
SKATE : Successive Rank-based Task Assignment for Proactive Online Planning

Déborah Conforto Nedelmann, Jérôme Lacan, Caroline P. C. Chanel
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France
{deborah.conforto-nedelmann, jerome.lacan, caroline.chanel}@isae-supaero.fr

Abstract

The development of online applications for services such
as package delivery, crowdsourcing, or taxi dispatching has
caught the attention of the research community to the domain
of online multi-agent multi-task allocation. In online service
applications, tasks (or requests) to be performed arrive over
time and need to be dynamically assigned to agents. Such
planning problems are challenging because: (i) little or al-
most no information about future tasks is available for long-
term reasoning; (ii) agent number, as well as, task number
can be impressively high; and (iii) an efficient solution has
to be reached in a limited amount of time. In this paper, we
propose SKATE, a successive rank-based task assignment al-
gorithm for online multi-agent planning. SKATE can be seen
as a meta-heuristic approach that successively assigns a task
to the best-ranked agent until all tasks have been assigned.
We assessed the complexity of SKATE and showed it is cu-
bic in the number of agents and tasks. To investigate how
multi-agent multi-task assignment algorithms perform under
a high number of agents and tasks, we compare three multi-
task assignment methods in synthetic and real data bench-
mark environments: Integer Linear Programming (ILP), Ge-
netic Algorithm (GA), and SKATE. In addition, a proactive
approach is nested to all methods to determine near-future
available agents (resources) using a receding-horizon. Based
on the results obtained, we can argue that the classical ILP
offers the better quality solutions when treating a low number
of agents and tasks, i.e. low load despite the receding-horizon
size, while it struggles to respect the time constraint for high
load. SKATE performs better than the other methods in high
load conditions, and even better when a variable receding-
horizon is used.

Introduction
In the last couple of years, new applications have emerged
where users make requests and a platform has to man-
age its resources to satisfy users’ requests. Examples of
these application domains are taxi dispatching (Dickerson
et al. 2018), ridesharing (Herbawi and Weber 2012), crowd-
sourcing (Wang, Zhao, and Xu 2020) or package delivery
(Cheikhrouhou and Khoufi 2021). All these application do-
mains have led to advances in the field of online multi-agent
multi-task assignment. In online service applications, tasks

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(or requests) arrive over time and need to be dynamically
assigned to agents (Dickerson et al. 2018). Such planning
problems are challenging because: (i) little or almost no in-
formation about future tasks is available for long-term rea-
soning; (ii) agent number, as well as, task number can be
impressively high; and (iii) an efficient solution has to be
reached in a limited amount of time. Regarding the first as-
pect, the requests arrival model is usually characterized with
probability distributions (Mehta 2013) that are then used for
planning (Alaei, Hajiaghayi, and Liaghat 2012), (Gong et al.
2022), (Hikima et al. 2022). The issue with this assumption
is that beforehand data on the requests is needed to learn the
model parameters and it can end up being very specific to
a given application. In the present work, no assumption is
made about the arrival requests model.

Another aspect is the nature of resources that can be dis-
posable or reusable. Disposable resources can only be used
once, while reusable resources can receive new assignments
after completing their previous assigned tasks(Sumita et al.
2022). The present work assumes reusable resources since
this setting is commonly found in applications, in partic-
ular ridesharing platforms. Linked to it, time management
for requests assignments is also important. In online set-
tings, planning is triggered for short time intervals. And, at
each decision-making step, assignments will consider the re-
quests that have arrived within the last time interval (Alonso-
Mora et al. 2017), (Lesmana, Zhang, and Bei 2019). Dif-
ferently, (Dickerson et al. 2018) assigns requests to agents
as soon as they arrive (i.e. continuous planning). Both ap-
proaches have qualities and drawbacks: for the first one,it is
more likely that (reusable) agents become available allowing
for efficient solutions (e.g. path cost) but the waiting time of
the requests to be assigned can be important; whereas for
the second one, the waiting time decreases as the request
is assigned to whatever available agent, however, the solu-
tion is generally worse (Sumita et al. 2022). Interestingly,
(Conforto Nedelmann, Lacan, and Chanel 2023) proposed
a proactive approach that can be seen as a compromise be-
tween the approaches cited above. It uses a receding-horizon
to determine which agents will be available in a near-future.

Additionally to the time management aspect, online solv-
ing can be particularly challenging because one may design
a solving method that has to be fast and efficient (e.g. to
find efficient solutions in a limited amount of time). It can

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

396

be particularly challenging when the number of agents (e.g.
resources), as well as, the number of tasks (e.g. requests) is
impressively high, a hard combinatorial problem present in
several real-life settings.

To address these issues, we propose SKATE, a succes-
sive rank-based task assignment algorithm. SKATE is in-
spired by MinPos, a method proposed in (Bautin, Simonin,
and Charpillet 2012) and later improved in (Bautin 2013).
This meta-heuristic method was developed for multi-robot
exploration in unknown environments. MinPos assigns a sin-
gle exploration location for each robot by applying a rank-
ing method based on the distance task-robot while also tak-
ing into account the position of the other robots. In its
domain, MinPos achieved good performance while being
lightweight. SKATE extends the MinPos algorithm to ad-
dress online multi-agent multi-task assignments. SKATE fits
the online planning requirements: it assigns a sequence of
tasks to agents by adapting the metrics and the ranking sys-
tem, it does not need to assume a task arrival model and can
achieve good solutions even for large problems. Moreover,
the proactive approach proposed by (Conforto Nedelmann,
Lacan, and Chanel 2023) is nested to SKATE to determine
near-future available agents using a receding-horizon. In this
way, SKATE can be seen as a flexible approach that eval-
uates different sets of (available) agents to define the best
assignments.

