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Abstract

Classical planning looks for a sequence of actions that trans-
form the initial state of the environment into a goal state.
Studying whether the effects of an action can be undone
by a sequence of other actions, that is, action reversibility,
is beneficial, for example, in determining whether an action
is safe to apply. This paper deals with action reversibility
of non-deterministic actions, i.e., actions whose application
might result in different outcomes. Inspired by the established
notions of weak and strong plans in non-deterministic (or
FOND) planning, we define the notions of weak and strong
reversibility for non-deterministic actions. We then focus on
the universality and uniformity of action reversibility, that is,
whether we can always undo all possible effects of the ac-
tion by the same means (i.e., policy), or whether some of the
effects can never be undone. We show how these classes of
problems can be solved via classical or FOND planning and
evaluate our approaches on FOND benchmark domains.

Introduction
Automated planning is a subfield of Artificial Intelligence
that deals with the problem of whether there exists a se-
quence of actions that leads from an initial state to some goal
state of the environment (Ghallab, Nau, and Traverso 2004,
2016). In Fully Observable Non-deterministic (FOND) plan-
ning, actions have non-deterministic effects, i.e., if an ac-
tion is applied, one of the effects will (randomly) occur, and
hence the formalism can model the uncertainty associated
with applying such actions (Cimatti et al. 2003).

In recent years, a problem concerning whether the effects
of an action can be undone by means of other actions has
drawn attention. In the literature, this problem is referred
to as action reversibility (Morak et al. 2020). One of the
main motivations for its study is that actions identified as
reversible are safe to apply. In other words, if a reversible
action is applied, its application does not lead to a dead-end
state (unless the action was already applied in a dead-end
state). This property is especially useful in online planning,
where an agent plans and acts w.r.t. a short time horizon,
as it might provide information about safe states (Cserna
et al. 2018). Another possible benefit of action reversibility
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can be in post-planning plan optimization, in which it might
contribute to more efficient computations of redundant “ac-
tion cycles” (Med and Chrpa 2022). In FOND planning, the
potential benefits of action reversibility also include deter-
mining whether recovery from undesirable effects is possi-
ble, which might lead to more efficient generation of strong
cyclic plans (Muise, McIlraith, and Beck 2012; Camacho,
Muise, and McIlraith 2016), or whether we can safely per-
form deterministic replanning in unknown states (cf. FF-
replan (Yoon, Fern, and Givan 2007)).

A specific form of action reversibility involving the search
for an inverse action has been investigated (Koehler and
Hoffmann 2000; Chrpa, McCluskey, and Osborne 2012).
The existence of a pair of inverse actions is a special case
of action reversibility, where the reverse plan contains only
one action. Eiter, Erdem, and Faber (2008) introduced the
concept of reverse plans that corresponds to the notion of
uniform reversibility established by Morak et al. (2020) re-
ferring to reversibility of action effects by the same means
(i.e., by the same action sequence). A more general notion
of (non-uniform) reversibility has been tackled by compil-
ing the problem into contingent planning (Daum et al. 2016)
or logic programs (Faber, Morak, and Chrpa 2021). Recent
work of Chrpa, Faber, and Morak (2021) investigates under
which condition we can find universal reverse plans.

This paper studies the reversibility of non-deterministic
actions, which is, to the best of our knowledge, the first
work in this area. Inspired by the established notions of
weak and strong plans (Cimatti et al. 2003) we propose no-
tions of weak and strong reversibility that, in a nutshell, re-
fer to “all effects might be undone” and “all effects can al-
ways be undone”, respectively. We then focus on a subclass
of the problem concerning universal uniform reversibility,
that is, whether we can always undo all effects of a (non-
deterministic) action by the same (weak or strong) policy,
or whether some of the effects can never be undone, i.e.,
they are universally irreversible. We show how these prob-
lems can be compiled into classical planning (for weak re-
versibility and irreversibility) or FOND planning (for strong
reversibility). Our approaches are evaluated on a range of
FOND benchmark domains.
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Preliminaries
We adopt terminology from the Simplified Action Struc-
tures (SAS+) formalism (Bäckström and Nebel 1995) and
the FOND planning (Cimatti et al. 2003).

Let v be a variable (or a state variable) and dom(v) be
its domain. A fact (v, x) is a pair that contains a variable
v and its value x ∈ dom(v). The set of all facts over the
set of variables V is denoted as F(V). A set Σ ⊆ F(V)
is called a variable assignment over V if and only if for
all (v, x) ∈ Σ does not exist y ∈ dom(v) such that y ̸= x
and (v, y) ∈ Σ. The value of the variable v in Σ, denoted
as Σ[v], is equal to x if and only if (v, x) ∈ Σ. The set
of all variables in Σ, denoted as vars(Σ), is defined as
vars(Σ) = {v | (v, x) ∈ Σ}. A variable assignment Σ over
the set of variables V is called a complete variable assign-
ment if and only if vars(Σ) = V . Otherwise, it is called a
partial variable assignment. The set of all complete vari-
able assignments over V is denoted as S(V).

An action a over a set of variables V is a pair (pre(a),
eff (a)), where pre(a) is a variable assignment over V rep-
resenting the precondition of the action a, and eff (a) is
a non-empty set of variable assignments over V represent-
ing the set of possible effects of the action a. The action
a is called deterministic if and only if |eff (a)| = 1. A
determinization of an action a with respect to the effect
e ∈ eff (a), denoted as ad

e , is an action ade = (pre(a), {e}).
The set of variables related to an action a, denoted vars(a),
is the set of variables vars(pre(a)) ∪

⋃
e∈eff (a) vars(e). We

say that an action a is applicable in a variable assignment Σ
if and only if pre(a) ⊆ Σ. The set of applicable actions in
the variable assignment Σ from the set of actions A is de-
noted as α(Σ,A). The application of a deterministic ac-
tion a = (pre(a), {e}) in a variable assignment Σ such that
pre(a) ⊆ Σ, denoted as γ(Σ, a), is the variable assignment
γ(Σ, a) = {(v, x) ∈ Σ | v /∈ vars(e)}∪ e (the application is
undefined if a is not applicable in Σ). Given a deterministic
action a = (pre(a), {e}), we define ha(a) as the variable as-
signment γ(pre(a), a). It is easy to prove ha(a) is the largest
set of facts that satisfies ha(a) ⊆ γ(Σ, a) for all variable as-
signment Σ that a is applicable in; for this reason, we say
that ha(a) necessarily holds after applying action a.

