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Abstract

In some scenarios, planning agents might be interested in
reaching states that keep certain relationships with respect
to a set of goals. Recently, two of these types of states were
proposed: centroids, which minimize the average distance to
the goals; and minimum covering states, which minimize the
maximum distance to the goals. Previous approaches com-
pute these states by searching forward either in the original
or a reformulated task. In this paper, we propose several al-
gorithms that use symbolic bidirectional search to efficiently
compute centroids and minimum covering states. Experimen-
tal results in existing and novel benchmarks show that our
algorithms scale much better than previous approaches, es-
tablishing a new state-of-the-art technique for this problem.

Introduction

Automated Planning typically deals with the task of finding
a sequence of actions, namely a plan, which achieves a goal
state from a given initial state (Ghallab, Nau, and Traverso
2004). However, in some scenarios, planning agents might
be interested in reaching states that keep certain relation-
ships with respect to a set of (potential) goals. Recently,
two of these types of states were proposed (Pozanco et al.
2019; Karpas 2022): centroids, which minimize the average
distance (cost) to the goals; and minimum covering states,
which minimize the maximum distance to the goals. Find-
ing states with these properties has proven to be useful in
diverse settings. For example, they were used in deceptive
planning (Price et al. 2023), where an agent seeks a plan
such that observers are not able to discern its goal. There
are also potential uses in anticipatory planning (Burns et al.
2012), where agents start acting before a goal arrives. For
example, agents that reply to incoming requests from cus-
tomers should not be idle when no request is active, but in-
stead proactively gather information that might be needed to
reply to most of the customers’ potential future inquiries.
Figure 1 illustrates these states in the planning task intro-
duced by Pozanco et al. (2019). The ranger should generate
a plan to set the camp at a location that minimizes the cost
(time) of a plan to put out any fire that might break out.
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Figure 1: Centroid (C, blue) and minimum covering state
(M, green) of a forest ranger planning task. Flames mark
goal locations where the ranger might need to put out fires.

There exist two approaches in the literature to compute
these states. The first one (Pozanco et al. 2019) uses a best-
first search algorithm to explore the state space of the origi-
nal planning task, computing the distance to each goal from
each state, and returning the state that optimizes the given
metric. This is a naive approach, as it needs to (i) explore
all the reachable states; and (ii) compute an optimal plan to
each goal from each state in order to get the perfect dis-
tance. The second approach (Karpas 2022) compiles the
original planning task into a larger classical planning task
with multiple agents, one for each goal. They proposed two
slightly different compilations for centroids and minimum
covering states inspired on seminal work on goal recog-
nition design (Keren, Gal, and Karpas 2014). Empirically,
Karpas (2022) showed that computing centroid and mini-
mum covering states by solving the reformulated tasks was
orders of magnitude faster than using the exhaustive search
approach by Pozanco et al. (2019) in most tasks. However,
this approach still presents some drawbacks. First, differ-
ent compilations must be developed for each optimization
criteria, so it is difficult to generalize the approach beyond
centroids and minimum covering states. Second, compiled
tasks will typically yield larger state spaces (potentially in-
volving O-cost actions) that will often result in harder tasks
that are more difficult to be efficiently solved by planners.
Finally, compiling all goals into a single problem makes the
exploitation of their independence more challenging.

In this paper we propose to use symbolic bidirectional
search to compute centroids, minimum covering states,
and more broadly any state that optimizes a given multi-
goal distance function. Our family of Symbolic Multi-Goal



(SMG) algorithms offers several benefits over previous ap-
proaches. First, unlike (Karpas 2022), we perform search
in the original task rather than in a reformulated one. Sec-
ond, while (Pozanco et al. 2019) needs to optimally solve a
large number of planning tasks to get the perfect distance to
each goal from each state, we can compute this distance by
searching backwards independently from each goal. Once
we find a candidate state, we can check if it is reachable
from the initial state by searching forward with that state as
goal, removing the need of exhausting the state space. Fi-
nally, symbolic search uses succinct data structures to rep-
resent and manipulate sets of states, which is an efficient
alternative when exhaustive search is needed.

The rest of the paper is organized as follows. We first
formalize classical planning and the foundations of our ap-
proach: symbolic and bidirectional search. Then, we extend
the standard centroid and minimum covering states defini-
tions to states that optimize a given multi-goal distance func-
tion. Next, we introduce SMG, a family of symbolic bidi-
rectional search algorithms to compute such states. Finally,
we evaluate our new algorithms in existing and novel bench-
marks, showing that they outperform previous approaches in
computing planning centroid and minimum covering states.

Preliminaries

A SAST planning task (Bickstrom and Nebel 1995) is a tu-
ple Il = (V,I,0,G). V is a finite set of state variables,
each associated with a finite domain D,,. A partial state p is
a function on a subset of variables V,, C V' that assigns each
variable v € V, a value in its domain, p[v]. A state s is a
complete assignment to all the variables. With S we refer to
the set of all possible states defined over V. We also use par-
tial states to represent conditions on states. A state s satisfies
a condition p (s |= p) if s(v) = p(v) for all v € V,,. We also
identify any partial state p with the set of states that satisfy
it: S, = {s | s = p}. The state I € S is the initial state of
the planning task, and G is the goal condition, which defines
the set of goal states S C S.