In the following section, related works are reviewed. Then
the planning problem is formally described. Afterwards, the
proactive approach and SKATE are presented followed by
experiments and results discussion. Future research direc-
tions conclude the paper.

Related Work
The present work addresses the online multi-task assignment
with reusable resources problem. In this class of problem,
one may manage the resources (i.e. the agents of a fleet)
to accomplish some tasks efficiently (Khamis, Hussein, and
Elmogy 2015), (Hussein and Khamis 2013). In detail, one
may minimize the overall traveled distance of the fleet while
also minimizing the time between the registration of a re-
quest and its execution. This problem is close to the Mul-
tiple Traveling Salesmen Problem (MTSP), a classical op-
timization problem for which several solving methods have
been proposed (Cheikhrouhou and Khoufi 2021). According
to the taxonomy, our problem is a sub-variant called open-
path multiple depots since the agents do not go back to their
initial location after completing the assigned tasks, and the
initial positions of agents are different.

(Dickerson et al. 2018) introduced the concept of reusable
resources, which has been widely used in (Sumita et al.
2022), (Gong et al. 2022) and (Hikima et al. 2022). For time
management, both immediate assignment ((Hikima et al.
2022), (Sumita et al. 2022)) and assignment in time inter-
vals ((Alonso-Mora et al. 2017), (Lesmana, Zhang, and Bei
2019)) are common. Some works combine the two aspects
such as (Wang and Bei 2022), where the goal is to find a
balance between wanting more agents to be available while
avoiding the withdrawal of the requests when the waiting
time becomes too long.

In general, works assume a tasks arrival model describ-
ing the time of arrival and/or the position of future requests
which allows them to reason in long-term. For instance,
works focusing on online TSP, such as (De Filippo, Lom-
bardi, and Milano 2019) or (Bampis et al. 2023) both use
a priori information of requests to build a distribution of
the more likely scenarios or to plan trajectories. In (Nanda
et al. 2020), agents can reject specific requests based on the
model. (Hikima et al. 2022) has developed a strategy when
the requests arrival model is linked to the rewards for assign-
ing a request to a resource. In (Burns et al. 2012), they deter-
mine the likely characteristics of requests a couple of time
steps ahead of the assignment and then place their agents ac-
cordingly. Contrary to these works we do not assume tasks
arrival model.

Several methods are used in the literature to solve the
open-path multi-depot MTSP optimization problem. The
most used method is Linear Programming (LP) and its vari-
ants. This approach is preferred because it finds the opti-
mal solution (Dickerson et al. 2018), (Sumita et al. 2022).
But it is mainly used for immediate assignment since LP
has a potential high complexity (Basu et al. 2022). To re-
spect the online time constraint, it handles only a small num-
ber of agents and requests. Genetic Algorithm (GA) is a
popular meta-heuristic approach since it can provide solu-
tions for large problems in a shorter amount of time than
LP. They also provide good performance for multi-criteria
objectives (Rangriz, Davoodi, and Saberian 2019). In the
context of ridesharing, (Herbawi and Weber 2011) has com-
pared the solution efficiency of a GA and several variants of
Ant Colony Optimization (ACO). At its best the ACO gave
similar performance to the GA and the GA was significantly
faster than the ACO. (Wang, Zhao, and Xu 2020) used a
variant of GA with some elements of ACO in the context of
crowdsourcing. Their approach produced good solutions but
was slightly slower than a classical GA.

Finally, in terms of experimental settings, papers focus on
a small number of agents and requests. (Sumita et al. 2022)
and (Dickerson et al. 2018) apply their methods to a real-
life scenario of taxi dispatching in New York, where they
limited their evaluation to 30 taxis and 100 or 550 requests,
respectively. This is far from reality where hundreds of re-
quests in New York can be received in 5 minutes. Regarding
GA use, we found that (Herbawi and Weber 2012) has con-
sidered 250 drivers and 448 requests for their experiments
in the context of ridesharing, which is higher but still much
less than what exists in real-life settings. In the present work,
we will show that SKATE can handle more agents and re-
quests, being a promising and competitive approach for on-
line multi-agent multi-task assignment planning problems.

Problem Statement
The multi-agent multi-task assignment is a combinatorial
optimization problem. Over the entire time horizon, we aim
to minimize the distance traveled by the fleet of agents (i.e.
resources) while also minimizing the amount of time be-
tween the registration of a request and its execution. In the
following, we call the latter criterion the request’s waiting

397

time. Generally speaking, we optimize both: user satisfac-
tion while also economizing on the use of resources.

We consider a set of n agents denoted by A =
{a1, a2, . . . , an}. The location of the agents is denoted by
pa for all a ∈ A. We assume requests arrive throughout the
planning horizon T . The planning horizon T is divided into
small intervals called time steps or time windows. The time
windows are indexed by τ and their duration is a constant
equal to δ. At time step τ ∈ T , we assume the set of requests
Rτ . A request r ∈ Rτ can be described by its location pr

and the time it was registered tbr. It is assumed a request can
be assigned to only one agent a ∈ A. We note the set of re-
quests assigned to an agent a ∈ A as Ra = {r1a, r2a, ..., rma },
where m is the number of requests assigned to this agent a
at a given time. To describe if r ∈ Rτ has been assigned to
a ∈ A, we use the binary variable xa,r with xa,r = 1 and
xa,r = 0 if that’s not the case. The set of requests assigned to
a ∈ A can also be described as Ra = {

⋃
r∈R r|xa,r = 1}.