The application of a (non-deterministic) action a in a
variable assignment Σ, denoted as δ(Σ, a), is the set of
variable assignments δ(Σ, a) = {γ(Σ, ade) | e ∈ eff (a)}.

Let V be a set of variables. A FOND planning domain
D is a pair ⟨V ,A⟩, where A is a set of actions over V . An
SAS+ planning domain Dd is a pair ⟨V ,Ad⟩, where Ad is a
set of deterministic actions over V . A state s of the domain
D is a complete variable assignment over the set V .

A FOND (resp. SAS+) planning task T (resp. T d) is
a triple ⟨D, sI , G⟩, where D = ⟨V ,A⟩ is a FOND (resp.
SAS+) planning domain, sI ∈ S(V) is an initial state and
G ⊆ F(V) is a variable assignment representing a goal.
When we refer to a planning task or a domain, we mean a
non-deterministic task or domain, unless stated otherwise.

A sequence of deterministic actions π = ⟨a1, . . . , an⟩,
∀i ∈ N, 1 ≤ i ≤ n : ai ∈ Ad, is called a plan for the SAS+

planning domain Dd. An application of the plan π = ⟨a1,

. . . , an⟩ in a variable assignment Σ, denoted as γ(Σ, π), is
a variable assignment γ(Σ, π) = γ(γ(Σ, a1), ⟨a2, . . . , an⟩).
If π = ⟨⟩, then γ(Σ, ⟨⟩) = Σ.

A state s is reachable in the SAS+ planning task T d if
and only if there exists a plan π for the domain Dd such that
γ(sI , π) = s. Otherwise, s is unreachable. We say that T d

is solvable if and only if some goal state sG ⊇ G is reach-
able in the planning task T d. Otherwise, T d is unsolvable.
A plan π is called a goal plan of the SAS+ planning task T d

if and only if γ(sI , π) ⊇ G.
A policy Π for the domain D = ⟨V ,A⟩ is a binary re-

lation over the set of states S(V) and the set of applicable
actions of A, i.e., Π ⊆ {(s, a) | s ∈ S(V), a ∈ α(s,A)}.
The set of all states related in Π is the set σ(Π) =
{s | (s, a) ∈ Π}. The n-step application of Π in a state s,
denoted as δn(s,Π), is the set δn(s,Π) =

⋃
s′∈δn−1(s,Π)⋃

(s′,a)∈Π δ(s′, a) for n ≥ 1, and δ0(s,Π) = {s}. We say
that s′ is reachable from s with a policy Π if and only if
s′ ∈ δi(s,Π) for some i ≥ 0. We say that s′ is a termi-
nal state for Π with respect to a state s if and only if s′ is
reachable from s with Π and s′ /∈ σ(Π). The set of all such
terminal states is denoted as τ (Π, s).

A policy Π is called a weak goal policy for T if and only
if τ(Π, sI) ∩ {sG ∈ S(V) | G ⊆ sG} ̸= ∅. A policy Π is
called a strong goal policy for T if and only if τ(Π, sI) ⊆
{sG ∈ S(V) | G ⊆ sG} and for each s ∈ σ(Π) at least one
state that satisfies the goal G is reachable by Π.1 A task T is
called solvable if and only if there exists a weak goal policy
for the task T . Otherwise, it is called unsolvable.

Let Ψ be a set of pairs (Σ, a), where Σ is a variable as-
signment, and a ∈ A is an action that is applicable in Σ. The
set Ψ is called an implicitly-defined policy for the domain
D. We say that Ψ implicitly defines the policy Π if and only
if Π =

⋃
(Σ,a)∈Ψ{(s, a) | s ∈ S(V),Σ ⊆ s}.

Non-deterministic Action Reversibility
Action reversibility, concerning the problem of whether the
effects of an action can be undone by means of other actions,
has been studied in deterministic settings (see Eiter, Erdem,
and Faber (2008); Daum et al. (2016); Morak et al. (2020)).

In our work, we introduce the concept of action reversibil-
ity for non-deterministic actions in the FOND planning for-
malism. Non-deterministic action reversibility, in contrast to
the deterministic variant, has to deal with non-deterministic
actions—not only those whose effects we try to undo, but
also those that might be caused by actions we apply to
reverse the effects of the former action. In FOND plan-
ning, we usually consider two types of solutions, weak and
strong (Cimatti et al. 2003). For a weak solution, we have a
chance to achieve the goal if everything “goes well”, while
for a strong solution, there is a guarantee that the goal will
eventually be achieved. We adopt these notions to establish
weak and strong action reversibility such that for weak re-
versibility we require that there is a chance to undo all action
effects, while for strong reversibility this has to be guaran-

1Note that our definition coincides with the definition of strong
cyclic solution (Def. 2.10) of Cimatti et al. (2003).
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teed. Note that in this paper, we consider strong cyclic so-
lutions that guarantee success if each effect of each non-
deterministic action has a nonzero chance to occur if the
action is applied (in other words, we consider the fairness
assumption) (Aminof, De Giacomo, and Rubin 2020).

Inspired by the work of Morak et al. (2020), we classify
the notion of (non-deterministic) action reversibility into
three categories, S-reversibility, uniform reversibility and
universal reversibility, which will be now introduced.

S-reversibility
Naturally, it might be useful to study whether an action a is
reversible in some subset of states S ⊆ S(V). That is, for
each state from S in which a is applicable, we have to find a
sequence of other actions that undoes the effects of a. This
property is called S-reversibility (Morak et al. 2020).

