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Abstract

The Bus Driver Scheduling Problem (BDSP) is a combin-
atorial optimisation problem with high practical relevance.
The aim is to assign bus drivers to predetermined routes
while minimising a specified objective function that con-
siders operating costs as well as employee satisfaction. Since
we must satisfy several rules from a collective agreement
and European regulations, the BDSP is highly constrained.
Hence, using exact methods to solve large real-life-based
instances is computationally too expensive, while heuristic
methods still have a considerable gap to the optimum. Our pa-
per presents a Large Neighbourhood Search (LNS) approach
to solve the BDSP. We propose several novel destroy operat-
ors and an approach using Column Generation to repair the
sub-problem. We analyse the impact of the destroy and repair
operators and investigate various possibilities to select them,
including adaptivity. The proposed approach improves all the
upper bounds for larger instances that exact methods cannot
solve, as well as for some mid-sized instances, and outper-
forms existing heuristic approaches for this problem on all
benchmark instances.

Introduction
The BDSP has evident practical relevance. Rules stem

from different sources like EU regulations, national laws,
or collective agreements, and can become very complicated.
For real-life application, it is very important to consider not
only paid working time, but also the overall well-being of
the employees.

The BDSP can be seen as a highly complex part
of the general transportation planning system, which in-
cludes Vehicle Scheduling, Crew Rostering, and Time-
tabling (Wren 2004). This problem is NP-hard, even when
only working time constraints are imposed (Fischetti, Mar-
tello, and Toth 1987). Different variants of BDSPs have been
studied from the early 60’s (Wren 2004; Wren and Rousseau
1995). Regarding exact methods, the BDSP is often mod-
elled as a Set Partitioning Problem and Column Genera-
tion is often used (Smith and Wren 1988; Lin and Hsu
2016; Portugal, Lourenço, and Paixão 2008; Kletzander,
Musliu, and Van Hentenryck 2021). However, due to the
need to solve very large real-world problems in a reasonable
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time, several heuristic methods have been studied for BDSP:
some examples are Greedy (Martello and Toth 1986), Tabu
Search (Shen and Kwan 2001; Kletzander, Mazzoli, and
Musliu 2022), Simulated Annealing (Kletzander and Musliu
2020), GRASP (De Leone, Festa, and Marchitto 2011),
CMSA (Rosati et al. 2023), and Genetic Algorithm (Li and
Kwan 2003; Lourenço, Paixão, and Portugal 2001).

The constraints of the BDSP depend on the country’s
legal regulation, and in our case, they follow the Austrian
collective agreement for employees in private omnibus pro-
viders (WKO 2019) using the rules for regional lines. In
particular, the collective agreement has stringent rules re-
quiring the drivers to take frequent breaks, with the even-
tual option of splitting them into multiple parts. This prob-
lem has been introduced recently in the literature, and to
the best of our knowledge, the recently introduced exact
approach based on Branch and Price (Kletzander, Musliu,
and Van Hentenryck 2021), and meta-heuristic and hyper-
heuristic based approaches (Kletzander and Musliu 2020;
Kletzander, Mazzoli, and Musliu 2022; Kletzander and
Musliu 2022; Rosati et al. 2023; Kletzander and Musliu
2023) represent the current state of the art for this prob-
lem. Although these approaches give very good results, ex-
act methods are computationally too expensive for large
real-life-based instances and heuristic methods cannot ob-
tain optimal solutions. Therefore, the study of new meth-
ods to tackle this problem is an interesting research ques-
tion with practical implications. In this paper, we present a
novel approach based on the Large Neighbourhood Search
framework, which has been successfully used for solving
other challenging real-life problems. However, applying this
method to our problem domain requires innovative ideas for
the destroy and repair operators, as well as a detailed invest-
igation into their impact and the choice of parameters. Our
proposed approach significantly improves upon existing res-
ults, particularly for larger instances that cannot be solved
with exact methods, and outperforms state-of-the-art heur-
istic approaches on all benchmark instances.

The main contributions of this paper are:

• Our paper presents a novel solution approach for the
BDSP, based on Large Neighbourhood Search (LNS).
The proposed method includes three innovative destroy
operators and leverages a column-generation-based tech-
nique as repair operator.
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• We explore different strategies for operator selection in-
cluding an adaptive approach.