O is a set of operators, where an operator is a tuple
o = (pre,, eff ,, co) of partial variable assignments called
preconditions and effects, respectively, and ¢, € Ny is the
non-negative cost of 0. An operator o € O is applicable in
state s iff s |= pre,. Applying operator o in state s results
in a state s[o] where s[o](v) = eff ,(v) forallv € Vg and
s[o](v) = s(v) for all other variables.

A sequence of operators 7 = (01, ...,0,) is applicable
in a state sg if there are states si,...,s, such that o; is
applicable in s;_1 and s; = s;_1[o;] foralli = 1,...,n.
The resulting state of this application is so[r] = s,, and
c(m) = X, en Co, denotes the cost of 7. A state s is reach-
able iff there exists a sequence of operators 7 applicable in
I such that I[rr] = s. With Sg C S we refer to the set of all
reachable states of the planning task. The solution to a plan-
ning task II is a plan, i.e., a sequence of operators 7 such
that I[r] € Sg. A plan with minimal cost is optimal.

We denote as h*(s, s) the optimal cost of reaching state
s’ from state s. If there is no path between the two states,
h*(s,s") = co. We denote as g(s) = h*(I,s), and h(s) :
S — Ny U {oo} for a goal G as min,ecs, h*(s, sa).
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Symbolic Representation with Decision Diagrams

Binary Decision Diagrams (BDDs) (Bryant 1986) are a effi-
cient data-structure to encode Boolean functions {0, 1}"
{T,L}. We use BDDs to represent sets of states S C S.
This requires some arbitrary encoding of the values of the
state variables V' in binary. To simplify the presentation,
we assume without loss of generality that the set of vari-
ables V have a binary domain. Each set of states S is rep-
resented by a BDD B encoding its characteristic function
Xs : 8§ — {T,L}, where Xs(s) = T iff s € S. Slightly
abusing notation, we will write s € B whenever s is in the
set of states represented by 5.

A BDD (Figure 2a) is a directed acyclic graph with a
single root node and up to two terminal nodes, T and L.
Each inner node corresponds to a binary variable v € V,
and has two successors depending on whether s(v) = 0
(dashed edge), or s(v) 1 (solid edge). Given a state
s € 8, and a BDD B, it can be checked whether s € B
by a simple top-down traversal, which will always end in
T if s € B and L otherwise. For example, the BDD in
Figure 2a has 5 nodes and represents a set with 3 states:
{v1 = 0,v9 = 0,v3 — 0}, {v; — 0,v9 — 1,v3 — 0},
and {v1 — 1,u3 — 1,v3 — 0}. We denote as 5, the
BDD representing a (partial) state p, i.e., the set of states
Sy = {s | s = p}. The size of a BDD || is the number of
nodes in its directed acyclic graph. In general, the number
of states represented by a BDD can be exponentially larger
than its number of nodes.

We assume BDDs are reduced and ordered. BDDs are or-
dered whenever variables are always checked in the same
order (though some variables may be skipped) in any path
from the root to the leaves. BDDs are reduced whenever
(a) there are no irrelevant nodes in which both successors
point to the same node; and (b) all nodes are unique (i.e., any
equivalent nodes with the same variable and successors are
merged). These properties are easy to maintain. Also, they
allow the implementation of efficient operations on BDDs,
whose runtime depends on the size of the BDDs and not
on how many states they represent (which, again, could be
exponentially larger). Specifically, the union (U) and inter-
section (N) of sets of states can be computed as the dis-
junction (B V B’) and conjunction (B A B’) of their char-
acteristic functions, respectively. The runtime of these oper-
ations is O(|B||B’|). However, the conjunction/disjunction
of n BDDs is worst-case exponential in n.

Algebraic Decision Diagrams (ADDs) (Bahar et al. 1997)
are similar to BDDs, but have an arbitrary number of termi-
nal nodes with different discrete values (see Figure 2b). That
is, we can use them to represent functions mapping states to
numerical values S — Ny U {co}.

The APPLY operation takes as input two ADDs and a bi-
nary operation o (e.g. +, —, X, +, max, min), and returns
an ADD A = APPLY (A, A, o) representing the function
A(s) = Ai(s)o.Az(s). Thus, using apply, we define any bi-
nary operation over ADDs, e.g, we write A; + A5 as a short-
hand for APPLY (A, Az, +). The runtime is O(|.A;||Az|).

ADDs can be converted into BDDs and vice versa (Tor-
ralba 2015; Speck 2022). Given an ADD A, and a value z,
the function BDD(.A, x) returns a BDD representing the set
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Figure 2: Example of a BDD and an ADD.

of states {s | A(s) = z}. For example, in Figure 2, the
BDD corresponds to BDD(.A, 0). Given a BDD B and two
values z, y, the function ADD(B, z,y) returns an ADD A
where A(s) = z if s € B and A(s) = y otherwise. Also, for
any ADD A, it is possible to compute the value ming A(s),
as that corresponds to the terminal node in A with the low-
est value. Similarly, we can sample any state minimizing the
function, by obtaining a path from the root to such termi-
nal node. All of these operations can be done in a single
traversal so they have running time linear in the size of the
BDD/ADD.