To address non-deterministic actions, we introduce the
notions of weak S-reversibility and strong S-reversibility, in
the context of work of Cimatti et al. (2003) as described
above. Informally speaking, we call an action weakly S-
reversible if, in each state from S in which the action is ap-
plicable, the action’s effects can be undone by a sequence of
(non-deterministic) actions while assuming the occurrence
of the specific effect for each of the actions. We call an ac-
tion a strongly S-reversible if, in each state s ∈ S where a
is applicable, the action’s effects are eventually undone by
some policy Πs having precisely s as its terminal state.

We also establish the notion of action S-irreversibility. It
refers to a situation in which there is no way to undo any of
the action’s effects (even by means of a weak solution). The
following definition formalizes the above notions.

Definition 1. Let D = ⟨V ,A⟩ be a planning domain, a ∈
A be an action, and S ⊆ S(V) be a set of states of the
domain D. The action a is called weakly (resp. strongly) S-
reversible in the domain D if and only if for each state s ∈ S,
pre(a) ⊆ s, there exists a policy Π for the domain D such
that for each s′ ∈ δ(s, a) it holds that s ∈ τ(Π, s′) (resp.
{s} = τ(Π, s′) and for each state s′′ that is reachable by Π
from the state s′ it holds that s is reachable by Π from s′′).
The action a is called S-irreversible in the domain D if and
only if for each state s ∈ S, pre(a) ⊆ s, there does not exist
a policy Π for the domain D such that for each s′ ∈ δ(s, a)
it holds that s ∈ τ(Π, s′).

Example 1. Let D be a planning domain with two variables
door and window. Let door have domain {open, closed}
and window have domain {open, closed, broken}.

Let VENT be a deterministic action with {(window,
closed)} as its precondition and {(door, open), (window,
open)} as effects. Furthermore, there are additional non-
deterministic actions: CLOSE-WINDOW and CLOSE-DOOR
with preconditions of a relevant entity being open and effects
eff(CLOSE-WINDOW) = {{(window, closed)}, {(window,
broken)}}, eff(CLOSE-DOOR) = {{(door, closed)}, ∅}.

The policy that applies CLOSE-DOOR in a state where
both the door and the window are open and close-window in
a state where the window is open and the door is closed is a
weak {{(window, closed), (door, closed)}}-reverse policy
for the action VENT. Similarly, there is a weak {{(window,

closed), (door, open)}}-reverse policy for the action VENT
that applies close-window in a state where both the door
and the window are open. Therefore, the action VENT
is weakly {{(window, closed), (door, closed)}, {(window,
closed), (door, open)}}-reversible.

As the application of both policies may eventually end in
a broken window, neither of them is a strong reverse policy
for the above set of states. Intuitively, close-window action
is irreversible in any state in which the action is applicable
since no action can “fix” the broken window.

Now, consider the same domain, except that there are
two variants of the former CLOSE-WINDOW. First, CLOSE-
WINDOW-DRAUGHT-FREE, which cannot break the win-
dow, and on top of the former action requires the door
to be closed; and second, close-window, on top of the
former action requires the door to be open, with the
same effects as the former. In such a domain, the pol-
icy that applies CLOSE-DOOR if the door is not closed
and CLOSE-WINDOW-DRAUGHT-FREE if the window is not
closed (and the door is) is a strong {{(window, closed),
(door, closed)}}-reverse policy for the action VENT.

Uniform Reversibility
A special case of S-reversibility is uniform S-reversibility,
which refers to the existence of a common solution concept
that can undo the effects of the action in question, for each
state of S in which the action can be applied (Morak et al.
2020), i.e., the same solution concept reverses the effects of
the action in question applied in any state of the set S where
the action is applicable. Formally, the difference lies in the
order of universal and existential quantifiers. The following
definition formalizes the notions of weak and strong uniform
S-reversibility for non-deterministic actions.
Definition 2. Let D = ⟨V ,A⟩ be a planning domain, a ∈ A
be an action, S ⊆ S(V) be a set of states of the domain
D. The action a is called weakly (resp. strongly) uniformly
S-reversible in the domain D if and only if there exists a
policy Π for D such that for each state s ∈ S, pre(a) ⊆ s, it
holds that for each s′ ∈ δ(s, a) we have s ∈ τ(Π, s′) (resp.
{s} = τ(Π, s′) and for each state s′′ that is reachable by Π
from the state s′ it holds that s is reachable by Π from s′′).

Having a single policy that can undo the effects of an ac-
tion in all relevant situations (i.e., states from S in which
a is applicable) is practical, as we do not need to consider
multiple state-specific policies. Analogously to the notion
of reverse plan in classical planning (Morak et al. 2020), we
define the notion of reverse policy.
Definition 3. Let D = ⟨V ,A⟩ be a planning domain and
a ∈ A be an action. A policy Π for the domain D is called
a weak (resp. strong) S-reverse policy for the action a if
and only if the action a is weakly (resp. strongly) uniformly
S-reversible by the policy Π.
Example 2. Consider the domain of Example 1. The
policy which applies CLOSE-WINDOW if the window is
open and CLOSE-DOOR if both are open is a weak uni-
form {{(window, closed), (door, closed)}, {(window, clo-
sed), (door, open)}}-reverse policy for VENT action (how-
ever, the policy relates some states with multiple actions).
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Universal Reversibility
Universal reversibility is a specific case of S-reversibility
covering all states, i.e., S = S(V). Informally speaking, if
an action is universally reversible (or irreversible), its effects
can always (or never) be undone.

Definition 4. Let D = ⟨V ,A⟩ be a planning domain and
a ∈ A be an action. The action a is called weakly (resp.
strongly) universally (uniformly) reversible in the domain
D if and only if the action a is weakly (resp. strongly) (uni-
formly) S(V)-reversible in the domain D. The action a is
called universally irreversible in the domain D if and only
if the action a is S(V)-irreversible in the domain D.

Example 3. Consider the domain of Example 1. The states
with a closed window and the door being open or closed
are the only states where the action VENT is applicable. Re-
call that there is a weak reverse policy for any such state.
Therefore, the action VENT is weakly universally reversible.
The common policy of Example 2 proves the weak universal
uniform reversibility of the action VENT.