• We analyse the impact of destroy operators on the al-
gorithm’s performance and compare the use of Column
Generation with full Branch and Price to repair the sub-
problems.

• We evaluate the performance of our LNS algorithm by
comparing it with other state-of-the-art methods using
existing benchmark instances from the literature. The
results demonstrate that our LNS algorithm improves the
upper bound for a significant number of instances, in-
cluding some mid-sized instances and all large instances,
and it outperforms all existing heuristic methods.

Problem Description
The investigated Bus Driver Scheduling Problem deals with
the assignment of bus drivers to vehicles that already have a
predetermined route for one day of operation. The problem
specification is taken from Kletzander and Musliu (2020).

Problem Input
The bus routes are given as a set L of individual bus legs,
each leg ℓ ∈ L is associated with a tour tour ℓ (correspond-
ing to a particular vehicle ID), a start time startℓ, an end
time end ℓ, a starting position startPosℓ, and an end position
endPosℓ. The actual driving time for the leg is denoted by
driveℓ. The given instances use driveℓ = end ℓ−startℓ. The
set L is totally ordered by start , using tour as tie-breaker.

ℓ tour ℓ startℓ end ℓ startPosℓ endPosℓ

1 1 400 495 0 1
2 1 510 555 1 2
3 1 560 502 2 1
4 1 508 540 1 0

Table 1: A Bus Tour Example

Table 1 shows a short example of one particular bus tour.
The vehicle starts at time 400 (6:40 AM) at position 0, does
multiple legs between positions 1 and 2 with waiting times
in between and finally returns to position 0. A valid tour
never has overlapping bus legs and consecutive bus legs sat-
isfy endPosi = startPos i+1. A tour change occurs when a
driver has an assignment of two consecutive bus legs i and
j with tour i ̸= tour j . A time distance matrix specifies, for
each pair of positions p and q, the time dp,q a driver takes to
get from p to q when not actively driving a bus. If no trans-
fer is possible, then dp,q = ∞. dp,q with p ̸= q is called the
passive ride time. dp,p represents the time it takes to switch
tour at the same position, but is not considered passive ride
time. Finally, each position p is associated with an amount of
working time for starting a shift (startWorkp) and ending a
shift (endWorkp) at that position. The instances in this pa-
per use startWorkp = 15 and endWorkp = 10 at the depot
(p = 0). These values are 0 for other positions. For the given
instances, the number of legs is proportional to the number
of bus tours with approximately nlegs ≈ 10 · ntours.

Solution
A solution S to the problem is an assignment S : L → E,
where E ⊆ N is the set of employees. The number of drivers
is not given, but one can imagine setting it as large as needed
to have a feasible solution.

Equivalently, it is useful to represent a solution by a set of
shifts, that is the work scheduled to be performed by a driver
in one day (Wren 2004). More precisely, the shift of driver
e ∈ E is the preimage Le = S−1({e}) with the total order
induced by L. Hence, the notion of consecutive bus legs in a
shift is well-defined.

Each shift of a driver e ∈ E must be feasible according to
the following criteria:
• No overlapping bus legs are assigned to e.
• Changing tour or position between consecutive legs
i, j ∈ Le requires

startj ≥ end i + dendPosi,startPosj .

• The shift Le respects all hard constraints regarding work
regulations as specified in the next section.

Work and Break Regulations

start work

ℓ1

rest

ℓ2

rest

passive ride

ℓ3

end work

Working time We

? ?

Driving time De

Total time Te

Figure 1: Example shift (Kletzander and Musliu 2020)

Valid shifts for drivers are constrained by work regula-
tions and require frequent breaks. First, different measures
of time related to an employee e containing the set of bus
legs Le need to be distinguished, as visualised in Figure 1:
• The total amount of driving time: De =

∑
i∈Le

drivei.
• The span from the start of work until the end of work Te

with a maximum of Tmax = 14h.
• The working time We = Te − unpaide, which does not

include certain unpaid breaks.