Symbolic Search

Symbolic search explores the state space by using the rep-
resentation of sets of states as BDDs explained above. To
do search directly in the symbolic representation, operators
are represented as transition relations (TRs). A set of op-
erators O C O can be represented as a TR containing the
set of all state pairs (s, s’) such that s’ is reachable from s
by applying an operator o € O. For a given set of states B
and TR T, the image/preimage operator computes all suc-
cessors/predecessors of B with respect to the operators rep-
resented by 7.

In the forward direction, the search starts with a BDD
representing the initial state 537, and iteratively constructs
a set of BDDs with an associated cost By, B1, Bo, ..., where
By = {s| h*(I,s) = g} represents the set of states that can
be reached from I with a cost of g. Typically, the search ter-
minates whenever the next set of states to be expanded has a
non-empty intersection with the set of goal states, also repre-
sented as a BDD B, meaning that an optimal plan has been
found. However, one can also choose to continue the search
beyond that point to exhaust the set of reachable states.

On the other hand, symbolic backward search (regression)
starts the search from the goal states, and applies the preim-
age operation until a non-empty intersection with the BDD
that represents the initial state I is found. As a result, we
obtain BDDs By, B1, Ba, where B, = {s | h*(s,G) = h}
represents the set of states that can reach GG with a cost of h.
If the search is exhausted (ignoring ), this is equivalent to
computing the perfect heuristic hg,.

The combination of these two searches forms a bidi-
rectional search used by most modern symbolic search
planners (Torralba et al. 2017; Speck, Mattmiiller, and
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Nebel 2020). We will use SymbolicSearch(I, O, fw), and
SymbolicSearch(G, O, bw) to denote the initialization of
forward and backward searches, respectively. We will use
STEP to denote a function that computes the image (preim-
age) of a forward (backward) search; FINISHED to denote
a Boolean function that indicates if the given search has
been exhausted, i.e., the image/preimage operation does not
generate new non-expanded states; COMPLETE() to denote
a function that runs the search until FINISHED is true; and
COMPLETE(B) to denote a function that runs the search un-
til reaching some s € B or until the search is finished if no
state in B is reachable.

Perimeter search (Dillenburg and Nelson 1994) consists
of searching a perimeter around the goal. This idea has been
used in the construction of heuristic functions for explicit-
state search using a symbolic backward search, which is
interrupted before termination (Kissmann and Edelkamp
2011; Torralba, Linares Lépez, and Borrajo 2018). Given
an unfinished backward search initialized with G where the
sets of states By, ..., B, have been generated up to h = p,
the set of closed states is closed = Vie[o,p] B;, i.e., the
set of states for which the real goal distance is known.
Then, the perimeter heuristic is h5(s) = iif s € B; and
hE(s) = p + 1 otherwise.hL, is a lower bound on the ac-
tual goal distance, i.e., h5(s) < hi(s). As sets of states
are generated with increasing values of h, we are certain
that any remaining state will have a goal distance of at least
p + 1. The function search.CLOSEDBDD() returns a BDD
with the set of states closed by a given search. The function
search. KNOWNBDD() returns a BDD with the set of states
for which the exact distance is known (i.e., {s | hE(s)
h§(s)}). This is the same as search.CLOSEDBDD() if the
search has not finished, and equal to the set of all states
otherwise. The function search.CLOSEDADD() returns an
ADD mapping each state to the corresponding perimeter
heuristic, i.e., min; ADD(B;, i, 00).

Multi-goal Distance Functions

In order to compute planning centroid and minimum cover-
ing states, we consider the same setting as in (Pozanco et al.
2019; Karpas 2022) using the concept of planning tasks with
multiple possible goal conditions (PMG).

Definition 1 (PMG) A planning task with multiple possible
goal conditions is defined as P = (V,1,0,G), where V,
I, and O are defined as in a SAS™ planning task, and G is
a set of possible goal conditions, where each possible goal
condition G € G is defined as in a SAS™ planning task.

Definition 2 (Planning centroids) Given a PMG P, the
centroids are those reachable states s € Sgr that mini-
mize the sum of optimal costs to the possible goals, i.e.,
2ceg MG (s):

Definition 3 (Planning minimum covering states) Given

a PMG P, the minimum covering states are those reachable
states s € Spr that minimize the maximum optimal cost to
any of the possible goals, i.e., maxgeg hé(s).

Whenever a goal G € G is unreachable, then
h&(s) = oo for all reachable states, so Yoo hi(s) =



maxgeg hé(s) = oo. In that case, any reachable state is
a centroid and minimum covering state.

We introduce a general definition that covers these and
other states that optimize a multi-goal distance function.

Definition 4 (Multi-goal distance function) A multi-goal
distance function ¢ is a function (NgU{oo})* — NoU{oo}
mapping each vector of goal-distances to a goal-distance.

Definition 5 (¢-optimal states) Given a PMG P, and a
multi-goal distance function ¢, the set of ¢-optimal states
is the set of reachable states s € Sp that minimize
P(h, (s), .- hE, (5)).

