
Large Language Models as Planning Domain Generators

James Oswald1, Kavitha Srinivas2, Harsha Kokel2, Junkyu Lee2, Michael Katz2, Shirin Sohrabi2

1Rensselaer Polytechnic Institute
2IBM Research

oswalj@rpi.edu, {kavitha.srinivas, harsha.kokel, junkyu.lee, michael.katz1}@ibm.com, ssohrab@us.ibm.com

Abstract

Developing domain models is one of the few remaining
places that require manual human labor in AI planning. Thus,
in order to make planning more accessible, it is desirable to
automate the process of domain model generation. To this
end, we investigate if large language models (LLMs) can be
used to generate planning domain models from simple tex-
tual descriptions. Specifically, we introduce a framework for
automated evaluation of LLM-generated domains by com-
paring the sets of plans for domain instances. Finally, we
perform an empirical analysis of 7 large language models,
including coding and chat models across 9 different plan-
ning domains, and under three classes of natural language
domain descriptions. Our results indicate that LLMs, partic-
ularly those with high parameter counts, exhibit a moderate
level of proficiency in generating correct planning domains
from natural language descriptions. Our code is available at
https://github.com/IBM/NL2PDDL.

Introduction
Large language models (LLMs) have demonstrated robust
emergent abilities for open-ended tasks like story gener-
ation, poetry, and dialogue (Zhao et al. 2023b; Hayawi,
Shahriar, and Mathew 2024). Their potential is no longer
limited to natural language. Rather, they have shown the
ability to generate highly structured output that resembles
code from natural language descriptions of programs (Li
et al. 2023; Touvron, Lavril, and Izacard 2023). It is natural
to wonder how these abilities generalize to knowledge engi-
neering tasks such as those used for problem representation
in symbolic methods. Despite the efficacy of symbolic meth-
ods such as boolean satisfiability (SAT) solvers (Biere et al.
2021), automated planners (Helmert 2006), and automated
theorem provers (Harrison, Urban, and Wiedijk 2014) in
their respective domains, the issue of representing a problem
accurately and efficiently still hinders the wider adoption
and accessibility of these powerful methods. If LLMs can
bridge the gap between natural language description of the
problem and symbolic representation, it would enable large-
scale adoption of symbolic methods and reduce the depen-
dency on technical experts. It is natural to look to the emer-
gent abilities of LLMs as a potential bridge that could tie nat-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ural language descriptions of problems to accurate symbolic
representations for automated planning (Ghallab, Nau, and
Traverso 2004). If LLMs are sufficiently equipped for this
task, this would reduce the dependency on technical experts
as well as lead to a wider adoption of symbolic methods.
To this end, our work investigates using LLMs for generat-
ing problem representations for automated planning. Specif-
ically, we evaluate the capabilities of LLMs to automatically
translate natural language descriptions of planning domains
to Planning Domain Description Language (PDDL) (Ghal-
lab et al. 1998).

The problem of domain generation from natural language
has been studied earlier (Lindsay et al. 2017; Hayton et al.
2020) and recently Guan et al. (2023) also attempted this
problem using LLMs. Despite these studies, the task of eval-
uating the usefulness of the generated domain description is
extremely difficult. Previous works leveraged human experts
for evaluation. We argue that for rigorous, automated evalu-
ation we need a ground truth; a vetted domain specification.
Hence, in this work we focus on the task of creating high-
quality reconstructions of the PDDL domain from natural
language; where the generated domain is ideally equivalent
to the ground truth. Restricting the generation of the PDDL
domain to an approximated equivalence class would make
the generated domains more amenable to existing planners
and further the goal of using the generated descriptions for
producing executable plans. To further clarify, while Guan
et al. (2023) uses LLMs to learn a PDDL model from a tex-
tual description, this is not our main purpose in this work.
We aim in this work to understand how such methods can be
evaluated, and due to this, need to depend on the additional
assumption that a reference domain is available. While this
is a stronger assumption than what is made in earlier work,
this allows for fully automated evaluation.

The core contributions of this work are fourfold. First, we
define a task of PDDL domain reconstruction from natural
language; based on a ground truth. Second, we define two
metrics for evaluating domain quality that do not depend on
any form of manual human evaluation. Third, we examine
classes of natural language descriptions of PDDL actions to
investigate if the inclusion and exclusion of particular infor-
mation impacts the ability to generate domains or the qual-
ity of generated domains. Finally, we evaluate 7 different
LLMs, including coding and chat models, and provide a de-

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

423



tailed analysis of the results from each on 9 domains.