Driving Time Regulations. The maximum driving time is
restricted to Dmax = 9h. The whole distance startj − end i

between consecutive bus legs i and j qualifies as a driving
break, including passive ride time. Breaks from driving need
to be taken repeatedly after at most 4 h of driving time. In
case a break is split in several parts, all parts must occur be-
fore a driving block exceeds the 4 h limit. Once the required
amount of break time is reached, a new driving block starts.
The following options are possible:
• One break of at least 30 min;
• Two breaks of at least 20 min each;
• Three breaks of at least 15 min each.
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unpaid rest
2 h 2 h

3 h 3 h

paid rest paid rest

centred
30 min break

Figure 2: Rest break positioning (Kletzander and Musliu
2020)

Working Time Regulations. The working time We can-
not exceed 10 h and has a soft minimum of 6.5 h. If the em-
ployee is working for a shorter period of time, the difference
has to be paid anyway.

A minimum rest break is required according to the fol-
lowing options:
• We < 6 h: no rest break;
• 6 h ≤We ≤ 9 h: at least 30 min;
• We > 9 h: at least 45 min.

The rest break may be split into one part of at least 30 min
and one or more parts of at least 15 min. The first part has to
occur after at most 6 h of working time. Whether rest breaks
are paid or unpaid depends on break positions according to
Figure 2. Every period of at least 15 min of consecutive rest
break is unpaid as long as it does not intersect the first 2 or
the last 2 hours of the shift (a longer rest break might be
partially paid and partially unpaid). The maximum amount
of unpaid rest is limited:
• If 30 consecutive minutes of rest break are located such

that they do not intersect the first 3 h of the shift or the last
3 h of the shift, at most 1.5 h of unpaid rest are allowed;

• Otherwise, at most one hour of unpaid rest is allowed.

Shift split. If a rest break is at least 3 h long, it is instead
considered a shift split, which is unpaid and does not count
towards We. However, such splits are typically poorly re-
garded by the drivers. A shift split counts as a driving break,
but does not contribute to rest breaks.

Objective Function
We minimise the objective function combining cost and em-
ployee satisfaction defined in previous work (Kletzander and
Musliu 2020):

z =
∑
e∈E

(2W ′
e + Te + ridee + 30 chge + 180 splite) (1)

The objective function z represents a linear combination of
six criteria for each employee e. The actual paid working
time W ′

e = max{We, 390} is the main objective, and it
is combined with the total time Te to reduce long unpaid
periods for employees. The next sub-objectives reduce the
passive ride time ridee and the number of tours changes
chge, which is beneficial for both employees and efficient
schedules. The last objective aims to reduce the number of
split shifts splite as they are very unpopular. The weights
were determined by previous work (Kletzander and Musliu
2020) based on preferences agreed by different stakeholders
at Austrian bus companies and employee scheduling experts.

Algorithm 1 Adaptive Large Neighbourhood Search
Input: s0 (the initial solution), k0 (initial destruction size)
Output: sbsf

1: k ← k0
2: sbsf ← s0
3: Initialise the weights ρ
4: while time < tmax do
5: Select destroy operator d ∈ Ω using ρ
6: s′ ← CG (d(sbsf, k))
7: if z(s′) < z(sbsf) then
8: sbsf ← s′

9: end if
10: Update weights ρ and sub-problem size k
11: end while
12: return sbsf

Large Neighbourhood Search
The Large Neighbourhood Search (LNS) algorithm was in-
troduced by Paul Shaw in 1998 (Shaw 1998). The main idea
is to destroy part of a solution in order to obtain a sub-
problem that is easy to solve optimally or at least close to
optimality. Selecting the part to destroy is done by a set Ω
of destroy operators (or destroyers), the operator to apply
is chosen randomly proportional to a given weight vector
ρ. Solving the sub-problem is done by a repair operator,
often an exact method. We accept the new solution s′ if
z(s′) < z (sbsf), where z represents the objective function
value (1) and sbsf is the best-so-far solution. Algorithm 1
shows the pseudo-code of the algorithm.

Destroy Operators
Since our repair mechanism can only produce complete
shifts, the aim of the destroyers is to select a subset of em-
ployees E′ ⊆ E that is removed from the current solution.
The size of the sub-problem k = |E′| is given to the destroy
operator. We propose three distinct ways to select E′:

EU Employees uniform: Select k employees uniformly.
EW Employees weighted:

⌊
k
2

⌋
of the employees are selec-

ted using their cost as weight, the others uniformly. This
is motivated by the fact that employees with high cost
have a higher potential to benefit from reoptimisation.
The split is done since a combination of high-cost and
low-cost shifts can have a better potential to balance the
shifts in the sub-problem, e.g., by transferring some legs
from the high-cost shift to an underutilised shift.