Assuming an ordered set Ra, the distance between the ex-
pected location of agent a and the location of request r, and
the fact that agents move with a constant speed va, one can
compute the expected execution time of a request r ∈ Ra,
noted as texr .

Therefore, the general optimization problem we address
can be formalized as:

min

[
T−1∑
τ=0

(
α
∑
a∈A

dRa

(⋃
r∈R

r|xa,r = 1
)

+ (1− α)
(∑

a∈A

wRa

(⋃
r∈R

r|xa,r = 1
)))]

(1)

subject to: ∑
a∈A

xa,r ≤ 1, ∀r ∈ R

with :

dRa
= ∥pa − pr1∥+

|Ra|−1∑
i=1

∥pri − pri+1
∥, and

wRa =
∑
r∈Ra

(texr − tbr)

α ∈ [0, 1] and (1 − α) are weights used to balance the im-
portance between the two criteria. The formulation of dRa

was inspired by (Cheikhrouhou and Khoufi 2021) that uses
it for an open-path multi-depot MTSP, and denotes the path
distance from the initial position of a ∈ A until the position
of its last assigned request rma . Then, we define the waiting
time wra as the duration between the time of registration of
the request r ∈ Rτ and its execution by agent a.

The problem with such a formulation is that one may
know which requests will be received at each time step τ
in the given horizon T . Here, and in several application do-
mains (e.g. taxi dispatching, package delivery) little infor-
mation is available about the requests’ arrival. As a result, it
is extremely hard to solve this general optimization problem
over the entire time horizon T .

To treat this online problem with no assumption regarding
the requests arrival model, we were inspired by the proactive
approach presented in (Conforto Nedelmann, Lacan, and
Chanel 2023). In this paper, instead of solving the general
optimization problem, they broke it into a small problem at
each time step τ to consider the (new) set of tasks Rτ with a
proactive perspective. For that, they proposed the concept of
available agents. In classical reactive approaches, available
agents are the ones that have already finished executing their
previous requests at τ . Whereas in the article cited above,
a receding-horizon approach was used for determining the
agents to be used at τ : the said available agents are the ones
that will complete their previously assigned tasks within an
immediate horizon H(k) = kδ with k ≥ 0 (e.g. H(5) = 5δ
or H(5) = τ + 5). This lets us anticipate the availability of
resources and not have to wait for agents to finish their re-
quests before assigning them new ones. We call Aτ (H) the
available agents at τ for a certain time horizon H(k).

With this in mind, and adopting a similarly proactive ap-
proach, we will assign requests at each time step τ account-
ing with the agents considered as available within the hori-
zon H . Thus, we search for a solution for:

min

α ∑
a∈Aτ (H)

dRa

(⋃
r∈Rτ

r|xa,r = 1
)

+ (1− α)
(∑

a∈Aτ (H)

wRa

(⋃
r∈Rτ

r|xa,r = 1
)) (2)

subject to: ∑
a∈Aτ (H)

xa,r ≤ 1, ∀r ∈ Rτ

Proactive Online Task Assignment Approach
In the following, we will first explain the general proactive
online process for task assignment, and then SKATE.

General Process Algorithm 1 illustrates the general on-
line process. At each time step τ , we get the new requests
Rτ that have arrived since τ−1 and were stored in the buffer
B (line 5). Then we check the agents’ availability at horizon
H (lines 7-8): we use a variable tocca indicating the time at
which the agent a will finish its last assigned request. Fi-
nally, we use an algorithm to assign a sequence of tasks of
Rτ to the available agents Aτ (H) (line 9).

Note that this process can implement any task assignment
algorithm that solves the optimization problem presented in
Eq. 2. However, this planning problem can be challenging
because an efficient solution has to be reached in a lim-
ited amount of time regardless of the number of agents or
tasks. In this context, classical approaches such as Integer
Linear Programming, or meta-heuristic approaches (e.g. Ge-
netic Algorithms) may be blocked or only find mediocre so-
lutions. In the following, we propose a method we call Suc-
cessive Rank-based Task Assignment (SKATE), a simple yet
efficient online method for a multi-agent multi-task assign-
ment that can be eventually used in line 9 of Alg. 1. SKATE
can be seen as a meta-heuristic solving process.

398

Algorithm 1: Proactive online task assignment process

1: Agents A at position pa and taocc
= 0, ∀a ∈ A

2: Horizon H = kδ and Rτ=0 ← ∅
3: for each time step τ do
4: Aτ (H)← ∅
5: Rτ ← GetTasksFrom(B,Rτ−1)
6: for a ∈ A do
7: if taocc < τ +H then
8: Aτ (H)← a

9: Assign Rτ tasks to Aτ (H) agents (SKATE or LP or
GA)

Successive Rank-Based Task Assignment
The main principle of SKATE is the ranking of the requests
for each agent while taking into account the expected loca-
tion of the other agents. SKATE, presented in Alg. 2, assigns
all the registered requests Rτ to the set of available agents
Aτ (H) of size n. This assignment is implemented into sev-
eral rounds where at each round, a maximum of n requests
are assigned. This way, by the successive rounds, a sequence
of tasks is assigned to each agent. The process is repeated
until no request is left (line 2).