Background
Planning In this work, we use the Planning Domain Def-
inition Language (PDDL) for the declarative plan represen-
tation, but when necessary to discuss the underlying for-
malisms we refer to parts of planning problems and domains
using the following lifted STRIPS formalism, largely in line
with Corrêa and Seipp (2022). A lifted STRIPS planning
problem is defined as a 5-tuple Π = ⟨F , C,A, s0, S∗⟩. F
is a finite set of predicates that describe the world. C is a
finite set of constants representing objects in the world, op-
tionally including type information. We define Fg as the set
of all grounded predicates, that is, predicates in which all
variables are replaced by legal constants from C. A state
s ⊆ Fg is a set of grounded predicates that describe the
state of the world, such that f ∈ s if and only if f is a
true fact about the world. The set of all possible states is the
power set of Fg , denoted by S. A is a set of action schema
where each a ∈ A is a 3-tuple ⟨pre(a), add(a), del(a)⟩
where pre(a) ⊆ F is the set of predicates that must hold
to apply the action, add(a) ⊆ F is the set of predicates that
become true after the action is applied, and del(a) ⊆ F is
the set of predicates that become false. An action schema
a ∈ A can be grounded by substituting all variables in a
with allowed constants from C. The grounded action ag =
⟨preg(ag), addg(ag), delg(ag)⟩ is defined as a 3-tuple of its
grounded pre, add, and del predicates, and we define Ag as
the set of all grounded actions. Finally, s0 ⊆ Fg is the initial
state of the world for the planning task and S∗ ⊆ S is the set
of possible goal states.

For a grounded action ag ∈ Ag and a state s ∈ S, we
say that ag is applicable in s if preg(ag) ⊆ s. Applying an
applicable action ag in the state s results in a state s[ag] :=
(s/delg(ag)) ∪ addg(ag). A plan for a problem Π is, there-
fore a sequence of grounded actions π = (a1, · · · , an)
which when applied transforms the initial state s0 into a goal
state in S∗. The action sequence defines a state sequence
S = (s0, · · · , sn) such that si = si−1[ai] for 1 ≤ i ≤ n and
sn ∈ S∗. The set of all plans for Π is denoted by PΠ.

A planning domain for a lifted STRIPS planning prob-
lem Π is the problem’s predicate and action schema sets
D = ⟨F ,A⟩, while we say Π is a problem for D and write
ΠD if Π uses D as its underlying domain, regardless of the
specific objects, initial state, and goal states (C, s0, S∗) for
the problem.

Large Language Models (LLMs) Language Models are
probabilistic predictors for language tokens that when given
a sequence of tokens T = (t0, t1, · · · , tn) in a corpus C
will output a set of predictions and associated probabilities
P ⊆ C × IR for tn+1 based on the data the model has been
trained on. Different decoding strategies can be used to se-
lect a token in P based on the probabilities, one such strat-
egy is the greedy strategy which sets tn+1 equal to the high-
est probability token in P . The new tn+1 can be appended
to T and the process can be repeated for the next token. The
maximum allowed size of T is known as the context window,
which limits the amount of tokens able to use for prediction.

Large language models are a class of language models
characterized by their large size and emergent abilities on
tasks that smaller language models are unable to perform
on. LLMs are almost always implemented on top of a Trans-
former architecture (Vaswani et al. 2017). There are many
different types of large language models trained on various
types of data, and models may be tuned to perform differ-
ent types of tasks such as code generation (Li et al. 2023) or
acting as chat agents (Touvron, Lavril, and Izacard 2023); a
survey can be found at Zhao et al. (2023a).

In-Context Learning for LLM inference is a technique
classified as an emergent ability of LLMs to perform at a
higher level of performance on tasks using examples of
desired inputs and outputs (Dong et al. 2022). For example,
rather than the prompt: “Solve the following
addition problem: 1 + 2”, an in-context learn-
ing prompt would read: “Solve the following
addition problems: In: 2 + 3, Out: 5;
In: 4 + 2, Out: 6; ..., In: 1 + 2,”, where
the prompt is composed of 3 parts (1) An instruction (2) a
set of context examples and a (3) a query which is expected
to be answered inline with the context examples. In-context
learning is used in our work and much of the related work
such as Liu et al. (2023) and Guan et al. (2023).

Approach
The goal of this work is the evaluation of LLM’s abilities
to generate PDDL domains. In particular, we are interested
in generating and evaluating these domains on an action-
by-action basis where each prompt to the LLM is a request
to generate one action in a domain using context examples
from other domains. This action-by-action prompting was
inspired by Guan et al. (2023) and is primarily a concern
due to the size of the LLM’s context window.

We now turn to characterizing the concrete task we are
trying to solve, an overview can be seen in Figure 1. In order
to evaluate generated domains automatically, a ground truth
domain is needed to compare the generated domains against.
For this, we use existing PDDL domains as a starting point
in our approach. Given a starting domain D = ⟨F ,A⟩, we
begin by converting all action schema in A to natural lan-
guage descriptions of action schema, N(A). We assume that
a list of the predicates in the domain F and natural language
descriptions of these predicates N(F) are given to us as con-
text for the domain. This assumption, while slightly limiting
accessibility, is the cornerstone that allows this task a much
more robust set of automatic evaluation options than when
the context for the domain is just a natural language descrip-
tion, as in, e.g., Guan et al. (2023). The natural language
action N(a) ∈ N(A), along with a specification of domain
predicates ⟨F , N(F)⟩, is used as the query for the in-context
learning prompt. For the prompt’s context examples, other
actions are randomly sampled from the action schema out-
side of the domain D of the current action. A model then
takes these prompts and transforms them into a sequence of
tokens T (a) representing a as a PDDL action. An attempt
is made to parse T (a) as a PDDL action a′. This is the first
location at which automated evaluation is possible, as there
are numerous reasons why T (a) may fail to be a valid PDDL

424



Listing 1: A context example from a prompt N(a) for the
fly-airplane action from the logistics domain, including the
”Allowed Predicates” which function as the domain specifi-
cation ⟨F , N(F)⟩.