This definition generalizes centroids (when ¢ is the sum),
and minimum covering states (when ¢ is the maximum).
An important property, that is satisfied by both centroid and
minimum covering states iS monotonicity, i.e., minimizing
the distance to each of the goals is always desirable.

Definition 6 (Monotonic multi-goal distance functions)

A multi-goal distance function ¢ is monotonic if
for any two distance vectors v (v1,...,vk) and
vo= (V... ) with |l , it holds that

(Vivi <vj) = ¢o(v) < (V).

For example, the sum function of centroids is monotonic
because, if the distance to the remaining goals is preserved,
increasing the distance to one of the goals cannot decrease
the overall sum of distances. However, this is not the case for
other functions. For example, if we are interested on finding
states with the same cost to all the goals, we could minimize
#(hg(s)) = maxgeg h§;(s) — mingeg hg(s). This is non-
monotonic, as a goal distance of (10, 10) is preferable over
(5,0) even though the distance to both goals is larger.

v/

Computing ¢-Optimal States with Exhaustive
Symbolic Search

The first algorithm we propose from our SMG family of algo-
rithms is Symbolic Multi-Goal Exhaustive Search (SMGE),
which is described in Algorithm 1. SMGE starts by per-
forming a full symbolic forward search from the initial
state and |G| symbolic backward searches, one from each
possible goal G € G. All of these searches are indepen-
dent, so they can be performed in any order. The forward
search yields fw.CLOSEDBDD(), a BDD representing the
set of reachable states Si. Each backward search yields
BW¢.CLOSEDADD(), an ADD representing the hg, func-
tion that maps each state to its distance to the goal G € G.
The key step of the algorithm is in line 5 where all the
ADDs are combined into a single ADD 44 that represents
¢, 1.e., it maps each state s to the ¢(s) value. In the pseu-
docode, we slightly abuse notation and describe this step as
using APPLY over a set of ADDs (recall that APPLY can be
used only for a pair of ADDs). The implementation of this
step depends on the function ¢. The idea is to repeatedly use
APPLY to pairs of ADDs in the set until obtaining the de-
sired result. For example, let X = {A;, A5, A3} be a set
of ADDs. APPLY(X,+) would compute (A; + As) + As.
For some binary operations, such as the sum and the max-
imum, the order in which the ADDs are combined is irrel-
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Algorithm 1: Symbolic Multi-Goal Exhaustive
Search (SMGE)

Input: PMG task P = (V, I, O, G) and multi-goal
distance function: ¢
Output: A ¢-optimal state sy
fw < SymbolicSearch(I, O, fw)
BW ¢« {SymbolicSearch(G, O, bw) | G € G}
for search € {fw} U BW do
| search.COMPLETE()

Ay + APPLY(Ug g {BWG.CLOSEDADD()}, ¢)
Ay + max( Ay, ADD(fw.CLOSEDBDD(), 0, 00))
value < ming Ay (s)

if value = oo then return

else return any sy € argming Ag(s)

BOW N =

e ® 9 w»n

evant for the final result. However, this order might influ-
ence the size of the intermediate ADDs, and therefore the
runtime of this step of the algorithm. Therefore, in our im-
plementation, we use the same procedure used to aggregate
BDDs within the symbolic search algorithm (see Algorithm
3 in (Torralba et al. 2017)).

Then, SMGE updates the A, by setting to oo the value
of unreachable states, i.e., those states that do not appear in
the CLOSED list of the forward search. After that, it takes
the minimum value of Ay, and returns any state optimiz-
ing ¢ by obtaining a path from the root to the terminal node
with that minimum value. A plan from I (to G) can be re-
constructed by analyzing the forward search’s (backward
searches’) CLOSED lists.

SMGE can easily be applied to any other multi-goal dis-
tance function. Decomposing the computation of ¢ into pair-
wise operations in line 5 may be more complicated, but it is
always possible, as the terminal nodes in intermediate ADDs
can be labeled with any needed information. In this paper,
we focus on centroids and minimum covering states, and
leave the implementation of this step for other multi-goal
distance functions as future work.

From Exhaustive to Perimeter Search

The main drawback of the exhaustive search is that it per-
forms unnecessary computations by obtaining h* to each
goal from each state in the problem. Whenever ¢ is mono-
tonic, some of these computations are not needed and we
can stop the backward searches earlier.

As an example, consider the problem of computing the
minimum covering state on a PMG P with 3 possible goals,
where the solution to such a task is a single state s with
hé, (s) = 10, hi, (s) = 4, and b, (s) = 3. In this case, any
state with h* larger than 10 to any goal will not be part of the
solution, so it is unnecessary to expand them as the previous
exhaustive algorithm does. For example, it is irrelevant if
h&,(s') = 15 0r h, (s") = 20, so we can stop all searches
after exploring all states of distance 10 or less to the goal.
However, this raises the following question: up to when do
we need to keep exploring for any given ¢ function?

In this example, it is clear that we need to explore each
search tree at least up to distances 10, 4, and 3, respectively.