To proceed with the assignment we fill a cost matrix MC

of size |Aτ (H)|×|Rτ | where we calculate the cost to assign
any request rj ∈ Rτ to any agent ai ∈ Aτ (H) (line 4). Since
we are interested in minimizing both the traveled distance
and the waiting time, the cost function will be a combination
of these two criteria such as:

cost(ai, rj) = α
d(ai, rj)

vai

+ (1− α)wai
(rj) (3)

Algorithm 2: Successive Rank Based Task Assignment

1: procedure SKATE(Aτ (H), Rτ)
2: while Rτ ̸= [] do
3: A = Aτ (H)
4: Compute the cost matrix MC such as MC

i,j =
cost(ai, rj), ∀ai ∈ A and ∀rj ∈ Rτ

5: Compute the rank matrix MR such as MR
i,j =

Card(Ā) with Ā = {∀ak ∈ A|MC
k,j < MC

i,j}
6: Definition of the variable of ranking S=0
7: while Rτ ̸= ∅ and A ̸= ∅ do
8: for a ∈ A do
9: rankmin = min(MR

a,r∀r ∈ Rτ)
10: if rankmin = S then
11: assign r to a

12: texr = wa(r) and tocca = tocca + d(a,r)
va

13: A = A \ a and Rτ = Rτ \ r
14: S = S + 1
15: for a ∈ A do
16: Get last request r assigned to a
17: pa = pr

18: end procedure

where, d(ai, rj) = ∥pai − prj∥ is the Euclidean distance
between the anticipated position of ai and the position of the
request rj , vai

is the velocity of the agent assumed constant
(it enables to compare the two criteria, the distance term is
converted into time), and wai

(rj) = toccai
+

d(ai,rj)
vai

− tbrj is
the request waiting time. It corresponds to the time between
tbrj when the request was generated, and texrj , when the agent
arrives from his expected location to that of the request. The
term toccai

refers to the time the agent is considered busy (e.g.
executing previous requests) until it can execute rj . To rank
the requests for an agent ai ∈ A, we will not simply consider
the value of the cost for that agent, but also take into account
the costs of the other agents for each specific request r ∈ Rτ

(line 5). For that we build the rank matrix MR using the cost
matrix MC : for the value MR

i,j , each agent ai will determine
how many other agents ak have a lower cost for that request
rj . If no other agent has a lower cost, then ai has the lower
ranking with MR

i,j = 0. Otherwise, the ranking is equal to
the number of agents with a lower cost such as MC

k,j < MC
i,j .

Note, some agents can have multiple requests ranked 0
(they are the better-placed agent for more than one request)
and some can have none. If two requests have the same min-
imal ranking value, then the request with the lower cost is
assigned to the agent. The assigned request and the agent
then both become occupied (line 13) and we update the wait-
ing time of the assigned request and the time until which the
agent is occupied (line 12). When all of the agents have be-
come occupied, we consider that this round of assignment is
over and we update the position of the agents using the po-
sition of the last request assigned to each of them (line 17)
before starting a new round(line 3).

Complexity of SKATE To analyze the complexity of
SKATE, as we can see in Alg. 2, the two necessary inputs
are the n available agents and the m requests to assign. Af-
ter the first assignment round, there are m− n requests left.
This means that to assign all the requests, the actions inside
the loop of line 2 must be done m

n
− 1 times. The filling

of the cost matrix in line 4 has a cost of mn. And, ranking
these requests for each agent while taking into account the
other agents’ positions is n2m expensive. In the following,
we detail the calculation of the complexity of SKATE:

Cost matrix filling︷ ︸︸ ︷
m
n −1∑
i=0

n(m− in)+

Ranking︷ ︸︸ ︷
m
n −1∑
i=0

n2(m− in)+

Assignment︷ ︸︸ ︷
m
n −1∑
i=0

n2(m− in)

=

m
n −1∑
i=0

mn− n2

m
n −1∑
i=0

i+ 2(

m
n −1∑
i=0

mn2 − n3

m
n −1∑
i=0

i)+

+
m

n
mn− n2

m
n −1∑
i=0

i+ 2(
m

n
n2m− n3 m

2n
(
m

n
− 1))

= m2 − 1

2
n2m

n
(
m

n
− 1) + 2(m2 − n

m2

2
+

n2m

2
)

= m2 +
mn

2
+m2n+ n2m = m2n+ n2m (4)

399

In the next section, we present the methodology to evalu-
ate the proactive online assignment approach using SKATE.

Experiments & Results
To evaluate the impact of the proactive approach, we first
compute the assignments with a reactive approach (no an-
ticipation of agents availability), noted H(0), then use the
receding-horizon to anticipate resources from one to five
time windows, denoted as H(1) to H(5). We also use
a variable receding-horizon H(v) as proposed by (Con-
forto Nedelmann, Lacan, and Chanel 2023), where the as-
signment using different receding-horizons (from H(0) to
H(5)) is computed in parallel and the best solution is kept.

To evaluate the solutions proposed by SKATE, assign-
ments are also computed using baselines from the literature.
More specifically, we compare SKATE with two baselines,
one applying Integer Linear Programming (i.e. branch-and-
bound algorithm), and another one applying a Genetic Al-
gorithm. We did not include a comparison with a (simple)
greedy assignment strategy given its partial novelty1. In-
deed, the authors of MinPos, on which SKATE is based, have
already shown the advantages of their method compared to
a greedy strategy in (Bautin, Simonin, and Charpillet 2012).