Example 4. Now, as an example of strong universal uni-
form reversibility, let us consider the well-known Transport
domain (Helmert, Do, and Refanidis 2010). In the domain,
packages have to be transported from one location to an-
other through various vehicles. Packages can be loaded and
unloaded into vehicles without restrictions and the loading
or unloading process can fail, leaving the package in its
former position (at the location or inside the truck, respec-
tively). The actions of the LOAD and UNLOAD “families”
are strongly universally uniformly reversible, as if the pack-
age is successfully loaded or unloaded, respectively, we can
always undo it by unloading, or loading the package back.

On Combining Policies
Having defined the relevant notions, we will first establish
some theoretical properties that follow from our definitions.

It can be easily derived that weak or strong (uniform) S-
(ir)reversibility implies weak or strong (uniform) S′-(ir)re-
versibility if S′ ⊆ S. Weak or strong uniform S-reversibility
implies weak or strong S-reversibility, and strong (uniform)
S-reversibility implies weak (uniform) S-reversibility. Fur-
thermore, we can observe that if an action is weakly (resp.
strongly) S1- and S2-reversible, then it is weakly (resp.
strongly) (S1 ∪ S2)-reversible. However, for uniform re-
versibility such an implication does not hold in general.

A more interesting property of any S-reverse policy is that
it cannot assign any action to any state in S in which the “to
be reversed” action is applicable.

Example 5. Consider a domain that describes the re-
sult of coin tossing. It has a variable whose domain
is {heads, tails}, and TOSS-COIN (without precondition).
The action has a strong universal uniform {(coin, head)}-
reverse policy that applies TOSS-COIN as long as the state
is {(coin, tails)}. The same holds symmetrically for tails .
Hence, the action is weakly and strongly universally re-
versible. However, there is no weak or strong universal re-
verse policy, since, e.g., the union of the mentioned policies
has no terminal state (it relates each state with some action).

Proposition 6. Let D = ⟨V ,A⟩ be a planning domain, Π be
a policy for the domain D, and a ∈ A be an action. If Π is
a weak (resp. strong) S-reverse policy for the action a, then
{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π) = ∅.

Proof. Proof by contradiction. Assume that {s′ | s′ ∈
S, pre(a) ⊆ s′} ∩ σ(Π) ̸= ∅. Then, there is a state s ∈
{s′ | s′ ∈ S, pre(a) ⊆ s′} ∩ σ(Π). According to the as-
sumption and since {s} ⊆ S, the action a is weakly (resp.
strongly) uniformly {s}-reversible by the policy Π. Since s
is also in σ(Π), s cannot be a terminal state of the policy Π.
Therefore, for each s′ ∈ δ(s, a) we have s /∈ τ(Π, s′). This
is in contradiction with the assumption of Π being a weak
(resp. strong) S-reverse policy for the action a.

An important consequence of Proposition 6 concerns uni-
versal uniform reversibility. It simply follows that when the
set S is equal to the set S(V), then the situation of Proposi-
tion 6 can be simplified to the fact that the universal reverse
policy can contain only the states in which the action we
want to reverse is not applicable.

In contrast to deterministic planning which deals with ac-
tion sequences, policies have a different structure as they
assign appropriate actions to apply in relevant states. This
property gives grounds to raise the question of how combin-
ing two policies affects S-reversibility of non-deterministic
actions. In the case of weak reversibility, in which reverse
policies are constructed along a sequence of actions, we can
safely combine policies as long as the other policy does not
compromise the assumption of Proposition 6.

Theorem 7. Let D = ⟨V ,A⟩ be a planning domain, a ∈ A
be an action, Π1 be a weak S-reverse policy for the action
a and Π2 be a policy for the domain D. The policy Π1 ∪Π2

is a weak S-reverse policy for the action a if and only if
{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π2) = ∅.

Proof. The “if” part is proven by a contraposition. Let us
assume that there is some state s′ ∈ {s | s ∈ S, pre(a) ⊆
s} ∩ σ(Π2). Then, as σ(Π2) ⊆ σ(Π1 ∪ Π2), s′ ∈ {s | s ∈
S, pre(a) ⊆ s} ∩ σ(Π1 ∪Π2). That violates the assumption
of Proposition 6 and hence the policy Π1 ∪ Π2 cannot be a
weak S-reversible policy for the action a.

For the “only if” part, we can observe that extending a
policy (by adding a pair of some state and some action) does
not affect the reachability of any state that was reachable
before (including the terminal states). From the assumption
{s | s ∈ S, pre(a) ⊆ s} ∩ σ(Π2) = ∅ and the fact that
{s | s ∈ S, pre(a) ⊆ s}∩σ(Π1) = ∅ (see Proposition 6), we
get {s | s ∈ S, pre(a) ⊆ s}∩σ(Π1∪Π2) = ∅. Therefore, all
states {s | s ∈ S, pre(a) ⊆ s} are terminal with respect to a
given starting state for the policy Π1∪Π2 (see the definition
of terminal states). Hence, the policy Π1 ∪ Π2 is a weak S-
reverse policy for the action a.

Regarding the strong S-reverse policy, since every strong
S-reverse policy is also a weak S-reverse policy, the same
conditions apply in this case as well. However, the condi-
tions of Theorem 7 are not sufficient since, if the second
policy assigns an action to a state that is considered by the
first strong S-reverse policy, the union of such policies could
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introduce a different terminal state; and this would violate
the definition of strong S-reverse policy. Hence, to combine
a strong S-reverse policy with a second one, the latter should
not interfere with the former, as summarized in the following
theorem.
Theorem 8. Let D = ⟨V ,A⟩ be a planning domain, a ∈ A
be an action, Π1 be a strong S-reverse policy for the action
a and Π2 be a policy for the domain D. If σ(Π2) ∩ {s | s ∈
S, pre(a) ⊆ s} = ∅ and σ(Π1) ∩ σ(Π2) = ∅, then Π1 ∪Π2

is a strong S-reverse policy for the action a.