Otherwise, we would not know the distance from the so-
lution state to each goal. However, this is not sufficient to
prove that the obtained solution is indeed optimal. At that
point, we know there is no minimum covering state at dis-
tance 3 or below, but there could be a solution at distance
5 from each goal. Expanding all the backward searches up
to distance 10 is not necessary. In this case, it could suffice
to explore all states at distances 10, 9 and 3, if there is no
reachable state at distance 9 or less in the first two searches.
Alternatively, we could explore up to 10, 4 and 9, if there is
no state at distance 9 or less in the first and third search.

To formalize when we have performed enough search to
guarantee that we have found the desired ¢-optimal state, we
define the set of candidate states with respect to the perime-
ter heuristics of all backward searches and a set of poten-
tially reachable states.

Definition 7 (Candidate States) Let BW be a set of
perimeter searches, and h; = (h§, ..., h§ ) a vector of
the perimeter heuristics to each goal G € G. Let S O Sy
be an over-approximation of the set of reachable states. The
set of candidate states of BW for some multi-goal distance
function ¢ given S is the set of states arg min g p(hf (s)).

This allows for early termination without completing all
backward searches, whenever there is a candidate state that
has been closed in all backward searches and is reachable
according to the forward search.

Proposition 1 (Termination Criteria) Let ¢ be a mono-
tone multi-goal distance function. Let BW be a set of perime-
ter searches with a set of candidate states Bc. Then, if there
exists s € Bg such that s € bw.KNOWNBDD() for all
bw € BWand s € Sg, then s is ¢-optimal.

Proof: Since s is a candidate, then s has minimum ¢(h5).
Since s € bw.KNOWNBDD() for all bw € BW, then
h&(s) = hi(s) for all goals G € . Therefore ¢(h)
¢(h). Finally, let s’ € Sk be any other state. As hi(s')
hi(s'), by monotonicity of ¢, we have that ¢(hf(s))
#(hg(s")). So, we conclude that ¢(hg) o(hf)

o(h5(s")) < d(hg(s")). As this holds for all &', s is a
optimal state with respect to ¢, i.e., s € Sg.

INININ I

<
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Algorithm 2 shows our second algorithm, Symbolic
Multi-Goal Perimeter Search (SMGP). The algorithm ex-
changes information from the backward and forward
searches, so it has a parameter, dir, that specifies which
direction is explored at the beginning of the algorithm. In
SMGPy,,, the forward search is performed at the beginning.
In SMGPy,,, the forward search is delayed until there are
some candidates which have been explored in all backward
searches. The main advantage of SMGPy,, is that one can
prune all unreachable states from the backward searches,
which may increase the efficiency. On the other hand, the
forward search can terminate early in SMGPy,,, if one of the
states in the first set of explored candidates is reachable.

At each step within the main loop (lines 7-23), the al-
gorithm generates a set of candidates, B¢. This is done by
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Algorithm 2: Symbolic Multi-Goal Perimeter
Search (SMGPy;;-)
Parameter : dir = forward (fw) or backward (bw)
Input: PMG task P = (V, I, O, G) and monotone
multi-goal distance function: ¢
Output: A ¢-optimal state s

1 fw < SymbolicSearch(I, O, fw)

2 BW <« {SymbolicSearch(G, O, bw) | G € G}

3 if dir = "forward” then

4 fw.COMPLETE()

5 Prune fw.CLOSEDBDD() on all BW¢s € BW

¢ while true do

7 Ay < APPLY (Ui g {BWG.CLOSEDADD()}, ¢) §

8 if fw.FINISHED() then

9 A¢ — a
L max(Ags, ADD(fw.CLOSEDBDD(), 0, 00)) =

10 value < mins Ay (s) a ri;’

1 if value = oo then g

12 | return ] ’

13 Bc < BDD(Ag, value) J

14 Bespcand < Bo A Ngeg BWa.KNOWNBDD()

15 if Bewpcana 7 L then g

16 fw.COMPLETE(BespCand ) -

17 By < Bewpcand N fw.CLOSEDBDD() 4 g

18 if B, # L then g

19 | return any sy € By J g

20 else )

21 BWC + {BW¢ € BW | »

—BW¢.KNOWNBDD() # 1} £
2 bw_to_advance <+ PICKEASIEST(BWC) g
23 bw_to_advance.STEP() J

joining the perimeter heuristic ADDs from all the backward
searches in a single ADD through the APPLY operation (line
7), as described in the previous section. Then, if the for-
ward search has finished, all unreachable states are assigned
a value of co. Next, B¢ is assigned to the set of states mini-
mizing such function (lines 10-13), i.e., the set of candidate
states according to Definition 7, where S is the set of reach-
able states if the forward search has already been performed,
or the set of all states otherwise.

After that, the algorithm checks the two termination cri-
teria in Proposition 1. First, whether some candidates have
been explored by all the backward searches (line 14). If that
is not the case, the algorithm performs a step in one of the
backward searches, so that the set of candidates changes in
the next iteration. To that end, we select a search for which
the value of some of the candidates is not yet known. Then,
SMGP advances the easiest backward search in BW. We de-
fine it to be the one that is estimated to generate a lower
number of nodes in the next step (lines 22 and 23).