TR Tour remover: A tour is uniformly selected and all em-
ployees that share at least one leg of this tour are re-
moved. This process is iterated until at least k employees
are removed. This operator is based on the idea of select-
ing employees that have something in common and there-
fore have a higher potential that useful recombinations of
their shifts are possible, e.g., optimising when and where
a bus is handed over from one driver to the other. Note
that this operator might select more than k employees
because it removes all the employees who share a tour.
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However, tours are usually not shared by too many em-
ployees since this incurs extra cost, so |E′| does typically
not exceed k by much.

Repair Operators
Once a set of removed employees E′ is selected, the repair
mechanism needs to solve the sub-instance that is created
by using all legs ℓ assigned to any employee e ∈ E′ to-
gether with the common data for the whole instance. This
sub-instance represents a complete instance of BDSP and
can therefore be solved with any solution method of choice.

Since the Branch and Price approach (Kletzander, Musliu,
and Van Hentenryck 2021) is the most powerful for small
instances (it can provide an optimal solution for instances
with 10 tours within seconds), it is the best fit for solving
these sub-instances.

Branch and Price (Barnhart et al. 1998) works by splitting
the problem into a master problem and a sub-problem. The
master problem is set partitioning (Balas and Padberg 1976)
which assumes that a set of shifts is already given including
costs for each shift and tries to find the minimum cost subset
of these shifts that covers each bus leg exactly once.

minimise
∑
s∈S

costs · xs (2)

subject to
∑
s∈S

coversℓ · xs = 1 ∀ℓ (3)

xs ∈ {0, 1} ∀s (4)

Here xs is the variable for the selection of shift s. The
objective (2) minimises the total cost, Equation (3) states
that each bus leg needs to be covered exactly once (using
coversℓ ∈ {0, 1} to indicate whether shift s covers leg ℓ),
and Equation (4) states the integrality constraint.

The sub-problem is a Resource Constrained Shortest Path
Problem (RCSPP) (Irnich and Desaulniers 2005) where each
leg is represented by a node in an acyclic graph, and each
possible shift corresponds to a path in this graph from a
source node to a target node. Costs and constraints are rep-
resented by resources that are tracked for each path through
the graph and need to adhere to certain limits. Duals from
solving the relaxed master problem (no integrality con-
straint) are added for each node, and each resource-feasible
path where the cost of the edges and nodes on the path minus
the sum of all duals along the path is negative (negative re-
duced cost) have the potential to improve the master prob-
lem solution. The complex rules for each shift are modelled
in this sub-problem, making it very challenging to solve.
Therefore, several optimisations were necessary to solve it
efficiently (Kletzander, Musliu, and Van Hentenryck 2021).

Master problem and sub-problem are repeatedly solved
until no more path with negative reduced cost can be found.
This part of the process is called Column Generation and
results in the optimal solution for the relaxed master prob-
lem, however this result is usually fractional. Therefore,
branching is done and Column Generation is repeated on
a modified problem where some connections from the graph

are removed. This branching process is repeated until all
branches are closed or until timeout.

However, previous work (Kletzander, Musliu, and
Van Hentenryck 2021) already shows that, for instances up
to 60 tours, the results are very close to the optimum when
only solving Column Generation on the root node and then
solving the master problem with integrality constraint on the
set of columns obtained during Column Generation. These
solutions are often much faster, but achieve a gap of around
1% while the following branching process only closes this
remaining gap very slowly.

Therefore, we propose to drop the aim of optimally solv-
ing the sub-instance with Branch and Price, and instead only
use Column Generation on the root node to get very good
solutions to the sub-instance very fast. In the evaluation,
we compare using Column Generation (CG) with using full
Branch and Price (BP).

Once the repair mechanism returns a solution consisting
of employees E∗ that contain all bus legs from E′, the new
solution for the full problem is provided by (E\E′) ∪ E∗.