Proof. Let s be a state s ∈ {s′′ | s′′ ∈ S, pre(a) ⊆ s′′}.
From the assumption of Π1 being a strong S-reverse policy
for action a, we get {s} = τ(Π1, s

′) for all s′ ∈ δ(s, a). Let
∆s′ be a set of reachable states from the state s′ by policy
Π1. The set can be divided into two disjoint sets ∆s′∩σ(Π1)

and ∆s′ \ σ(Π1) = τ(Π1, s
′) = {s}.

Now, we show that if we add an arbitrary state-action
pair (s′′, a′′) ∈ Π2 to the policy Π1, the set of reachable
states ∆s′ from the state s′ by the extended policy remains
unchanged. Therefore, if the policy Π1 is extended by any
state-action pair (s′′, a′′) ∈ Π2, i.e., Π′

1 = Π1 ∪ {(s′′, a′′)},
∆s′ remains unchanged, because s′′ ̸∈ ∆s′ ∩ σ(Π′

1) (due
to the fact that σ(Π1) ∩ σ(Π2) = ∅) and neither is in
∆s′ \ σ(Π′

1) = τ(Π1, s
′) = {s} (due to the fact that

σ(Π2) ∩ {s′′′ | s′′′ ∈ S, pre(a) ⊆ s′′′} = ∅).
Therefore, we can derive that ∆s′ remains the same for

the combined policy Π1 ∪Π2. Furthermore, we can see that
no other state could become terminal since no other state be-
came reachable, i.e., τ(Π1∪Π2, s

′) ⊆ {s}. From Theorem 7
we know s ∈ τ(Π1 ∪ Π2, s

′). Hence, Π1 ∪ Π2 is a strong
S-reverse policy for the action a.

A practical consequence of the above theorems is that they
provide conditions under which we can merge two reverse
policies into one. If Π1 is a weak (resp. strong) S1-reverse
policy for some action a and Π2 is a weak (resp. strong)
S2-reverse policy for the action a, Π1 ∪ Π2 is a weak (resp.
strong) (S1 ∪ S2)-reverse policy for a if the conditions of
Theorem 7 (resp. Theorem 8) are satisfied.

Determining Universal Uniform Reversibility
To determine universal uniform reversibility as well as uni-
versal irreversibility, we took inspiration from the work of
Chrpa, Faber, and Morak (2021) who studied such cases of
reversibility in the deterministic context. In summary, to de-
termine universal uniform reversibility (for deterministic ac-
tions), it is sufficient to consider only actions that contain
only variables present in the precondition of a “to be re-
versed” action. Such a property is practically very useful as
it usually (considerably) simplifies the problem.

However, in the non-deterministic context, the theoreti-
cal findings of Chrpa, Faber, and Morak (2021) can only be
partially adopted. Due to the different nature of policies, we
show that allowing only actions operating over the set of
variables present in the precondition of a “to be reversed”
action while looking for weak or strong universal reverse
policies is a sufficient but not necessary condition. In other

words, if a strong or weak reverse policy containing only
“restricted” actions is found, then such a policy is universal,
but the opposite implication generally does not hold (as we
argue later in this section).

Conditions for Universal Uniform Reversibilities
At first, we show that for an action to be strongly universally
uniformly reversible, its effects may modify only variables
that are also present in its preconditions. Note that an anal-
ogous claim also holds for the deterministic case (Chrpa,
Faber, and Morak 2021). The intuition behind the claim is
that if a variable is present in the action’s effects but not
present in its precondition, then multiple states (each refers
to a different value of the variable while assuming that the
variable can have at least two different values) “collapse”
into a single state referring to the value of the variable
present in the action’s effects.

Lemma 9. Let D = ⟨V ,A⟩ be a planning domain such
that ∀v ∈ V : |dom(v)| ≥ 2 and a ∈ A be an action. If⋃

e∈eff(a) vars(e) ⊈ vars(pre(a)), then the action a is not
strongly universally uniformly reversible.

Proof. Assume that there exists a strong universal reverse
policy Π for the action a.

W.l.o.g., let e ∈ eff (a) be an action effect for which there
exists v ∈ vars(e) \ vars(pre(a)). Since |dom(v)| ≥ 2, there
exist two distinct states s1, s2 in which a is applicable and
which differ in the value of the variable v. As states s1 and
s2 differ only in the value of the variable v and since the
effect e modifies v, we have s′ = γ(s1, a

d
e) = γ(s2, a

d
e).

As we initially assumed, Π is a strong universal reverse
policy for the action a and this implies τ(Π, γ(s1, a

d
e)) =

{s1} and τ(Π, γ(s2, a
d
e)) = {s2} (see Definition 2). How-

ever, since s′ = γ(s1, a
d
e) = γ(s2, a

d
e), we get τ(Π, s′) =

{s1, s2}. This is in contradiction with s1 ̸= s2.

In the case of weak universal uniform reversibility, an
analogous claim cannot be made. For a weak universal re-
verse policy Π′, we can derive an analogous claim as we
did in the proof of Lemma 9, that is, τ(Π′, s′) = {s1, s2}.
This claim does not contradict the definition of weak uni-
form reversibility, as both cases, that is, s1 ∈ τ(Π′, s′) and
s2 ∈ τ(Π′, s′), might be satisfied.

As an example, consider a bowling domain, with a vari-
able bowled with the domain {true, false} and an action that
resets bowling pins that restores any combination of pins
that are down or standing with all pins standing, and that sets
bowled to false . The action is applicable if and only bowled
is true . The action’s effects contain variables of pins that
are not in its preconditions. There is another action that rolls
the bowling ball, without any preconditions, and which can
non-deterministically push over none, some, or all standing
pins, and always sets bowled to true . The rolling action can
weakly universally uniformly undo the reset action, as each
state before the reset can be obtained, but it cannot strongly
universally uniformly undo the reset action, as no state be-
fore the reset can be guaranteed to be obtained.

The following theorem shows that if we generate a weak
or strong universal reverse policy in a restricted state and
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action space that takes into account only variables that are
present in the precondition of “to be reversed” action, then
such a reverse policy is universal.