When Beypcand 7 L, some candidates satisfy the first
termination condition. In that case, we check if they are
reachable (lines 16-17). This only incurs in computation if
the forward search has not finished yet, as otherwise un-
reachable states were already removed in line 9. If By is not
empty, all states in that intersection are reachable and con-



tain a set of ¢-optimal states. Therefore, SMGP terminates
returning any of the states in that BDD (line 19). Otherwise,
this process is repeated until a ¢-optimal state is found.

Proposition 2 SMGPg;,- always terminates and returns a ¢-
optimal state for any monotone function ¢.

Proof Sketch: Termination is guaranteed as at every itera-
tion; either we compute the set of reachable states or some
unfinished backward search will take a step. The number of
steps of a backward search is bounded by the number of
states in the planning task, so eventually all searches will
finish. At that point, the goal distance to all states is known,
so the algorithm will return a reachable state with minimum
¢-value.

Whenever the algorithm terminates, it always returns a ¢-
optimal state. Note that all states in B, are candidates (due
to line 13), closed in all unfinished backward searches (due
to line 14), and reachable (due to line 17). Therefore, all
conditions of Proposition 1 are met. O

Just Using BDDs for Minimum Covering
States

SMGP constructs an ADD mapping each state s to its cor-
responding ¢(s) value, according to the perimeter heuris-
tic. However, as we are only interested in the states with
minimum ¢-value, computing the exact value for states with
larger ¢-value is unnecessary. While avoiding incurring this
computational overhead for any arbitrary ¢ is not straight-
forward, one can easily do this for minimum covering states.
The main observation is that, if all backward searches have
been performed up to a perimeter k, then there exists a min-
imum covering state at distance k or less of all goals iff the
intersection of all closed lists is not empty.

The third algorithm we propose is Symbolic Multi-Goal
Minimum Covering Search (SMGC), which leverages this
observation to compute minimum covering states through
only using BDDs (see Algorithm 3). As in SMGP, we have
two variants that differ on whether the forward search is
completed at the beginning of the algorithm, or delayed un-
til a set of candidates is found. Similarly to SMGP, the algo-
rithm first checks whether there is a candidate solution. But,
in this case, this is done by intersecting the closed list of
all the backward searches (line 7). If this intersection is not
empty, Bezpcand contains a set of candidate solutions, and
the algorithm proceeds to check whether some of its states
are reachable. If so, SMGC returns any state in that BDD
(line 12). Otherwise, when B.zpcang is empty, the algorithm
(lines 13-18) progresses all the searches that have not yet
finished and whose next step has a lowest g-value. This sim-
plifies the algorithm, as it ensures that all the searches have
always explored up to the same perimeter.

Experiments

Approaches. We implemented our SMG algorithms on top
of Symbolic Fast Downward (Torralba et al. 2017)!, and
compare them against the two other approaches in the lit-
erature to compute centroids and minimum covering states:

"https://gitlab.com/atorralba/fast-downward-symbolic
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Algorithm 3: Symbolic Multi-Goal Minimum Cov-
ering Search (SMGC g;;-)

Parameter : dir = forward (fw) or backward (bw)
Input: PMG task P = (V. 1,0, G)

Output: A minimum-covering state s4

1 fw < SymbolicSearch(I, O, fw)

2 BW « {SymbolicSearch(G, O, bw) | G € G}

3 if dir = "forward” then
4
5

fw.COMPLETE()
| Prune fw.CLOSEDBDD() on all BW¢ € BW

¢ while true do

7 Bespcana + Ngeg BWa-CLOSEDBDD()
8 if BempCa,nd # 1 then

9 fw.COMPLETE(Bezpcand)

10 By < Begpcand A fw.CLOSEDBDD()
1 if B, # L then

12 | return anysg € By

13 | k< mingwgepw BWg.NEXTLAYER()

4 | BWC + {BW¢ € BW |
—~BW¢ .FINISHED() A BW&.NEXTLAYER() = k}
15 if BWC = @ then

16 L return 1
17 foreach BWs € BWC do
18 | BWg.STEP()

GRS and COMP. GRS (Pozanco et al. 2019)? uses the Fast
Downward planner (Helmert 2006) with the A* search al-
gorithm and the LM-cut heuristic (Helmert and Domshlak
2009) to perform exhaustive search in the original plan-
ning task with multiple possible goals P. comp (Karpas
2022)* compiles P into a standard planning task IT. We
use two planners to solve II: A* with the LM-cut heuris-
tic as proposed by Karpas (2022), COMP;,,,; and the sym-
bolic bi-directional configuration of Symbolic Fast Down-
ward, COMPg;,, so we make sure any performance improve-
ment of the SMG algorithms does not come from using a
different planner.