Sub-problem Size
An important parameter for large neighbourhood search is
the size of the sub-problem. However, the appropriate size
depends on the destroy and repair operators. In the case of
our system, the destroy operators are easy and fast to ap-
ply, but the complexity of Branch and Price increases rapidly
with the size. Even when just applying Column Generation,
the size of the RCSPP in the sub-problem still leads to con-
siderable increases in runtime.

Therefore, based on preliminary experiments, the smal-
lest sub-problem size in use is k = 5. This size can still be
solved in a few seconds, so it is fast enough, but it also leads
to a high number of improvements, so it is large enough to
allow meaningful changes of the solution. In the process of
the search this size can be increased if too many iterations
without improvement occur. This indicates that a larger size
might be needed to escape local optima.

We use a maximum size of kmax = 20 since runtime grows
rapidly and for larger size too much time would be spent on
each individual sub-problem. When running the algorithm,
the size starts with an initial value of k0, and is increased
by 1 until reaching kmax = 20 whenever the previous im-
provement was more than nmax iterations ago. As soon as an
improvement is found, k is set back to the initial value k0.

Adaptivity
Adaptive Large Neighbourhood Search (ALNS) is an exten-
sion of LNS, where the weights ρ for selecting the operators
are adapted dynamically based on their performance (Ropke
and Pisinger 2006).

Our method takes into account the score and the time re-
quired by destroy operator i. At first, every component of the
weight vector ρ is set to 1

|Ω| . The destroy operator is selec-
ted in a random way with weights ρ using the roulette wheel
principle:

P (i-th operator is selected) =
ρi∑|Ω|
j=1 ρj

(5)
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The selected destroy operator is then applied to the current
solution s, which results in a sub-problem that is passed to
the repair operator r. We update the weights considering the
number of successes and the total time of its selections. A
similar approach was used in a related crew scheduling do-
main (Carmo Martins and Silva 2019). At iteration n, we
update the weight ρni of the i-th destroy operator using the
following equation:

ρn+1
i = λρni + (1− λ)

∑n
j=0 s

j
i∑n

j=0 t
j
i

(6)

where sji = 1 if the i-th operator has improved the best-
known-solution at iteration j, else 0. The denominator is a
sum of runtimes, so tji represents the time the i-th operator
took for the entire process (destroying + repairing) at iter-
ation j. If operator i was not selected at iteration j, then
sji = tji = 0. The real parameter λ ∈ [0, 1] controls the
sensitivity of the weights. A value of λ close to 0 implies
that the operator performance during the search has a large
influence while a value of 1 keeps the initial weights static.

As long as the denominator is 0, the value of the fraction
is set to 0. In this case, ρn+1

i = λρni .

Evaluation
All executions were performed on a cluster with 11 nodes
using Ubuntu 22.04.2 LTS. Each node has two Intel Xeon
E5-2650 v4 (max 2.20 GHz, 12 physical cores, no hyper-
threading). For each run, we set a memory limit of 4.267 GB
and use one thread. The implementation is in Python, ex-
ecuted with PyPy 7.3.11. BP is implemented in Java, using
OpenJDK 20, and CPLEX 22.11 for the master problem.

Since we want to have a metric quality that does not scale
with the dimension, we evaluate the quality of a solution
using the relative gap (GAP) compared to the best-known
solution in the literature:

GAP(x) =
z(x)− z

(
xbks

)
z
(
xbks

) · 100, (7)

where x is the solution and xbks is the best-known solution.
For instances up to size 90, BP (Kletzander, Musliu, and
Van Hentenryck 2021) is the best algorithm. For larger in-
stances, we used the values from CMSA (Rosati et al. 2023).
A negative value of GAP(x) means a new best-known solu-
tion has been found. We use the GAP to have a metric quality
that does not scale with the instance dimension.

All experiments are performed with 1 h of wallclock time.
Our method is non-deterministic. Therefore, we execute 10
runs for each instance. Random seeds for different runs are
recorded for reproducibility.

Instances and Initial Solution
We use the publicly available sets of benchmark instances
provided by previous work (Kletzander and Musliu 2020;
Kletzander, Mazzoli, and Musliu 2022)1. There are 65 in-
stances in 13 sizes, ranging from around 10 to around 250

1https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
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CMSA
BP

Figure 3: GAP for different methods

tours. Note that the last 3 sizes have much larger size
changes than the previous sizes.