Theorem 10. Let D = ⟨V ,A⟩ be a planning domain, a ∈ A
be an action such that

⋃
e∈eff(a) vars(e) ⊆ vars(pre(a)). If

there exists an implicitly defined policy Ψ for the domain D
such that ∀ (Σ′, a′) ∈ Ψ : vars(Σ′) ⊆ vars(pre(a)) and that
the policy Π implicitly defined by Ψ is weak (resp. strong) S-
reverse policy for the action a such that {s | s ∈ S, pre(a) ⊆
s} ̸= ∅ and ∀(s′, a′) ∈ Π : vars(a′) ⊆ vars(pre(a)), then
Π is a weak (resp. strong) universal reverse policy for the
action a.

Proof. Let s ∈ S be a state such that pre(a) ⊆ s and Π
be a weak (resp. strong) {s}-reverse policy for the action a
implicitly defined by Ψ.

To show that Π is a weak (resp. strong) universal reverse
policy for the action a, we need to prove that for each state
s′ ∈ S(V) such that pre(a) ⊆ s′ the policy Π is also a
weak (resp. strong) {s′}-reverse policy for the action a. If
there does not exist any other state s′ ∈ S(V) such that
pre(a) ⊆ s′ and s ̸= s′, then the policy Π is a weak (resp.
strong) universal reverse policy for the action a. If there ex-
ists such a state s′, then we can observe that s′ differs from
s only in values of variables that are not part of vars(pre(a))
(otherwise it would compromise the applicability of a).

Assumption
⋃

e∈eff (a) vars(e) ⊆ vars(pre(a)) states that
any effect e of the action a can modify only the variables
present in pre(a). Therefore, the values of the variables of
V \ vars(pre(a)) remain unchanged after the application of
the action a regardless of what effect takes place.

As for any state-action pair (sx, ax) ∈ Π it is the case that
vars(ax) ⊆ vars(pre(a)), none of the actions of the policy
Π can change any variable from V \ vars(pre(a)) or require
a specific value of any of such variables.

From the assumption stating ∀ (Σ′, a′) ∈ Ψ : vars(Σ′) ⊆
vars(pre(a)) it holds that each variable assignment Σ′ does
not contain variables from V \ vars(pre(a)). Therefore, the
policy Π behaves independently on values of variables V \
vars(pre(a)) which means that Π yields the same outcome
(apart from the values of the variables of V \ vars(pre(a))
that remain constant) from both states s and s′.

According to the assumption, if we apply Π in any state
in δ(s, a), we may (resp. have to) return to the state s, which
is terminal. As we have shown that Π and a can modify only
the variables present in pre(a), we can derive that for each
state s′ ∈ S(V), pre(a) ⊆ s′, Π is weak (resp. strong) {s′}-
reverse policy for a. Hence, the policy Π is a weak (resp.
strong) universal reverse policy for the action a.

In contrast to deterministic universal uniform reversibil-
ity (Chrpa, Faber, and Morak 2021), the opposite implica-
tion, i.e., there is a weak/strong universal reverse policy only
if Theorem 10’s assumption is true, does not hold.

Regarding weak universal uniform reversibility, Lemma
9 indicates that a “to be reversed” action might modify vari-
ables that are not present in its precondition and still be (po-
tentially) weakly universally uniformly reversible. This ob-
servation can also be applied to other actions that are part of

the weak universal reverse policy. As an example, we might
have an action whose non-deterministic effects contain all
states in which the “to be reversed” action is applicable.

In the case of strong universal uniform reversibility, the
issue with the opposite implication of Theorem 10 is in the
possibility of merging policies. If the conditions of Theo-
rem 8 are satisfied, we can merge two strong reverse poli-
cies to obtain another strong reverse policy applicable to the
union of states of the individual policies. Hence, it is possi-
ble to obtain a strong universal reverse policy by combining
more specific strong reverse policies.

As an example, let us have a domain where an agent can
move between three locations – A, B, C. However, there is
another variable that determines whether the agent can move
from B to A, or from B to C. Moving from A to B and from
C to A is not restricted. Depending on the value of the other
variable, we undo the effects of moving from A to B by ei-
ther moving directly back to A, or moving through C. These
two reverse policies can be combined, as the states they are
operating over are disjoint (because of different values of the
other variable). The combined policy is a strong universal re-
verse policy for the action that moves us from A to B. As the
other variable is involved in the policy and there is no other
strong universal reverse policy, there is no Ψ of Theorem 10.

Compilations
Theorem 10 provides us with a blueprint on how classical
(respectively, FOND planning) can be leveraged in finding
weak (resp. strong) universal reverse policies.

The following theorem shows how a weak universal re-
verse policy can be generated by means of classical plan-
ning by specifying multiple classical planning tasks (one for
each determinization of the “to be reversed” action). Since,
for weak reversibility, we only need to decide reachability
of the former state, we replace each non-deterministic ac-
tion with its respective determinizations. Moreover, we may
consider only determinizations that operate only on the vari-
ables present in the precondition of the “to be reversed” ac-
tion.

Theorem 11. Let D = ⟨V ,A⟩ be a planning domain
and a ∈ A be an action such that

⋃
e∈eff(a) vars(e) ⊆

vars(pre(a)). If for each determinization ade of the action a
a plan πe is a goal plan for the SAS+ planning task T d

e =

⟨⟨vars(pre(a)), {(a′)de | a′ ∈ A, e ∈ eff(a′), vars((a′)de) ⊆
vars(pre(a))}⟩, ha(ade), pre(a)⟩, then the action a is weakly
universally uniformly reversible.

Proof (Sketch). Each plan πe = ⟨ae1 , . . . , aen⟩ can be trans-
formed into a policy Πe = {(γ(ha(ade), ⟨ae1 , . . . , aei−1⟩),
aei) | i ∈ N, 1 ≤ i ≤ n}. Since for each effect ei de-
termined by the corresponding determinization aei it is the
case that vars(ei) ⊆ vars(pre(a)), we can observe that none
of the variables other than vars(pre(a)) is modified in the
process. Also, each determinization ade of the action a modi-
fies only the variables of vars(pre(a)). All policies resulting
from transformed plans that are solutions of the SAS+ tasks
for each determinization ade contain pre(a) as one of the ter-
minal states. By combining all the policies into one (meet-
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ing the conditions of Theorem 7) we obtain an implicitly-
defined policy for the domain ⟨V , {(a′)de | a′ ∈ A, e ∈
eff (a′), vars((a′)de) ⊆ vars(pre(a))} ∪ {a}⟩. If we replace
the determinizations by their corresponding stochastic ac-
tions of A, we obtain an equivalent (from the perspective of
weak reversibility) implicitly-defined policy Ψ for the do-
main ⟨V ,A⟩. Then, a policy implicitly defined by Ψ is a
weak universal reverse policy for the action a.