Benchmarks and Reproducibility. We use the bench-
mark set used by Pozanco et al. (2019) and Karpas (2022)*,
which consists of four planning domains (BLOCKS, FERRY,
GRIPPER, and LOGISTICS), and one grid path-finding do-
main. The planning domains were adapted from standard
IPC benchmarks, and the grid path-finding domains consists
of 20 x 20 grids with a different percentage of obstacles
(5%, 10%, 15%, and 20%). Each domain has 10 problem in-
stances, for a total of 80 problems equally split between IPC
and grid domains. We refer to this benchmark as SMALL, as
most of the tasks are small planning tasks with few possi-
ble goals. For example, all BLOCKS instances contain only
5 blocks and 3 goals. To better analyze the scalability of the
algorithms, we introduce 80 tasks of increasing difficulty in
each domain. In BLOCKS, we generated these instances by

Zhttps://github.com/apozanco/GRS_0.1
3https://github.com/karpase/grscompilation
*We exclude HANOI, which only contained tasks with one goal.



creating random configurations of 6, 8, 10 or 12 blocks, and
having 2, 4, 8 or 16 possible goals (words) to be formed by
stacking the blocks. In GRID, we generated 10 x 10, 20 x 20,
40 x 40 and 80 x 80 grids, with 2, 4, 8 or 16 possible goals
(agent’s locations). For FERRY, GRIPPER and LOGISTICS,
we selected the 20 first problems available at the Planning
Domains repository®, and created 4 different instances for
each problem by generating between 2 and 5 possible goals.
These goals are sets of cars/balls/packages being delivered
at different locations/rooms/cities.

Experiments were run on an Intel Xeon E5-2666 v3 CPU
@ 2.90GHz x 8 processors with a §GB memory bound and a
time limit of 1800s. Code, benchmarks, and results are pub-
licly available (Pozanco, Torralba, and Borrajo 2024).

Coverage Analysis. Table 1 shows the coverage of each
approach, i.e., the number of problems they solve. Regarding
centroids, COMPy,,, solves more than twice the tasks solved
by GRS in the small instances, as previously reported by
Karpas (2022). This performance difference is emphasized
in the larger tasks, where GRS solves only 22 tasks compared
to the 257 for which COMP;,,, can compute a centroid. Solv-
ing the compiled tasks using a symbolic planner (COMPgp,)
offers a worse performance across all domains, highlight-
ing the fact that the reformulated task does not suit sym-
bolic planners particularly well. Our baseline approach that
performs exhaustive search (SMGE) is already very compet-
itive with the previous state-of-the-art COMPy,,,, achieving
significantly higher coverage in BLOCKS, FERRY, and LO-
GISTICS. However, SMGE is worse in GRIPPER and fails to
solve almost any instance in the GRID domain, where it can
only solve 1 out of 40 problems. This is because this ar-
guably ill-defined domain uses a (free ?c) predicate to
denote that a given cell is free and the agent can move to
it, even though in all instances there is a single agent so
the precondition is always redundant. Having this predicate
turns GRID tasks into a challenging domain for approaches
using backward search, since the set of reachable states is
orders of magnitude smaller than the set of states. For ex-
ample, assuming a 20 x 20 grid without obstacles, the prob-
lem will have only 400 reachable states, but more than 2400
total states that backward searches could potentially con-
sider. This is also the reason why SMGPy,, obtains similar
results, although it outperforms the exhaustive algorithm in
larger tasks, being able to solve 45 tasks more. In fact, if
we leave GRID aside, SMGPy,, would be the best perform-
ing algorithm, solving 1 task more than SMGP,,, the win-
ner across the benchmark with a coverage of 415. By first
computing the reachable states and using that information to
prune the backward searches, SMGP ,, is able to solve most
of the GRID tasks, as well as showing a good performance in
the other domains.

Similar conclusions can be drawn from the minimum cov-
ering states results (right side of Table 1). In this case, SMG
approaches outperform the compilation approach by even
larger margins, with the best performing SMGP variant solv-
ing 421 tasks compared to the 187 solved by cOMP;,,,. The
compilation to compute minimum covering states is more

>https://github.com/AI-Planning/classical-domains
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involved than the centroids one, since it needs to discretize
numerical variables. On the other hand, SMG algorithms
achieve slightly better results when computing minimum
covering states, with only 17% of problems where the op-
posite is true. The reason is that combining the ADDs of
the backward searches by taking their maximum generates a
smaller joint ADD than when these ADDs are combined by
taking their sum, as the number of possible terminal node
values is larger in the latter case. The performance of the
SMGC algorithms is very similar to their SMGP counterparts.

Runtime Analysis. First, we compare the execution time
of some of the best variants of COMP and SMG. These re-
sults are shown in Figure 3a, where we compare SMGP t,,
(x axis) and COMP;,, (y axis) when computing minimum
covering states. In this case, the majority of the tasks were
solved faster by SMGP t,, than by the compilation, i.e., points
fall above the diagonal line in the plot. We can observe some
trends across domains. For example, SMGP,, is consistently
faster than COMPy,,, in BLOCKS and GRID instances, while
the results in the other domains depend on the task at hand.
There is a cluster of simple problems that COMP;,,, can solve
in less than a second, while SMGP s, requires up to 1 second
to solve them. Our algorithms initialize some data structures
before starting the search, which slightly delays SMGP al-
gorithms in some simple tasks. The results for centroids are
similar, with SMGP,, being significantly faster.