The initial solutions were generated using a greedy con-
struction method (Kletzander and Musliu 2020), assigning
bus legs to the employee where the lowest additional cost is
incurred, or to a new employee if this would incur an extra
cost of at most 500 compared to the best existing employee
assignment.

Results
We first present the final results, obtained with the best con-
figurations using k0 = 10, nmax = 50, the repair operator
CG, and only the destroyer TR for LNS, or the parameter
λ = 2

3 and all destroyers for ALNS. Details about the oper-
ator selection are then presented in the next subsection.

Table 2 shows the objective function values for LNS,
ALNS, CMSA (Rosati et al. 2023) (same time budget) and
BP (Kletzander, Musliu, and Van Hentenryck 2021). For
each size there are 5 instances, each value in the table is
the average of the 5 results per size due to space limitations.
The full table is available as supplementary material.

BP is the state-of-the-art method for smaller instances.
It optimally solves the first 10 instances (∗), except for in-
stance 7. For the smallest size it only takes few seconds.
It has a known optimality gap of less than 1 % for all in-
stances up to size 60 and provides the best-known solutions
up to size 90 and 2 instances of size 100. However, it uses
many resources. Results starting from size 60 use extra time
on four threads after a full hour of BP to obtain an integer
solution, up to an additional hour (†), while our approach is
very close to these results while always keeping to 1 h and
a single thread. Up to size 100, the average of LNS outper-
forms previous BP results on 5 instances, the minimum on
8 instances. For instances larger than size 100, BP fails with
a memory error even when given 8 GB of RAM, and with
larger memory allowance, it still produces solutions worse
than the results from the construction heuristic, since both
the subproblem and the integer master problem are just be-
coming too large to solve in reasonable time.

The previous state-of-the-art incomplete method, CMSA,
was able to outperform earlier meta-heuristics like Simu-
lated Annealing and Tabu search. In comparison, we can
now outperform CMSA on all 65 instances by 0.26 to
3.62 %, especially by at least 2.18 % on the instances of
size 100 and above, showing the strength of our method.
Overall, limited to a timeout of 1 hour on a single thread,
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LNS ALNS BP CMSA

size mean min std mean min std value min mean std

10 14 709.2 14 709.2 0.0 14 709.2 14 709.2 0.0 14 709.2* 14 867.4 14 879.7 14.2
20 30 322.1 30 297.2 23.3 30 298.8 30 294.6 7.2 30 294.8* 30 695.8 30 745.9 41.6
30 49 974.5 49 874.2 77.9 49 956.6 49 888.2 80.4 49 846.4 50 731.4 50 817.2 56.3
40 67 183.8 67 030.2 91.5 67 207.5 67 069.4 118.8 67 000.4 68 394.8 68 499.9 68.7
50 84 622.9 84 459.0 122.1 84 697.4 84 462.0 193.6 84 341.0 86 219.0 86 389.2 104.0
60 100 362.1 100 101.6 160.3 100 492.7 100 226.2 231.0 99 727.0† 102 596.2 102 822.9 160.6
70 118 790.2 118 592.0 156.0 119 002.8 118 737.0 237.0 118 524.2† 120 935.6 121 141.9 112.0
80 135 349.3 134 966.4 273.8 135 629.8 135 091.2 413.7 134 513.8† 138 406.8 138 760.3 281.1
90 151 032.2 150 694.4 217.6 151 436.5 150 991.0 359.3 150 370.8† 154 692.6 155 078.3 309.3
100 167 081.1 166 720.2 271.6 167 538.3 166 931.0 495.3 172 582.2† 171 159.4 171 786.7 323.6
150 256 218.3 255 501.6 400.7 257 283.8 256 402.0 945.9 263 079.2 263 387.7 216.9
200 339 313.7 338 459.2 545.5 340 824.4 339 526.2 1150.1 348 608.6 349 017.0 221.5
250 428 963.7 428 170.6 554.9 431 238.5 429 657.8 1239.0 438 811.4 439 234.5 297.4

Table 2: LNS and ALNS with previous results from BP and CMSA. For each size there are 5 instances. For LNS, ALNS, and
CMSA, we present the objective function values and standard deviation of ten runs. BP is deterministic.