Allowed Predicates:
(in-city ?loc - place ?city - city) : a

place loc is in a city.
(at ?obj - physobj ?loc - place) : a

physical object obj is at a place loc.
(in ?pkg - package ?veh - vehicle) : a

package pkg is in a vehicle veh.

Input:
The action, "FLY-AIRPLANE" will fly an

airplane from one airport to another.
After the action, the airplane will be
in the new location.

PDDL Action:
(:action FLY-AIRPLANE

:parameters (?airplane - airplane ?loc-
from - airport ?loc-to - airport)

:precondition (at ?airplane ?loc-from)
:effect (and (not (at ?airplane ?loc-

from)) (at ?airplane ?loc-to))
)

action, many of which can be extracted by just attempting to
parse T (a). For all T (a) that were successfully parsed into a
reconstructed PDDL action a′, we add them to the set of suc-
cessfully reconstructed actions A′. Next, for each a′ ∈ A′

we create a reconstructed domain D′ from D by replacing
A with (A/a) ∪ a′ where a is the original action that gen-
erated a′. Note that for our formulation A′ is not the set of
actions for a D′, rather we look at |A′| new domains D′s for
each action, inline with our action by action-based evalua-
tion strategy. This is also due to practicality reasons, in order
to use A′ for D′, all actions in the domain would need to get
through the parsing phase in which T (a) is converted to a′,
this is simply not a reasonable assumption to make. Our task
then, is to evaluate the quality of each D′ with respect to D.

Description Classes
We investigate several strategies for converting PDDL ac-
tion schema a ∈ A to their natural language descriptions,
N(a) ∈ N(A). Each strategy produces a distinct class of
natural language representations of the action model.

1. Base Nb(A): Base descriptions include only information
including the action name, parameters, and the parameter
types of the action, as well as a one-line description of
what the action does without explicitly mentioning any
predicates. For example: “The action ’unstack’ will have
a hand unstack a block x from a block y.”

2. Flipped Nf(A): Flipped descriptions include the base
descriptions with an additional description of all predi-
cates that are deleted preconditions in that action schema,
that is, for an action schema a ∈ A, Nf(a) is Nb(a) ex-
tended with a description of predicates in pre(a)∩del(a)

Figure 1: A high-level overview of our proposed task.

as preconditions. The motivation behind this class is to
evaluate if predicates that are explicitly changed are the
most important things to include in a natural language de-
scription for the LLM, as they might be for a person when
describing a domain. For example: “The action ’unstack’
will have a hand unstack a block x from a block y, if the
block x is clear, on top of y, and the hand is empty.”

3. Random Nr(A): Random descriptions act as a random
baseline to compare against flipped descriptions, as well
as another higher information content baseline to com-
pare against base descriptions. For each action schema
a, the description includes the base description Nb(a),
and descriptions of |pre(a) ∩ del(a)| random predicates
sampled from pre(a), add(a) and del(a), where is the
description is dependent on if the predicate was sampled
from the precondition or effect. For example: “The ac-
tion ’unstack’ will have a hand unstack a block x from
a block y, if the hand is empty and x is on y. After the
action, y should be clear.”.

Evaluating
When considering how to evaluate the performance of LLMs
on this task, note that LLMs will frequently output se-
quences of tokens for our evaluation that cannot be inter-
preted as a valid planning domain. Some of these errors are
syntax based while others are based on the semantics of the
underlying PDDL tokens. If a model does output a valid do-
main, it must be evaluated in terms of its quality.

Domain Reconstruction Quality Metrics
Evaluating the quality of a correctly generated planning do-
main is a difficult task. Current metrics such as human ex-
pert evaluation (Guan et al. 2023; Li et al. 2024; Hayton
et al. 2020) provide a rough but subjective measure that is
impossible to automate. Like Guan et al. (2023), we have de-
signed our task such that all generated domains are based on

425



an existing domain which we can evaluate with respect to a
baseline. We look at and evaluate two automated metrics for
measuring the quality of generated domains. The first met-
ric, action reconstruction error, is a more traditional auto-
mated metric that measures the distance between generated
actions in domains, but we note it is a poor metric. We pro-
pose a second metric, heuristic domain equivalence, which
provides a more robust and tolerant approximation of true
domain equivalence.