Finally, assignment methods are evaluated on two bench-
marks to analyze their solution efficiency and scalability.
The first benchmark is a synthetic one for which we have a
constant number of requests arriving every τ ∈ T . The sec-
ond benchmark, already used in the literature (Sumita et al.
2022), is based on registered requests of taxis in New York
in January 20132. This realistic scenario is particularly inter-
esting for mimicking a high-load problem, where we need to
find, online assignments for a high number of requests and
agents in a limited amount of time. Additionally, in this sce-
nario the number of request vary within the planning hori-
zon. Regarding the α value, we carried out empirical tests
for values of 0, 0.25, 0.5, 0.75, and 1. As, the best balance
between distance and the waiting time criteria for all meth-
ods was achieved with α = 0.75, we kept this value.

Metrics The metrics used to quantify the impact of the use
of a receding-horizon and to compare the efficiency of the
three solving methods are: (i) the overall distance traveled by
the (fleet of) agents; (ii) the percentage of assigned requests;
(iii) the average waiting time for requests; and (iv) the time
necessary for computing the assignments.

Baselines
Integer Linear Programming To build the Integer Lin-
ear Programming (ILP) model we were inspired by (Kara
and Bektas 2006). This work details the objective func-
tion and constraints of the classical MTSP and variants, in-
cluding the open-path multi-depot MTSP. To assign a se-
quence of requests Ra to an agent a ∈ A, we use the set

1However this comparison is included in the extended ver-
sion available at https://openscience.isae-supaero.fr/Default/
doc/SYRACUSE/15709/skate-successive-rank-based-task-
assignment-for-proactive-online-planning

2available at: http://www.andresmh.com/nyctaxitrips/

L = Aτ (H) ∪Rτ and the cost matrix MC of size |L| × |L|
where MC

i,j = ci,j , ∀(i, j) ∈ L2, i ̸= j. Each element ci,j
in this matrix refers to the cost between agents and requests,
such as:

ci,j = α
d(i, j)

va
+ (1− α)wa(i, j), ∀i, j ∈ L

The objective function and its constraints are defined as:

minimize
(∑

i∈L

∑
j∈L

ci,jxi,j

)
(5)

subject to:∑
i∈L

∑
j∈Aτ (H)

xi,j = 0 and
∑
j∈Rτ

xi,j ≤ 1, ∀i ∈ L

∑
i∈L

xi,j = 1, ∀j ∈ Rτ and xi,j + xj,i ≤ 1, ∀(i, j) ∈ L2

with xi,j being a boolean variable, i.e. xi,j = {0, 1}. As we
want to assign a sequence of requests to each agent, we need
the agent-to-task and the task-to-task costs to determine the
cost of a given sequence, and then choose the sequences that
minimize the objective function for all agents. The first con-
straint clarifies that we can not assign an agent to another
agent or an agent to a request. The second models the open-
path condition of MTSP. The third imposes that all the re-
quests must be assigned. The penultimate avoids an agent
going back and forth between two positions and the last one
imposes that the assignment variable is a boolean. We use
the Gurobi Optimizer, which employs the branch-and-bound
algorithm to solve ILP problems. The solver explores possi-
ble solutions and tries to find the optimal one. Note that the
branch-and-bound can be time-consuming: in the worst-case
scenario we have a complexity of O(2n) (Basu et al. 2022),
which is significantly more than SKATE (O(m2n+ n2m)).

Genetic Algorithm The Genetic Algorithm (GA) is an
evolutionary algorithm inspired by the natural selection pro-
cess. The principle is that we start with a random set of
chromosomes (e.g. initial assignments). The chromosomes
are evaluated and the ones with the better scores (e.g. cost)
are then used to create a new population (e.g. new set of
solutions). This way, the population can hopefully improve
generation after generation. The operations used to build a
new generation are the crossover (where two parent chro-
mosomes are fused) and mutations (where we swap the or-
der of the requests or the requests between different agents).
The algorithm stops when a condition is reached, in general,
either the solution is no longer improving or a time limit
is reached. For the problem in this work, each chromosome
represents a specific assignment of the requests to the avail-
able agents. We have almost used the same approach struc-
ture and parameters as (Conforto Nedelmann, Lacan, and
Chanel 2023). However, in our optimization problem we fo-
cus on minimizing both the overall traveled distance of the
agents and the waiting time of the request so the fitness func-
tion we use is expressed as follows:

α
(∑

a∈Aτ (H)

da
1

Dmax

)
+ (1− α)

(∑
a∈Aτ (H)

wa
1

Wmax

)

400

where in the proposed chromosome, da is the distance trav-
eled by a ∈ A to execute all its Ra requests and wa =∑

r∈Ra
wr as the sum of the waiting time of the requests

assigned to a. To compare it to the first generation, we nor-
malize each term of the fitness by Dmax and Wmax, which
are the maximum values obtained in the first generation for
the total traveled distance and waiting time respectively. We
consider these values as the worst case since the first gener-
ation is randomly filled.

Synthetic Benchmark Experiments & Results
Setup We consider two different set-ups: for the first,
at each time step 20 requests are randomly placed in the
workspace defined by a square of 10m x 10m; the second
with 50 requests being generated at each time step. For both
of them, the fleet will be composed of 10 agents moving at
a constant speed of 1m/s. The duration of a time window is
5 seconds. The total simulation horizon is composed of 30
time steps. The simulation process is executed 10 times. In
this synthetic benchmark, we consider that the requests are
executed when the agents reach their locations.