1 2 3 4 5 6

LNS
ALNS
CMSA

TS
HC
SA

Figure 4: Critical difference plot for all the instances.
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Figure 5: GAP for different repair operators

we outperform all other methods on size 60 and above, and
provide 23 new best-known solutions. Note that this is a real-
world domain where the schedules of workers are one of the
main cost components, and even small reductions of work-
ing hours result in significant cost savings. A large part of the
objective is fixed (all bus legs need to be covered), leading
to small improvements measured in percent, which translate
to important cost saving without any loss in service quality.

Figure 3 shows the average GAP for LNS, ALNS, BP,
and CMSA. Points below the x-axis (i.e., instances with a
negative GAP) show new best solutions.

Statistical Significance. We compared CMSA and LNS
across all 65 instances using the Wilcoxon signed-rank
test (Calvo and Santafé 2016). We used the scipy mod-
ule (version 1.11.1) of Python. With a significance level of
α = 0.05, the test confirms that the p-value is smaller than
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Figure 6: Runtime of different repair operators

2.4 × 10−16, showing a significant difference between the
two algorithms.

Moreover, we performed statistical tests using the R script
SCMAMP (Calvo 2021), also including Simulated Anneal-
ing and Hill Climbing (Kletzander and Musliu 2020), and
Tabu Search (Kletzander, Mazzoli, and Musliu 2022). As
described by Calvo (Calvo and Santafé 2016), we first ap-
plied the Friedman test to detect whether all algorithms per-
form the same, which is rejected with a p-value smaller than
2.4× 10−16. Then, we compared multiple algorithms using
the Nemenyi post-hoc test (Calvo and Santafé 2016).

We graphically show the results on all instances with a
Critical Difference (CD) plot in Figure 4. Each considered
algorithm is placed on the horizontal axis according to its
average ranking for the instances (lower is better). The per-
formances of those algorithm variants below the critical dif-
ference threshold (0.94) are considered statistically equival-
ent. In the CD plot, this is remarked by a horizontal bold bar
that joins different algorithms.

The results show that LNS performs better than ALNS,
but not with significant difference, while both versions signi-
ficantly outperform CMSA, which in turn significantly out-
performs the previous meta-heuristics.
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Figure 7: GAP for different values of k0
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Figure 8: GAP for different values of nmax

Evaluation of Algorithmic Components
To select our final parameters, we thoroughly analysed the
impact of different algorithmic components on a subset of
instances from the benchmark set. Since all algorithms show
similar performance on instances of the same size, we chose
one instance from each size, skipping the smallest size that
can be solved to optimality with BP in seconds. Therefore,
we used 12 instances in this part of the evaluation; each res-
ult is the average of 5 runs. It includes the following com-
ponents:

1. The repair mechanism: BP or CG

2. The initial destruction size k0

3. Max. number of iterations without improvement nmax

4. The destroyer selection

5. The role of adaptivity

Repair Operator Selection. For fixed k0 = 10,
nmax = 50, and equal selection of all destroyers, we com-
pared BP and CG. Initial experiments showed that the per-
formance of destroy and repair is rather independent from
each other, which enables separate evaluation. Each repair
operation has a maximum budget of 5min, but is expected
to usually terminate much faster.

Results are shown in Figure 5. The performance is very
similar for the smaller instances, but CG is clearly the better
choice for larger instances, showing that the extra time used
for repairing in BP is not justified. Figure 6 shows that BP
usually takes longer than CG, but while the average time in
both cases is under 10 s, BP often reaches the time budget
of 5min, while CG is always below 2min, showing a much
better worst case behaviour.
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Figure 9: Number of iterations for different values of nmax
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Figure 10: GAP for different subsets of destroyers

Initial Destruction Size. There are several options regard-
ing the destroyers, first we investigated the initial destruction
size k0, fixing all other parameters. The size remained con-
stant, CG and all destroyers are used, and ρi = 1/3 without
adaptivity.

We tested sizes k0 ∈ {5, 10, 15, 20}. Figure 7 shows the
results. While k0 = 20 performs slightly better for smal-
ler instances, it is outperformed on larger instances. Overall,
k0 = 10 seems best for the large instances which are the
main focus of this work, therefore we fix k0 = 10.

Number of Iterations Without Improvement. Next, we
investigated increasing the size k every nmax iterations
without improvement by 1, until reaching the upper bound
kmax = 20 or finding an improvement.