Action Reconstruction Error (ARE) The Action Recon-
struction Error (ARE) is a measure of how different two
action schema a, a′ ∈ A are. We define the action recon-
struction error as the size of the difference of predicates in
the precondition and effect between a and a′:

ARE(a, a′) =|pre(a) △ pre(a′)|+
|add(a) △ add(a′)|+
|del(a) △ del(a′)|

where A△B is the symmetric difference (A/B)∪(B/A).
This metric is useful for understanding the distribution of
how close is the output domain (from the model) to the
original domains. However, we claim that this metric is not
a good measurement of actual domain quality. It does not
take into account the fact that preconditions and effects can
be added or removed from an action without changing the
meaning of the action at all, for example, adding a static
predicate from a precondition as an effect. To remedy this,
we propose an alternative metric based on how usable the
domain is for planning.

Plan Applicability for Heuristic Domain Equivalence
The primary reason a planning domain is created is so that
it can be used as the underlying representation for a set of
problems in the domain. The problems implicitly define a
set of plans, and when reconstructing domains, we can mea-
sure domain equivalence in terms of the equivalence of the
sets of plans for a collection of problems. While it is not
practical to check if the full set of plans is equivalent, it is
possible to check for a number of plans on some problems
we care about in the domain.

The domain equivalence heuristic is computed as follows:
given an original planning domain D, a reconstructed plan-
ning domain D′, and a set of solvable planning problems for
D, PD, each problem Π ∈ PD can be transformed into a
problem Π′ ∈ PD′ that uses D′ as its underlying domain.
For each such pair of problems Π and Π′ and some corre-
sponding subsets of their plans P ⊆ PΠ and P ′ ⊆ PΠ′ ,
we can cross check whether P ⊆ PΠ′ and P ′ ⊆ PΠ. For
each individual plan, the test can be efficiently performed
using a plan validator1. This heuristic, plan equivalence on
P for a subset of plans, is a necessary condition for true do-
main equivalence, and its negation is a sufficient condition
to show true domain inequality.

Result Classes
We propose four result classes for classifying the action
from an LLMs output. Each class other than the heuristically

1https://github.com/KCL-Planning/VAL

equivalent domain class has multiple sub-classes to give a
better idea of the types of problems encountered.

1. Syntax Error: The model produced syntactically invalid
PDDL. This PDDL cannot be parsed to evaluate an ac-
tion reconstruction error. Subclasses (in precedence or-
der): (1) No PDDL (NoPDDL): Model did not output
any PDDL, (2) Parenthesis Mismatch (PError): issues re-
garding the matching parenthesis in the PDDL (3) Unex-
pected Token (UToken): The PDDL parser failed after
finding an unexpected token.

2. Semantic Error: The model produced syntactically
valid PDDL, but the PDDL doesn’t integrate with the
intended problems. Subclasses (1) Type Error (TError):
The model produced an unexpected type (2) Predicate
Argument Error (PAError): the wrong number of vari-
ables were passed to a predicate (3) Wrong Action Name
(NError), The name of the action is wrong (4) Bad
Precondition (BPError): PDDL STRIPS does not allow
negated preconditions, but one is present.

3. Different Domain: The model produced syntactically
valid PDDL that integrates with the original domain, but
the underlying domains are different by way of the do-
main equivalence heuristic. The behavior of the actions
is not as intended, plans from the original domain cannot
be applied in the new domain and vice versa. Subclasses
(1) No Plans Found (NoPlan): No plans were able to be
found on problems in the new domain (2) New Plan Ap-
plication Error (NPApp): Could not apply a new plan to
the original domain (3) Original Plan Application Error
(OPApp): The original plan could not be applied to the
new domain.

4. (Heuristically) Equivalent Domain: The model pro-
duced syntactically valid PDDL that integrates with the
desired domain under the domain equivalence heuristic,
plans from the original domain can be applied in the new
domain and vice versa.

The classes form a hierarchy in which syntax errors super-
sede semantic errors which supersede both the different and
equivalent domain classes which are mutually exclusive. i.e.
An output with both syntax and semantic errors will only be
marked with the error caught first, the syntax error.

Experiments and Results
Setup
We evaluate the LLaMA family of LLMs (Touvron, Lavril,
and Izacard 2023), as well as StarCoder (SC) (Li et al. 2023).
For LLaMA we evaluate both the base pre-trained models
at 7b, 13b, 70b parameters. We also evaluate the 7b, 13b,
70b LLaMA models that have been finetuned for chat us-
ing reinforcement learning with human feedback (RLHF)
(Ouyang et al. 2022). For token selection for all models, we
use greedy sampling in which the token with the highest out-
put probability is selected as the next token.

For our domains, we select 9 PDDL domains with vary-
ing action and predicate complexities. We include 2 recent
domains, “Forest” and “Delivery” from Yang et al. (2022),

426



a domain “Heavy” from Silver et al. (2024) and a novel do-
main, “Trackbuilding”. The latter two domains are guaran-
teed not to be in the training set, as they were created af-
ter LLaMA and StarCoder were trained; these domains are
marked with a dagger (†). The remainder of our domains
are famous classical planning domains from various Inter-
national Planning Competitions.
1. Blocksworld – 5 predicates 4 actions: A robot hand tries

to stack blocks on a table in a particular configuration.
2. Gripper – 4 predicates 3 actions: A robot moves balls

from one room to another using grippers.
3. Heavy†– 5 predicates 2 actions: Specified items must be

packed into a box depending on item weight.
4. Forest – 5 predicates 2 actions: Hikers must navigate to a

location over varying terrain.
5. Logistics – 3 predicates 6 actions: Items must be trans-

ported to locations using planes and trucks.
6. Depot – 6 predicates 5 actions: A combination of blocks

and logistics domains.
7. Miconic – 6 predicates 4 actions: A lift delivers multi-

ple passengers to their desired floors from their starting
floors.