20 requests every time step The results in this set-up are
illustrated in Fig. 1. Regarding the percentage of assigned re-
quests (Fig. 1b) almost all of them are assigned for all three
methods, confirming they all can handle such a scenario. In
terms of traveled distance (Fig.1a), for all receding-horizons,
the ILP method gives the best results. This is expected since
the ILP looks for (sub-)optimal solutions. Between the GA
and SKATE, the GA is more interesting when using the reac-
tive approach (H(0)), however, SKATE produces better val-
ues when using the proactive approach (H(k) with k > 0).

Note that the proactive approach provides improvements
for all solving methods, helping to reduce the traveled
distance. For all three methods, the better results happen
when using the variable receding-horizon H(v), and there,
SKATE achieves values close to the ILP ones. Table 1 shows
the mean of the requests’ waiting time for ILP, GA and
SKATE for H(v). Once again, ILP gives the better solution
however SKATE solutions are competitive. GA has a larger
mean than the others, which is coherent with its higher trav-
eled distance. Fig.1c compares the time necessary for com-
puting assignments for the three methods. Central line dots
correspond to the mean time for a given time step across the
10 executions. The shadow area corresponds to the min-max
values. We notice the ILP method is already reaching its time
limit at 5 seconds, which corresponds to our time limit for
computations and the duration of the time window δ. The
GA method needs, on average, 3 seconds and SKATE less
than a second. This highlights that SKATE is much more
lightweight than the other methods and suggests it could be
interesting in higher-load setups. As a result, ILP gives the
best performances (followed by SKATE and then GA) but is
almost reaching the time budget in this setup.

50 requests every time step The results for this heavier
set-up are given in Fig. 2. The first observation is about the
disparity in the percentage of assigned requests shown in
Fig. 2b. SKATE manages to assign close to 100% of the re-
quests in general, though we notice a slight improvement

Assignment method
ILP GA SKATE

Rτ = 20 22.52 33.6 23.5
Rτ = 50 51.03 263.96 55.87

Table 1: Average waiting time of assigned requests (in sec-
onds) for A = 10 and H(v).

using the proactive approach. For GA, the percentage of the
assigned requests is lower than for SKATE but still man-
ages to assign almost 90% or more of the requests both for
reactive and proactive approaches, and for H(v), the value
achieved is close to the SKATE one. Surprisingly, the out-
lier results concern ILP which is far from assigning all the
requests. We investigated why these percentages are so low
and discovered that if all agents are unavailable in two subse-
quent time steps (which means there would be 150 requests
to assign at the next time step), the ILP approach can not
handle such a load and reaches the time limit before man-
aging to find any solution. In the same situation, GA and
SKATE can handle this additional load. We notice improve-
ments in solution efficiency for ILP when the proactive ap-
proach is used: anticipating the availability of the agents al-
lows to delay or even not encounter the problem of getting
stuck. 3. In terms of traveled distance (see Fig. 2a), SKATE
gives better results than the GA regardless of the size of the
receding-horizon while ILP shows fluctuations but we spec-
ulate it is linked to the low number of assigned requests.
As the size of the receding-horizon grows, the traveled dis-
tance for the ILP also grows since more requests have been
assigned. But this does not give us the optimal: when a so-
lution is obtained, it is in majority a sub-optimal solution.
Regarding the average request waiting time (see Table 1),
ILP still gives the lowest value. However, it only gives par-
tial information since this average only takes into account
the assigned requests. SKATE has an average waiting time
which is 4 seconds higher than ILP however it assigns more
requests than ILP. As a result, we judge that ILP is not able
to handle a higher-load set-up since it could not produce so-
lutions within the defined computation time limit. Between
the GA and SKATE, SKATE gives consistently better results
whether in terms of distance, number of assigned requests,
or average waiting time.

Real-life data Experiments & Results
Setup To confront solving methods to realistic settings,
we exploit an open data set listing taxi requests in New York
City. In this data set, a request characterizes a real-life taxi
call with a starting point located at prs , a final point at prf ,
and a request registration time. In this benchmark, we con-
sider the pickup time as the request registration time trb , and
the request is executed once the agent has reached the des-
tination location. The distance cost is then adapted to ac-
count as: da,r = ∥pa−prs∥+∥prs−prf ∥. This additional
distance is also taken into account for the waiting time cal-
culation. The total distance for an agent to execute all its

3These results are detailed in the extended version.

401

(a) Overall traveled distance (b) Percentage of assigned requests (c) Average computation time per time step.

Figure 1: Comparison of reactive and proactive approaches for ILP, GA and SKATE and for Rτ = 20.

(a) Overall traveled distance (b) Percentage of assigned requests (c) Average computation time per time step.

