2023. Learning and Lever-
aging Verifiers to Improve Planning Capabilities of Pre-
trained Language Models. CoRR, abs/2305.17077.
Chen, D.; Thiébaux, S.; and Trevizan, F. 2024. Learning
Domain-Independent Heuristics for Grounded and Lifted
Planning. In AAAI. AAAI Press.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT (1), 4171–4186.
Association for Computational Linguistics.
Gerevini, A.; and Serina, I. 2002. LPG: A Planner Based
on Local Search for Planning Graphs with Action Costs. In
AIPS, 13–22. AAAI Press.
Geva, M.; Khashabi, D.; Segal, E.; Khot, T.; Roth, D.; and
Berant, J. 2021. Did Aristotle Use a Laptop? A Question
Answering Benchmark with Implicit Reasoning Strategies.
Trans. Assoc. Comput. Linguistics, 9: 346–361.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In ICAPS, 408–416. AAAI
Press.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In ICTAI, 294–301. IEEE Computer
Society.
Hu, Y.; and De Giacomo, G. 2011. Generalized Planning:
Synthesizing Plans that Work for Multiple Environments. In
IJCAI, 918–923. IJCAI Org.
Jiang, Z.; Xu, F. F.; Araki, J.; and Neubig, G. 2020. How
Can We Know What Language Models Know. Trans. Assoc.
Comput. Linguistics, 8: 423–438.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek,
A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.; Bal-
lard, A.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain,
R.; Adler, J.; and Hassabis, D. 2021. Highly accurate protein
structure prediction with AlphaFold. Nature, 596: 1–11.
Lipovetzky, N.; and Geffner, H. 2017. Best-First Width
Search: Exploration and Exploitation in Classical Planning.
In AAAI, 3590–3596. AAAI Press.
Pallagani, V.; Muppasani, B.; Srivastava, B.; Rossi, F.;
Horesh, L.; Murugesan, K.; Loreggia, A.; Fabiano, F.;
Joseph, R.; and Kethepalli, Y. 2023. Plansformer Tool:
Demonstrating Generation of Symbolic Plans Using Trans-
formers. In IJCAI, 7158–7162. IJCAI Org.

Petroni, F.; Rocktäschel, T.; Riedel, S.; Lewis, P. S. H.;
Bakhtin, A.; Wu, Y.; and Miller, A. H. 2019. Language Mod-
els as Knowledge Bases? In EMNLP/IJCNLP (1), 2463–
2473. Association for Computational Linguistics.
Radford, A.; and Narasimhan, K. 2018. Improving Lan-
guage Understanding by Generative Pre-Training. In
preprint. api.semanticscholar.org/CorpusID:49313245.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks. J.
Artif. Intell. Res., 39: 127–177.
Seipp, J.; Torralba, Á.; and Hoffmann, J. 2022. PDDL Gen-
erators, https://github.com/AI-Planning/pddl-generators.
Serina, L.; Chiari, M.; Gerevini, A. E.; Putelli, L.; and Se-
rina, I. 2022. A Preliminary Study on BERT applied to
Automated Planning. In IPS/AI*IA, volume 3345. CEUR-
WS.org.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning Generalized Plans Using Abstract Counting. In
AAAI, 991–997. AAAI Press.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. Artif. Intell., 175(2): 615–647.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022a. Learning
General Optimal Policies with Graph Neural Networks: Ex-
pressive Power, Transparency, and Limits. In ICAPS, 629–
637. AAAI Press.
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2022b. Learning
Generalized Policies without Supervision Using GNNs. In
KR, 474–483. IJCAI Org.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. J. Artif.
Intell. Res., 68: 1–68.
Valmeekam, K.; Hernandez, A. O.; Sreedharan, S.; and
Kambhampati, S. 2022. Large Language Models Still Can’t
Plan (A Benchmark for LLMs on Planning and Reasoning
about Change). CoRR, abs/2206.10498.
Valmeekam, K.; Sreedharan, S.; Marquez, M.; Hernandez,
A. O.; and Kambhampati, S. 2023. On the Planning Abilities
of Large Language Models (A Critical Investigation with a
Proposed Benchmark). CoRR, abs/2302.06706.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In NIPS, 5998–6008. Curran Asso-
ciates Inc.
Wang, Y.; Wang, W.; Joty, S. R.; and Hoi, S. C. H. 2021.
CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation.
In EMNLP (1), 8696–8708. Association for Computational
Linguistics.
Welleck, S.; Kulikov, I.; Kim, J.; Pang, R. Y.; and Cho, K.
2020. Consistency of a Recurrent Language Model With Re-
spect to Incomplete Decoding. In EMNLP (1), 5553–5568.
Association for Computational Linguistics.

508