8. Trackbuilding†– 4 predicates 3 actions: An agent must
build a path for a train to take to a given location.

9. Delivery - 7 predicates 3 actions: A delivery person must
deliver newspapers to a number of safe locations from a
home base.

For the domain equivalence heuristic, our problem set con-
sists of 2 simple randomly selected problems from each do-
main. We select the top 100 plans using the K∗ planner (Lee,
Katz, and Sohrabi 2023). The top-k plans for a problem Π
are the set of k different plans with the lowest costs, which
in our case is the same as the length of the plan. While any k
plans could be used for computing the domain equivalence
heuristic, using the top-k plans we ensure that minimally the
optimal plans for the evaluated problems are equivalent. To
test for plan validity we use VAL.

Evaluating Heuristic Domain Equivalence Over
Different LLMs
For this experiment, we exclusively use base descriptions in
which only a description of the action’s parameters and types
without reference to predicates is provided. For prompt
generation, each base action description is turned into 60
prompts, each with 3 randomly sampled context examples
from outside of its domain. We note that this sampling is
done uniformly across all types of actions, the only restric-
tion being that the action used for context cannot be in the
same domain as the action we are generating for. We chose
to use 60 prompts as a trade-off between experiment runtime
and statistical significance. We chose to use 3 context exam-
ples after a manual parameter search; increasing the number
of context examples further did not improve results and de-
creasing past 3 led to worse results.

Figure 2 (Top) displays the breakdown of outputs over
the primary result classes. Two results are immediately ap-
parent from this. First, LLMs particularly larger ones, are

Result class Star LLaMA
& subclass Coder 7b 7b-C 13b 13b-C 70b 70b-C

Sy
nt

ax

NoPDDL 0.00 0.16 0.00 0.00 0.00 0.00 0.16
PError 0.00 0.00 0.78 0.00 0.00 0.00 0.00
UToken 2.34 16.09 20.31 0.78 27.03 0.31 10.00
Total 2.34 16.25 21.09 0.78 27.03 0.31 10.16

Se
m

an
tic

s

PAError 16.56 16.56 21.56 11.41 15.16 4.22 10.78
NError 0.00 0.47 0.62 0.00 0.62 0.00 0.00
TError 1.72 3.59 12.03 5.62 6.09 1.41 1.25
BPError 0.00 0.00 0.16 0.16 0.00 0.00 0.00
Total 18.28 20.62 34.38 17.19 21.88 5.62 12.03

D
iff

NoPlan 51.41 47.34 23.59 58.59 26.25 43.59 39.22
NPApp 6.41 7.34 10.47 7.66 10.78 12.03 11.09
OPApp 9.22 3.28 5.00 8.12 6.09 13.59 6.25
Total 67.03 57.97 39.06 74.38 43.12 69.22 56.56

Equiv 12.34 5.16 5.47 7.66 7.97 24.84 21.25

Table 1: Distribution of result classes and subclasses. Lower
is better for all classes and subclasses except equivalent do-
main (Equiv), for which higher is better. Best results in bold.

quite good at generating syntactically and semantically valid
PDDL, the best model LLaMA-2-70b, is able to construct
valid PDDL in 94% of domains. When looking at valid
PDDL generated, we see that the ratio of heuristically equiv-
alent domains to non-equivalent domains and the number
of heuristically equivalent domains is largely dependent on
model size (see Figure 3). The best result was on LLaMA-2-
70b. It reconstructed 25% domains to be heuristically equiv-
alent to the natural language descriptions. This is a very
promising result in terms of the applicability of LLMs for
the task of PDDL domain generation. Second, in terms of
different types of models, it is surprising that the LLaMA
chat models perform worse on this task than base LLaMA
models across the board. Typically these models that have
been trained with RLHF are seen to do better than base mod-
els across the board (Ouyang et al. 2022).

We next turn to discuss result subclasses. Table 1 dis-
plays the lopsided breakdown of syntax and semantic errors.
There were almost no instances of the No PDDL subclass,
all models evaluated output something minimally interpre-
tative as PDDL; except LLaMA 7b. Parenthesis mismatch
errors (PError) were also negligible. The overwhelming ma-
jority of syntax errors were unexpected token errors (UTo-
ken). This encompassed a whole range of issues from du-
plicate “:precondition” tags to attempting to add type
annotation to variables mentioned in predicates. For seman-
tic errors, the primary breakdown was dominated by issues
related to predicate-argument (PAError) counts where the
model added or removed arguments to predicates in the ac-
tion schema. Type errors (TError) were rare, we note that
LLAMA 70b Chat performed best in this regard. Incorrect
action name errors (NError) were exceedingly rare and Bad
Precondition (BPError) was rarer still. Of the semantically
and syntactically valid domains, the majority were differ-

427



Figure 2: (Top) Characterizing LMM outputs in terms of core result classes. (Bottom) Breakdown of Diff domain subclasses.