Figure 2: Comparison of reactive and proactive approaches for ILP, GA and SKATE for Rτ = 50.

assigned requests is defined as:

da = ∥pa−pr1s
∥+

m−1∑
i=1

∥pris
−prif

∥+
m−1∑
i=1

∥prif
−pri+1s

∥

We evaluate our methods with a reactive and proactive ap-
proach over 3 nights, from January 7th to January 9th 2013
from 12AM to 7AM. Each night corresponds to an indepen-
dent simulation. The time window δ (i.e. difference between
two time steps) has a duration of 5 minutes. We consider a
fleet of 1000 agents traveling at a constant velocity of 30
mph (the speed limit in New York). Contrary to the previous
benchmark, here we address a variable number of requests4

arriving throughout the simulation. Moreover, such a simu-
lation has a heavier load than the previous benchmark, since
we have more requests and agents (1000 agents and 200-
1200 requests) and still a limited amount of time for cal-
culations. Since ILP was already struggling in the previous
benchmark, we do not include it in this part. Instead, we will
be focusing only on the GA and SKATE results.

Comparison for 1000 Agents The results of experiments
using real-life data are presented in Fig. 3. Looking at the
percentage of assigned requests in Fig. 3a, SKATE is more
efficient than GA. However, SKATE is not able to assign
more than 80% of the requests due to the significant amount
of requests arriving between 6 and 7 AM. With that amount
of requests, the agents stay busy for more time than the
receding-horizon size, being not available until the end of

4This varying number is represented in the extended version.

the simulation. GA is further impacted because of less effi-
cient assignments: the agents cover a greater distance and
are busy for an even longer time. In the time limit of 5
minutes, GA only computes a couple of generations, pre-
venting GA from improving solutions. It is confirmed by
the solving time (see Fig. 3c). GA struggles to find an ef-
ficient assignment within the time budget when compared to
SKATE. Poor solutions also have an impact on the waiting
time which is bigger for GA than for SKATE5. Interestingly,
the proactive approach increases the percentage of assigned
requests for both approaches but the progression is more im-
portant for GA. Additionally, we compare the time needed
for assignment calculations and the theoretical complexity
for SKATE shown in Figure 5 for H(v). The similarity of
curves shows that the complexity we calculated is correct.

SKATE with Different Fleet Sizes The experiments
above showed that a fleet of 1000 agents is not sufficient
to handle all of the requests. To estimate how many agents
would be necessary, we studied the impact of the fleet size on
the percentage of assigned requests and waiting time. To see
how occupied the agents are, we have recorded how much
time the agents stay idle waiting for a new assignment. We
tested a fleet of 500, 750, 1000, 1250 and 1500 agents.

Results are compiled in Fig. 4 and Table 2. Only the re-
sults for the variable receding-horizon H(v) is presented
since it consistently gives the best results in previous ex-
periments. First, Fig. 4a shows only a small variation of the
overall distance covered by agents with SKATE. Consider-

5These results are also detailed in the extended version.

402

(a) Overall traveled distance. (b) Percentage of assigned requests. (c) Average computation time per time step.

Figure 3: Comparison of reactive and proactive approaches for GA and SKATE in real-life settings.

(a) Comparison of traveled distance. (b) Percentage of assigned requests. (c) Idle time.

Figure 4: Comparison of the overall distance, number of assigned requests and idle time regarding the fleet size.

ing there are more agents, we notice that the individual dis-
tance agents travel is lower. It also suggests a better distri-
bution of the requests across the agents, as we see in Fig.
4b that the number of assigned requests increases with the
number of agents and gets close to 100%. In terms of wait-
ing time (see Tab. 2), it decreases when the number of agents
increases because of their better distribution. We note a sort
of threshold around 15 minutes, where the waiting time de-
creases marginally for more than 1000 agents. We speculate
it is linked to the physical aspects of the problem (distance
between the starting and final point). Looking at idle time
(i.e. when agents wait for their new assignments) in Fig. 4c,
it increases alongside the increase of the number of agents.
It is mainly due to the agents having to wait one or several
rounds for their first assignment at the start of the night, and
a smaller part is due to the lower amount of requests between
3:30AM and 5:00AM.

Figure 5: Time and complexity for SKATE per time step.

Size of the fleet
500 750 1000 1250 1500

w̄r 51.52 29.44 16.3 14.64 13.36

Table 2: Average waiting time w̄r (in minutes).

Conclusion and Future Work
One of the main challenges of the online multi-agent multi-
task assignment field is to design solving methods able to
find efficient solutions while scaling well (lightweight) given
the combinatorial aspect of such planning problems. We pro-
posed SKATE, a successive rank-based task assignment al-
gorithm for online multi-agent planning. Built upon a rank-
ing method considering agent-to-task costs, SKATE succes-
sively assigns a task to the best-ranked agent until all tasks
have been assigned. We compared SKATE with two base-
line methods already used for online planning: GA and ILP.
We found from a theoretical and experimental approach that
SKATE is faster than the other methods. For light-load, ILP
gives better cost-wise results, however in high-load, ILP
struggles whereas SKATE scales well giving efficient solu-
tions. SKATE and GA were also compared in real-life set-
tings (e.g. taxi dispatching). SKATE is the best method be-
tween the two. Regarding the results achieved with SKATE
and different fleet sizes, we plan to further improve our ap-
proach to also determine, online, the correct fleet size to met
current demands. For instance, by reducing the number of
agents when requests are low or by increasing it when the
number of requests increases.