A similar claim can be made about strong universal uni-
form reversibility, albeit in the context of FOND planning,
since strong universal uniform reversibility needs to guar-
antee that the only terminal state is the state in which a “to
be reversed” action is applied. The compilation of the prob-
lem of finding a strong universal reverse policy to a FOND
planning task is analogous to the weak universal uniform re-
versibility case. In addition, to be able to merge the found
policies, their sets of related states have to be pairwise dis-
joint, as Theorem 8 suggests.
Theorem 12. Let D = ⟨V ,A⟩ be a planning domain
and a ∈ A be an action such that

⋃
e∈eff(a) vars(e) ⊆

vars(pre(a)). If for each determinization ade exists a strong
goal policy Πe for the FOND planning task ⟨⟨vars(pre(a)),
{a′ | a′ ∈ A, vars(a′) ⊆ vars(pre(a))}⟩, ha(ade), pre(a)⟩
such that the sets σ(Πe) are pairwise disjoint, then action a
is strongly universally uniformly reversible.

Proof (Sketch). It can be observed that each policy Πe is an
implicitly defined policy that strongly universally uniformly
reverses the determinization ade . These policies can be com-
bined (the sets of related states are pairwise disjoint) accord-
ing to Theorem 8. Hence, the policy implicitly defined by⋃

e∈eff (a) Πe is a strong universal reverse policy for a.

We also consider the possibility of identifying universal
irreversibility. The idea is derived from the work of Chrpa,
Faber, and Morak (2021) that concerns the universal irre-
versibility of deterministic actions. Informally speaking, if
for some effect of an action, we cannot reachieve the pre-
condition of that action, then the action is universally irre-
versible. We can “project” the problem onto the variables
related to a “to be reversed” action a, i.e., omit the others
from the problem. In contrast to the above theorems, we do
not discard actions that also operate on the other variables,
but we project their preconditions and effects to vars(a).

Let Σ be a variable assignment over the set of variables
V and let V ′ ⊆ V be a set of variables. The projection
of Σ on the set of variables V ′ is a variable assignment
Σ|V′ = {(v, x) ∈ Σ | v ∈ V ′}. Furthermore, the projec-
tion of an action a on the set of variables V ′ is an action
a|V′ = (pre(a)|V′ , {e|V′ | e ∈ eff (a)}).
Theorem 13. Let D = ⟨V ,A⟩ be a planning domain and
a ∈ A be an action. If for any determinization ade of the
action a the SAS+ planning task ⟨⟨vars(a), {((a′)de′)|vars(a) |
a′ ∈ A, e′ ∈ eff(a′)}⟩, ha(ade), pre(ade)⟩ is unsolvable, then
the action a is universally irreversible.

Proof. If the specified SAS+ planning task is unsolvable, it
means that the precondition of a is unreachable from some

of its effects. Since we focus only on a subset of variables,
the applicability of actions is more optimistic than in the
general case. So, if an abstract task created by projecting into
a subset of variables is unsolvable, then the original task is
unsolvable as well (Helmert, Haslum, and Hoffmann 2007).
Hence, we can derive that if for any determinization of a, the
specified SAS+ planning task is unsolvable, then a is univer-
sally irreversible.

Experiments
The section presents empirical evidence on the existence
of investigated phenomena in many benchmark domains.
Based on the claims of previous sections, we have designed
and performed the experiments for the resolution of the in-
vestigated classes of non-deterministic action reversibility.

We have evaluated our approaches on 20 FOND domains
of two sets of benchmarks: one from the repository of the
PRP planner (Muise, McIlraith, and Beck 2012; Muise,
Belle, and McIlraith 2014; Muise, McIlraith, and Belle
2014), and second set proposed by Geffner and Geffner
(2018); namely, Acrobatics (A.), Beam Walk (BE. W.),
Blocks World (BL.), Bus Fare (B. F.), Climber (C.), Doors
(D.), Earth Observation (E. O.), Elevators (EL.), Explod-
ing Blocks World (E. BL.), Faults (FA.), First Responders
(F. R.), Forest (FO.), Islands (IS.), Miner (M.), River (R.),
Spiky Tire World (S. T.), Tire World (T.), Tire World Truck
(T. TRU.), Triangle Tire World (TRI. T.), and Zeno Travel
(Z.). To translate lifted benchmark domains into (grounded)
formalism considered in the paper, we have selected one
problem instance for each considered (lifted) domain and
instantiated it with (modified) translator of PRP planner.

For each action, we initially check whether they satisfy
the condition

⋃
e∈eff (a) vars(e) ⊆ vars(pre(a)). If the action

does not satisfy the condition, we use Theorem 13 to check
its universal irreversibility. Based on the result, we either
conclude “universally irreversible” or “we have not identi-
fied anything, besides the action is not strongly universally
uniformly reversible” (since the action does not satisfy the
conditions, from Theorem 10 we know that the action is not
strongly universally uniformly reversible; Theorem 11 is in-
applicable and Theorem 13 is an implication only). If the
action satisfies the initial condition, we check if it is weakly
universally uniformly reversible (which is a necessary con-
dition for strong reversibility) by leveraging Theorem 11.
Based on the result, strong universal uniform reversibility or
universal irreversibility is checked using Theorems 12 and
13, respectively. If all of them “fail”, we conclude that “we
have not identified anything”, denoted in Table 1 as “?”.
To check weak reversibility and irreversibility, we use the
LAMA planner (Richter and Westphal 2010) and to check
strong reversibility, we use the PRP planner (both are built
on top of the Fast Downward planner (Helmert 2006)).