Figure 3: Overview of LLaMA result class percentages with
respect to model size. Contains both chat and base models.

ent domains. Different-domain subclasses displayed in Fig-
ure 2 (Bottom) and Table 1 reveal an interesting insight
into the quality of generated domains. The results show that
across the board, the different domains could not be used for
planning; the planner failed to produce any valid plan us-
ing the reconstructed problems in the domain PD′ (NoPlan).
The remaining different-domains failures are split relatively
equally due to failures in cross-validating the new plans on
the original domains (NPApp) and vice versa (OPApp).

Evaluating Heuristic Domain Equivalence Over
Description Classes and LLMs
For this experiment, we evaluate result classes over the three
proposed description classes. To generate our prompts, we
map each action to 20 prompts in each of the 3 description
classes. The context for the prompts is taken from the same
description class and is always taken from domains outside

the domain of the action to evaluate. For evaluation, we use
the same setup as our first experiment and evaluate over our
result classes. Figure 4 displays a breakdown of the perfor-
mance of each model on each description class. The results
show that while on some models the flipped class performs
well, it is not consistent and not as statistically significant
as we had predicted. We are surprised to see that the base
class performs on par with the random and flipped classes
on the LLaMA models, leading us to conclude that at least
for the classes we looked at where the number of predicates
in flipped is small, the extra information provided by the
random and flipped descriptions is not significant enough to
sway the results for these models. The anomaly here is Star-
Coder in which providing the extra context in the random
and flipped classes boots its performance by around 10%.

Action Reconstruction Error and Result Class
For this experiment, we evaluate the models in terms of
their action reconstruction error to see how close from a
predicate-by-predicate point of view the model gets to re-
constructing the original actions. Additionally, we investi-
gate the the relationship between the action reconstruction
error and the result classes as well as how the action recon-
struction error may be used to augment our use of heuristic
domain equivalence. This experiment uses the same setup
as the experiment over description classes, each a ∈ A is
mapped to Nb(a) and is used for 60 prompts. All prompts
are evaluated on each LLM and result classes and ARE is
evaluated for classes for all classes except syntax errors as
ARE cannot be automatically computed without a parsed ac-
tion.

Figure 5 displays the distributions of action reconstruc-
tion errors (ARE) for each model, and splits each bucket by
reconstruction class. This gives a good picture of how much
each model deviates from the original action. We note that
the better-performing models tend to have their distributions
cluster around lower AREs, that is, they construct actions
that are similar in terms of the exact predicates used in the
original action. This additionally exposes the flaws of ARE
as a metric for domain equivalence as we can see that just

428



Figure 4: Breakdown of LLMs over top level result classes vs different description classes.

being close to the original action in terms of predicate simi-
larity is not good enough and that plenty of domains outside
this range are heuristically equivalent. This understanding
of ARE can also help us find false positives in heuristically
equivalent domains that are not truly equal since only a fi-
nite number of problems and plans for each problem can be
evaluated. Hence when searching for false positives it can be
useful to start with domains with the highest ARE since it is
more likely something with many predicates changed from
the original action represents a different domain.

Related Work
Large Language Models and Planning
There are been a number of papers that investigate the use of
LLMs for planning. Some recent work (cf. Valmeekam et al.
(2023); Raman et al. (2022)) use LLMs as planners, while
others (cf Guan et al. (2023); Liu et al. (2023)) use LLMs
as auxiliary components of a hybrid planning system while
leveraging automated planners for solving the planning task.
The general consensus seems to be that LLMs are not very
good as planners. This finding was one of the motivations
for this work in this work, as we focus on using LLMs to aid
automated planning rather than as planners themselves.

LLM+P The LLM+P framework (Liu et al. 2023) was one
of the first to recognize the potential of combining LLMs
and planners as hybrid systems, and utilizing LLMs to east
the use of automated planners . The LLM+P architecture
takes in (1) natural language descriptions of problem in a
planning domain, (2) a context example of a natural lan-
guage problem in the given domain being converted to a
PDDL problem, and (3) a PDDL domain file. Using these
inputs the model uses an underlying LLM to convert the nat-
ural language problem description and context into a PDDL

problem. This is then combine with the PDDL domain in-
put to an automated planner producing a PDDL plan, the
resulting plan is then fed into an LLM which describes the
plan in natural language. LLM+P’s applicability is some-
what hindered by their assumptions that a PDDL domain
exists, and context examples converting natural language de-
scriptions of problems to PDDL problems for these domains
exist. Such assumptions are impossible to meet in the case
of things like narrative action model acquisition, and indeed
still requires an expert in the system somewhere to write the
domains and the context examples. Our work does not focus
on using LLMs to generate PDDL tasks, but it is tangential
to all of LLM+P’s assumptions. We (1) investigate the con-
struction the PDDL domain rather than have it provided and
(2) do this using context examples from arbitrary domains
rather than from the same domain.