Forward SMG variants obtained higher coverage scores
mainly due to GRID, but the backward variants were able
to solve more problems in domains such as LOGISTICS and
BLOCKS. Figure 3b compares the execution time of SMGPp,,
and SMGPy,, when computing centroids. As we can see,
SMGPy,, is faster than SMGPy,, in most cases except for
GRID. This was expected, as SMGPy,, does not need to com-
pute all the set of reachable states as SMGP ., does, which
might be demanding in some problems. In particular, start-
ing the search backwards until a candidate centroid is found
is faster in 70% of the tasks. This percentage raises up
to a &~ 90% if we do not consider GRID, re-emphasizing
SMGPy,, as the go-to algorithm for many IPC domains such
as BLOCKS where (i) most of the states in the planning
task are reachable; and (ii) the number of reachable states
is large.

The coverage difference between the SMGP variants,
which use ADDs and BDDs and progress only one back-
ward search at a time, and the SMGC variants, which only use
BDDs and progress multiple backward searches simultane-
ously, was negligible. Figure 3c compares the execution time
of their backward versions when computing minimum cov-
ering states. As we can see, both approaches have very simi-
lar execution times. The main differences appear in BLOCKS
tasks, where SMGCy,, is slower in most of the tasks. These
similar runtimes are explained by two counteracting factors.
On the one hand, SMGC variants should be faster, as they do
not need to build and reason over ADDs. On the other hand,
SMGP variants should be faster, as they typically require to
advance a lower number of backward searches.

Scalability Analysis. We also analyzed the performance
of the algorithms in detail in the BLOCKS domain, where



Centroid Minimum Covering
Domain GRS COMP;,;, COMPgs, SMGE SMGPp,, SMGPfy, ||GRS COMP;,;, COMPg, SMGE SMGPpyy SMGP sy, SMGChy SMGC fqp
BLOCKS (10) | 10 10 10 10 10 10f| 10 10 10 10 10 10 10 10
FERRY (10) 0 9 2 10 10 10 0 7 6 10 10 10 10 10
GRIPPER (10) 1 10 10 10 10 10 2 10 8 10 10 10 10 10
LOGISTICS (10)| 5 10 4 10 10 10 7 10 10 10 10 10 10 10
GRID (40) 18 39 1 1 2 40| 18 1 1 1 2 40 2 40
SMALL (80) 34 78 27 41 42 80 37 38 35 41 42 80 42 80
BLOCKS (80) 2 30 10 45 59 60 2 9 10 45 68 60 62 60
FERRY (80) 0 46 27 80 80 80 0 39 31 80 80 80 80 80
GRIPPER (80) 2 74 32 46 70 75 2 55 25 46 71 75 72 77
LOGISTICS (80)| 3 57 32 64 70 62 3 27 26 64 72 64 72 64
GRID (80) 15 50 16 0 1 58| 17 19 15 0 5 60 6 60
LARGE (400) | 22 257 117 235 280 335|| 24 149 107 235 296 339 292 341
TOTAL (480) | 56 335 144 276 322 415|| 61 187 142 276 338 419 334 421

Table 1: Approaches’ coverage in computing centroids and minimum covering states. Bold figures indicate best performance.
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Figure 3: Pairwise comparisons of execution time. Each point in the plot corresponds to a problem of our joint benchmark (480
tasks). Points above the diagonal indicate that the approach in the x axis is faster than the approach in the y axis.

we generated tasks with increasing complexity by varying
the number of blocks (size of the problem) and the num-
ber of words to build (number of possible goals). Our SMG
approaches scale much better than the compilation ones in
both criteria, and they are specially robust with respect to
the number of goals.

Conclusions and Future Work

In this paper we introduced Symbolic Multi-Goal (SMG), a
family of symbolic bidirectional search algorithms to com-
pute centroids and minimum covering states. Experimental
results in existing and novel benchmarks show that our algo-
rithms outperform current approaches both in coverage and
execution time. These results establish our algorithms as a
new state-of-the-art technique for this task. The decision of
which SMG algorithm should be used greatly depends on the
task at hand. Forward alternatives are the best option when
the number of reachable states is small compared to all states
in the planning task, as it can prune many states and simplify
the backward searches. Otherwise, backward alternatives are
the best choice.
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There are also many interesting research avenues. On the
one hand, there are several ways to further improve SMGP’s
performance. First, SMGP advances the backward search
whose next step is estimated to be easier. In future work,
we would like to explore other less greedy criteria to make
this decision. Second, we could over-approximate the set of
reachable states, e.g., using mutexes (Alcdzar and Torralba
2015; Fiser and Komenda 2018), to increase performance in
the variants that prioritize backward search, which tend to be
faster. Third, we would like to test whether some candidate
state is reachable using heuristics, without conducting an ex-
haustive forward search. However, this requires computing
heuristics wrt. a set of goal states (our candidate set) repre-
sented as a BDD. Currently, this is only possible for admis-
sible heuristics derived with symbolic search (Torralba et al.
2016; Torralba, Linares L6pez, and Borrajo 2018), which are
not competitive for satisficing planning. Finally, we focused
on two ¢ functions that had already been defined and proved
useful in the literature. In future work we will consider other
¢-optimal states, e.g. those that are at the same distance from
all goals, or that are as far as possible from the goals.
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