403

References
Alaei, S.; Hajiaghayi, M.; and Liaghat, V. 2012. Online
Prophet-Inequality Matching with Applications to Ad Al-
location. In Proceedings of the 13th ACM Conference on
Electronic Commerce, EC ’12, 18–35. New York,USA: As-
sociation for Computing Machinery. ISBN 9781450314152.
Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences, 114(3): 462–467.
Bampis, E.; Escoffier, B.; Hahn, N.; and Xefteris, M. 2023.
Online TSP with Known Locations. In Algorithms and Data
Structures: 18th International Symposium, WADS 2023,
Montreal, QC, Canada, July 31 – August 2, 2023, Proceed-
ings, 65–78. Berlin, Heidelberg: Springer-Verlag. ISBN
978-3-031-38905-4.
Basu, A.; Conforti, M.; Di Summa, M.; and Jiang, H.
2022. Complexity of Branch-and-Bound and Cutting Planes
in Mixed-Integer Optimization. Math. Program., 198(1):
787–810.
Bautin, A. 2013. Stratégie d’exploration multirobot fondées
sur le calcul de champs de potentiels. Theses, Université de
Lorraine.
Bautin, A.; Simonin, O.; and Charpillet, F. 2012. MinPos :
A Novel Frontier Allocation Algorithm for Multi-robot Ex-
ploration. In Su, C.-Y.; Rakheja, S.; and Liu, H., eds., Intel-
ligent Robotics and Applications, 496–508. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-642-33515-
0.
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M. 2012.
Anticipatory On-Line Planning. Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
22(1): 333–337.
Cheikhrouhou, O.; and Khoufi, I. 2021. A comprehensive
survey on the Multiple Traveling Salesman Problem: Appli-
cations, approaches and taxonomy. Computer Science Re-
view, 40: 100369.
Conforto Nedelmann, D.; Lacan, J.; and Chanel, C. 2023.
Online Proactive Multi-Task Assignment with Resource
Availability Anticipation. In Ferrando, A.; and Cardoso,
R., eds., Proceedings of the Third Workshop on Agents and
Robots for reliable Engineered Autonomy, Krakow, Poland,
1st October 2023, volume 391 of Electronic Proceedings in
Theoretical Computer Science, 3–17. Open Publishing As-
sociation.
De Filippo, A.; Lombardi, M.; and Milano, M. 2019. How
to Tame Your Anticipatory Algorithm. In Proceedings of
the 28th International Joint Conference on Artificial Intelli-
gence, 1071–1077. AAAI Press. ISBN 9780999241141.
Dickerson, J.; Sankararaman, K.; Srinivasan, A.; and Xu, P.
2018. Allocation Problems in Ride-Sharing Platforms: On-
line Matching With Offline Reusable Resources. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 32(1).
Gong, X.-Y.; Goyal, V.; Iyengar, G. N.; Simchi-Levi, D.; Ud-
wani, R.; and Wang, S. 2022. Online Assortment Optimiza-
tion with Reusable Resources. Management Science, 68(7):
4772–4785.

Herbawi, W.; and Weber, M. 2011. Ant Colony vs. Ge-
netic Multiobjective Route Planning in Dynamic Multi-Hop
Ridesharing. In Proceedings of the 2011 IEEE 23rd Interna-
tional Conference on Tools with Artificial Intelligence, IC-
TAI ’11, 282–288. USA: IEEE Computer Society. ISBN
9780769545967.
Herbawi, W.; and Weber, M. 2012. The ridematching prob-
lem with time windows in dynamic ridesharing: A model
and a genetic algorithm. 1–8. ISBN 978-1-4673-1510-4.
Hikima, Y.; Akagi, Y.; Marumo, N.; and Kim, H. 2022. On-
line Matching with Controllable Rewards and Arrival Prob-
abilities. In Raedt, L. D., ed., Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, 1825–1833. International Joint Conferences on
Artificial Intelligence Organization. Main Track.
Hussein, A.; and Khamis, A. 2013. Market-based approach
to Multi-robot Task Allocation. 69–74.
Kara, I.; and Bektas, T. 2006. Integer linear programming
formulations of multiple salesman problems and its varia-
tions. European Journal of Operational Research, 174(3):
1449–1458.
Khamis, A.; Hussein, A.; and Elmogy, A. 2015. Multi-robot
Task Allocation: A Review of the State-of-the-Art, volume
604, 31–51. ISBN 978-3-319-18299-5.
Lesmana, N. S.; Zhang, X.; and Bei, X. 2019. Balancing
Efficiency and Fairness in On-Demand Ridesourcing, vol-
ume 32. Curran Associates, Inc.
Mehta, A. 2013. Online Matching and Ad Allocation.
Found. Trends Theor. Comput. Sci., 8(4): 265–368.
Nanda, V.; Xu, P.; Sankararaman, K. A.; Dickerson, J.; and
Srinivasan, A. 2020. Balancing the Tradeoff between Profit
and Fairness in Rideshare Platforms during High-Demand
Hours. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02): 2210–2217.
Rangriz, S.; Davoodi, M.; and Saberian, J. 2019. A novel
approach to optimize the ridesharing problem using genetic
algorithm. The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, XLII-
4/W18: 875–878.
Sumita, H.; Ito, S.; Takemura, K.; Hatano, D.; Fukunaga,
T.; Kakimura, N.; and Kawarabayashi, K.-i. 2022. Online
Task Assignment Problems with Reusable Resources. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
36(5): 5199–5207.
Wang, H.; and Bei, X. 2022. Real-Time Driver-Request As-
signment in Ridesourcing. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(4): 3840–3849.
Wang, Y.; Zhao, C.; and Xu, S. 2020. Method for Spa-
tial Crowdsourcing Task Assignment Based on Integrating
of Genetic Algorithm and Ant Colony Optimization. IEEE
Access, 8: 68311–68319.

404