LLM-DM The most closely related work to ours is the
end-to-end domain construction and planning framework
from Guan et al. (2023) which we will call LLM-DM. LLM-
DM is composed of a three-part process, automated domain
construction, human refinement of domain, and planning
with the domain. We are interested primarily in their au-
tomated domain construction as it is a very similar task to
ours. For this, LLM-DM generates a domain on an action-
by-action basis, each prompt containing five parts: (1) an in-
struction describing the PDDL creation task, (2) one or two
context examples from the blocksworld domain on what a
translation of an action description to PDDL looks like, (3)
a natural language description of the domain, (4) a natural
language description of the action and (5) a dynamically up-
dated list of predicates used by the domain including nat-
ural language action descriptions. As the domain is gener-
ated action-by-action, the instruction and context examples
include requests for the model to generate a list of new pred-

429



Figure 5: Action Reconstruction Error (ARE) distribution with respect to reconstruction class over LLMs.

icates based on the description of the action. LLM-DM eval-
uates constructing PDDL on three domains (Logistics, Tyre-
world, and a custom domain, ”Household”) using the LLMs
GPT-4 (OpenAI 2023) and GPT-3.5 Turbo (ChatGPT). To
measure the quality of the constructed domain, manual hu-
man evaluation is used, experts annotate the PDDL domain
output, marking the PDDL with mistakes and corrections,
which the authors claim provides and approximate distance
between the generated PDDL and correct PDDL.

LLM-DM provided inspiration in our work to generate
domains using LLMs on an action-by-action basis rather
than trying to have the LLM output the full domain. The au-
thors cite well-founded concerns about the context window
size and the potential for corrective feedback on an action-
by-action basis, making this more useful for the end user.
For our work, instead of providing the model with a descrip-
tion of the domain and having the model extract the pred-
icates at each stage on-top of the action translation, we ex-
plicitly provided the allowed predicates and their description
as the description of the domain. This change is key for be-
ing able to automatically evaluate the constructed domains,
and is responsible for our automated evaluation approaches
rather than a manual evaluation approaches.

Textual and Narrative Action Model Acquisition
The task we propose is similar to the action-model extraction
from text task (Lindsay et al. 2017) and narrative action-
model acquisition task from text task (Hayton et al. 2020;
Li et al. 2024) in which the goal is from natural language
to generate the entire domain model from Fg and Ag if
grounded and F ,A, and potentially C if lifted. A downside
of these tasks is that it very difficult to automatically evalu-
ate performance on, as it requires a full understanding of the
natural language text and expert knowledge of PDDL do-
mains. Evaluation for these tasks is frequently done either
via expert analysis of the generated PDDL domain such as
in (Hayton et al. 2020; Huang, Chen, and Zhang 2014) or
automated metrics such as that can’t fully capture the per-
formance of the model. These shortcomings in evaluation
were a driver of both our problem formulation and proposed
domain quality metrics.

Conclusion and Future Work
There are many avenues that could be explored using this
work as a springboard. In particular, we are interested in
three main directions: (1) deeper investigations of the ca-
pabilities of large language models in terms of selection and

tuning, (2) using re-prompting for fixing mistakes in PDDL
for chat-based LLMs, (3) investigating more robust tasks
and metrics.

First, in terms of LLMs there is a lot that could be done
to extend this work. The results showing improved perfor-
mance on larger models are a good starting point for future
work and are in line with Guan et al. (2023) which evalu-
ates with respect to GPT-4 and GPT 3.5. coming to similar
conclusions that larger pre-trained models are better when it
comes to handling PDDL construction. Future work and ap-
plications not interested in tuning should take this into con-
sideration using larger models such as GPT-4 and LLaMA-
70b as baselines, other large models such as Bloom (Big-
Science Workshop 2022) would be promising to evaluate
over. Our experiment over description classes revealed the
coding model StarCoder performs quite well in certain cases
when additional predicate information is included in natural
language descriptions, we believe this warrants a further in-
vestigation of coding models and their capabilities. Beyond
just the selection of LLMs, there are two more properties of
LLMs we could investigate. First, LLM tuning approaches,
such as finetuning and prompt tuning have been shown to
allow small LLMs to perform well on tasks they are tuned
on. Second, chat-based LLMs with large context windows
can be re-prompt and provide corrective feedback (Raman
et al. 2022). Guan et al. (2023) successfully demonstrate
corrective reprompting from tools like VAL and other re-
prompting to provide corrective feedback to LLMs. Using
our result classification system, adding support for correc-
tive reprompting where the re-prompt is based on informa-
tion regarding the result class is a clear next step.