We tested nmax ∈ {5, 10, 15, 20, 30, 50}, but found no sig-
nificant difference among them, as shown in Figure 8. We
decided to set nmax = 50, since it still allows to increase the
size when needed, but does not increase it very often. We
tried starting with different values for k0, but found similar
results, the initial size is more important than the step.

Figure 9 shows the impact of nmax on the number of iter-
ations (CG calls). Larger values of nmax imply less frequent
size changes, so more iterations. Of note is that for the lar-
ger instances, the size barely changes, as improvements are
frequently found even with the initial size until timeout.

Destroyer Selection. In order to understand the impact of
the destroy operators, we tested all the 7 possible combin-
ations of them. Figure 10 shows that TR has the biggest
impact on the performance. Is shows the best results on its
own, with very similar results using in in any other combin-
ation, while all combinations without TR show significantly
worse performance, with higher divergence among larger in-
stances.
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Parameter Domain Value Description

k0 {5, 10, 15, 20} 10 Initial Destruction Size
nmax {5, 10, 15, 30, 50} 50 Max number of iteration without improvements
d {EU,TR,EW,EU+ TR,EW+ TR,TR+ EU+ EW} TR Destroy operator(s)
λ

{
1
3 ,

1
2 ,

2
3

}
2
3 Decay parameter

Table 3: Parameters, their domains, and the chosen values.
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Figure 11: Success rate for different subsets of destroyers
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Figure 12: Box plot for different subsets of destroyers

The advantage of selecting employees that share tours is
that the sub-problems are more likely to allow meaningful
optimisations. This hypothesis is further backed by the suc-
cess rate (percentage of iterations where the current solu-
tion could be improved) in Figure 11, which shows that
in general for larger instances more improvements in sub-
problems can be found, but especially using just TR has a
higher success rate than any other set of destroyers. Addi-
tionally, Figure 12 shows that the Tour Remover operator
is essential to obtain high-quality solutions (the EU and EW
destroy operators alone are not enough).

While only using TR is the best choice, we further invest-
igated several non-uniform weight distributions with high
weights for TR. Denoting the weights as (ρEU, ρEW, ρTR),
we conducted experiments with (5, 5, 90), (10, 10, 80), and
(25, 25, 50). The first two where very similar to TR only,
while (25, 25, 50) started to get slightly worse.

Adaptivity. To investigate the impact of adaptivity, we
conducted experiments by changing the parameter λ in (6),
considering all three destroy operators. We tested three dif-
ferent values for λ: 1

3 ,
1
2 , and 2

3 .
Figure 13 suggests that the adaptivity does not improve

the average GAP with respect to the solely TR, and different
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Figure 13: GAP for adaptive and static LNS

values of λ do not show significant difference.

Conclusions
This paper studied a complex version of the Bus Driver
Scheduling Problem and proposed a new hybrid approach
based on Large Neighbourhood Search to solve it. The res-
ults show that our algorithm outperforms all previous meta-
heuristics on the problem, and significantly improves all
best-known solutions for larger instances as well as some
mid-sized instances. Although exact Branch and Price re-
mains the best method for smaller instances, our results
come very close on mid-sized instances while using fewer
computational resources, making it the best choice for a
wide range of realistic instance sizes. Note that the use of
CG within LNS is very limited in literature, but despite the
challenging subproblem very successful for this domain.

We further compared and evaluated several algorithmic
components, including different repair options, several para-
meters for the destroy operator selection, and the role of ad-
aptivity. Results show that Column Generation is more ef-
fective as a repair operator than full BP, and in particular
the bus tour structure and the initial destruction size play a
crucial role during the destruction phase.

Note that while this paper only addresses one set of rules,
the methodology of using LNS with Column Generation as
a repair operator is applicable to different kinds of rule sets
or even different problems with a similar structure where in-
dividual shifts need to cover a set of tasks. Adaptations to
different problems can be done by changing only the sub-
problem (RCSPP) used in Column Generation. Adapting a
different set of rules to fit into the framework of the RCSPP
can be challenging, but all other components are independ-
ent of the specific rules. This will be interesting to invest-
igate in future work. Moreover, since this method provides
very good results, applying LNS with Column Generation to
other complex problems will be considered for future work.
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