All experiments2 ran on a machine with an Intel® Core™
i7-7700HQ processor and 32 GB of DDR4 RAM operat-
ing at a frequency of 2400 MHz. The operating system was
Ubuntu 22.04.3 in WSL 2 (version 2.0.9.0) of Windows 10.

2publicly available at: https://gitlab.com/automated-planning/
reversibility/papers/icaps-24-med-et-al
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⊈ (¬S) ⊆
Dom. |A| I ? W FM S ? I

A. 5 0 0 4 1 3 1 0
BE. W. 7 0 0 6 2 4 0 1
BL. 190 0 185 5 0 5 0 0
B. F. 5 0 0 2 0 2 0 3
C. 3 0 0 0 0 0 0 3
D. 5 4 1 0 0 0 0 0
E. O. 27 0 0 21 0 21 0 6
EL. 41 3 30 8 0 8 0 0
E. BL. 85 35 45 0 0 0 5 0
FA. 51 25 26 0 0 0 0 0
F. R. 46 6 4 22 0 22 8 6
FO. 150 7 119 4 0 4 10 10
IS. 24 0 0 20 0 20 0 4
M. 179 0 3 158 0 158 0 18
R. 3 2 0 0 0 0 0 1
S. T. 211 3 78 124 0 124 6 0
T. 52 7 1 0 0 0 44 0
T. TRU. 24 0 10 10 0 10 0 4
TRI. T. 11 3 0 0 0 0 0 8
Z. 740 0 96 504 0 504 140 0

Table 1: Results of identification of action reversibility. The
table headers depict proven properties: number of actions in
the domain (|A|), weak (resp. strong) universal uniform re-
versibility (W) (resp. S), universal irreversibility (I), whether
vars(a) ⊆ vars(pre(a)) (⊆ or ⊈), and “?” indicates “no
class of action (ir)reversibility was identified”. The column
“FM” represents a proven weak universal uniform reversibil-
ity, where strong universal reverse policies were found for all
determinizations, but due to the conditions of Theorem 8, we
were unable to merge them. “¬S” stands for actions which
are proven not strongly universally uniformly reversible.

Results
Table 1 provides an overview of what actions have been
identified as (weakly or strongly) universally uniformly re-
versible, universally irreversible, or unidentified.

The results indicate that the weakly universally uniformly
reversible actions identified by Theorem 11 are likely also
identified as strongly universally uniformly reversible by
Theorem 12, since this happened in the vast majority of situ-
ations in our experiments. The only exceptions are three ac-
tions for which we have found strong universal reverse plans
for each determinization (see Theorem 12), but we were un-
able to merge them into a general policy since the reverse
plans had conflicting states.

On average, we were able to identify some class of
(ir)reversibility in approximately 68.30±33.64% of actions,
with the lowest relative amount of approx. 2.63% in the
BL. domain, while in the BE. W., B. F., C., E. O., IS., R.
and TRI. T. domains all the actions were identified in some
class. In domains such as FA., FO. or E. BL., most of the
actions did not satisfy the “⊆” condition and hence could
not be identified as weakly universally uniformly reversible
through our theoretical study.

Overall, on average, approx. 60.91 ± 40.13% of actions
satisfied the “⊆” condition on action’s preconditions. In an

“average” case, approx. 33.49% of actions were identified as
universally irreversible, 34.81% as weakly universally uni-
formly reversible, 32.39% as strongly universally uniformly
reversible, and 31.70% of actions remained undetermined
(columns labeled with the question mark in Table 1) out
of which 23.88% is proven not to be strongly universally
uniformly reversible (with respect to the total number of
actions). The relatively high number of undetermined ac-
tions is caused by the requirement for universality and uni-
formity. Although these requirements are practically desir-
able, actions might not always conform to them. Also, as we
have shown, the methods are not theoretically complete, and
hence some cases might not have been identified (as we ob-
served in the case of universal irreversibility in T. domain).

On average, the measured mean compilation time per ac-
tion in a domain is 7.037 ± 5.748 milliseconds for weak,
7.028 ± 5.772 milliseconds for strong, and 9.113 ± 5.715
milliseconds for irreversibility reformulation with minimal,
resp. maximum values, 0.994, 0.846, 3.031 milliseconds,
resp. 17.337, 17.743, 22.441 milliseconds. As for run-
times for solving the reformulations, we have measured
the time required to find a plan or policy, or to decide the
(un)solvability of an abstract SAS+ planning task for all
determinizations. The mean runtimes are 156.111±60.408,
47.712±18.495 and 186.015±81.118 milliseconds to deter-
mine weak universal uniform reversibility, strong universal
uniform reversibility and universal irreversibility according
to Theorems 11, 12 and 13, respectively. The minimum val-
ues are 118.091, 22.970, 120.439, and the maximum values
are 462.132, 87.549, and 711.832 milliseconds, respectively.
The results show the practical viability of our methods.

Conclusion
In this paper, we have conceptualized the notions of weak
and strong reversibility of non-deterministic actions in
FOND planning. These notions are inspired by weak and
strong plans in FOND planning (Cimatti et al. 2003) and
share the same meaning, i.e., weak reversibility refers to the
possibility of undoing all effects of an action, while strong
reversibility refers to the certainty of undoing all effects. We
specifically focused on universal uniform cases that refer to
the fact that effects of a non-deterministic action can always
be undone by the same reverse policy. We proposed methods
based on compiling the weak and strong universal uniform
reversibility problem into classical or FOND planning, re-
spectively, and we proposed a method for determining uni-
versal irreversibility via classical planning.

An experimental evaluation that we conducted on existing
FOND benchmarks has shown that we were able to identify
a type of reversibility for about 56.32% actions and the run-
ning time of any of the methods was in the lower hundreds of
milliseconds on average. These results demonstrated practi-
cal usefulness of our methods in spite of their narrow focus.

In the future, we plan to investigate computational com-
plexity of proposed classes of non-deterministic action re-
versibility. We also plan to focus on more general sub-
classes of non-deterministic action reversibility (e.g., strong
S-reversibility) and we would also like to generalize the re-
sults for lifted representation of FOND planning tasks.
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