Finally, we discuss potential alternatives that could be
made to our evaluation. As discussed in our approach, we
do not use A′ as the set of action schema for a D′ for a
number of practical reasons. However, evaluating the per-
formance of domains in which all actions are generated is a
desirable target for evaluation. Towards this end, it would be
interesting to evaluate with respect to a form of iterative do-
main completion task after an initial action has been gener-
ated. Previously generated actions in A′ could then be used
as part of the prompt until a full reconstructed action schema
for the reconstructed domain D′ has been constructed.

Acknowledgments
This work is supported by IBM Research through the Rens-
selaer IBM AI Research Collaboration (https://airc.rpi.edu/)

430



References
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications.
IOS Press.
BigScience Workshop. 2022. BLOOM (Revision 4ab0472).
Corrêa, A. B.; and Seipp, J. 2022. Best-First Width Search
for Lifted Classical Planning. In ICAPS, 11–15. AAAI
Press.
Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.;
Sun, X.; Xu, J.; and Sui, Z. 2022. A Survey on In-context
Learning.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL —
The Planning Domain Definition Language. Technical Re-
port.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier.
Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2023. Leveraging Pre-trained Large Language Mod-
els to Construct and Utilize World Models for Model-based
Task Planning. In NeurIPS.
Harrison, J.; Urban, J.; and Wiedijk, F. 2014. History of
Interactive Theorem Proving. In Computational Logic, vol-
ume 9 of Handbook of the History of Logic, 135–214. Else-
vier.
Hayawi, K.; Shahriar, S.; and Mathew, S. S. 2024. The imi-
tation game: Detecting human and AI-generated texts in the
era of ChatGPT and BARD. Journal of Information Science.
Hayton, T.; Porteous, J.; Ferreira, J. F.; and Lindsay, A.
2020. Narrative Planning Model Acquisition from Text
Summaries and Descriptions. In AAAI, 1709–1716. AAAI
Press.
Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191–246.
Huang, R.; Chen, Y.; and Zhang, W. 2014. SAS+ Planning
as Satisfiability. J. Artif. Intell. Res., 43: 293–328.
Lee, J.; Katz, M.; and Sohrabi, S. 2023. On K* Search for
Top-k Planning. In Proceedings of the 16th Annual Sympo-
sium on Combinatorial Search (SoCS 2023). AAAI Press.
Li, R.; Ben allal, L.; Zi, Y.; Muennighoff, N.; Kocetkov, D.;
et al. 2023. StarCoder: may the source be with you! Transac-
tions on Machine Learning Research. Reproducibility Cer-
tification.
Li, R.; Cui, L.; Lin, S.; and Haslum, P. 2024. NaRuto: Auto-
matically Acquiring Planning Models from Narrative Texts.
In AAAI, volume 38, 20194–20202. AAAI Press.
Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous,
J.; and Gregory, P. 2017. Framer: Planning Models from
Natural Language Action Descriptions. In ICAPS, 434–442.
AAAI Press.
Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large
Language Models with Optimal Planning Proficiency.
arXiv:2304.11477.

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; et al. 2022.
Training language models to follow instructions with human
feedback. In NeurIPS.
Raman, S. S.; Cohen, V.; Rosen, E.; Idrees, I.; Paulius, D.;
and Tellex, S. 2022. Planning With Large Language Models
Via Corrective Re-Prompting. In NeurIPS 2022 Foundation
Models for Decision Making Workshop.
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J. B.; Kael-
bling, L. P.; and Katz, M. 2024. Generalized Planning in
PDDL Domains with Pretrained Large Language Models.
In AAAI Conference on Artificial Intelligence (AAAI). AAAI
Press.
Touvron, H.; Lavril, T.; and Izacard, G. 2023. LLaMA:
Open and Efficient Foundation Language Models.
arXiv:2302.13971.
Valmeekam, K.; Marquez, M.; Sreedharan, S.; and Kamb-
hampati, S. 2023. On the Planning Abilities of Large Lan-
guage Models - A Critical Investigation. In Oh, A.; Neu-
mann, T.; Globerson, A.; Saenko, K.; Hardt, M.; and Levine,
S., eds., Advances in Neural Information Processing Sys-
tems, volume 36, 75993–76005. Curran Associates, Inc.
Vaswani, A.; Shazeer, N. M.; Parmar, N.; Uszkoreit, J.;
Jones, L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017.
Attention is All you Need. In NIPS.
Yang, R.; Silver, T.; Curtis, A.; Lozano-Pérez, T.; and Kael-
bling, L. P. 2022. PG3: Policy-Guided Planning for Gener-
alized Policy Generation. In IJCAI, 4686–4692.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.;
Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang, C.;
Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu,
Z.; Liu, P.; Nie, J.; and rong Wen, J. 2023a. A Survey of
Large Language Models. arXiv:2303.18223.
Zhao, Z.; Song, S.; Duah, B.; Macbeth, J.; Carter, S. A.; Van,
M. P.; Bravo, N. S.; Klenk, M.; Sick, K.; and Filipowicz, A.
L. S. 2023b. More human than human: LLM-generated nar-
ratives outperform human-LLM interleaved narratives. In
Creativity & Cognition, 368–370. ACM.

431


