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Abstract
We describe a method for explaining the differences between
the quality of plans produced for similar planning problems.
The method exploits a process of abstracting away details of
the planning problems until the difference in solution quality
they support has been minimised. We give a general definition
of a valid abstraction of a planning problem. We then give the
details of the implementation of a number of useful abstrac-
tions. Finally, we present a breadth-first search algorithm for
finding suitable abstractions for explanations; and detail the
results of an evaluation of the approach.

1 Introduction
In mixed-initiative planning settings, human and automated
planners interact and collaborate to produce satisfactory
plans. An automated planner is used to produce plans
quickly and a human can then add constraints and prefer-
ences to the model until they are satisfied with the resulting
plan produced by the automated planner. After each addi-
tion of a constraint the newly generated plan can be of better
or worse quality compared with the version generated with-
out the constraint, or the problem could even become un-
solvable. In each of these cases it would be useful to have
accompanying explanations for why additional constraints
lead to a difference in plan quality.

The setting in which these types of explanations are useful
does not have to be a mixed-initiative setting. We assume
that the setting is as follows: there is a planning model, Π,
a solution plan, π, for Π, a constraint, c, which π does not
satisfy, and a solution plan, π′, for Π + c, where there is a
difference in the quality of π and π′. A special case of this is
where π′ does not exist, that is the model Π+c is unsolvable.
As in Krarup et al. (2021), we refer to this process as model
restriction. We restrict planning models such that they admit
only solutions that obey a certain constraint. The problem
is then to explain why there is a difference in the quality of
π and π′. We assume that an explanation of the form “the
difference is because of the constraint c” is not helpful.

While there is longstanding interest in explanation in AI,
most work on explanation of plans (XAIP) is relatively re-
cent. Fox et al. (2017) highlight contrastive ‘why’ ques-
tions as being important for plan explanation, and describe
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different types of these questions and possible responses.
Chakraborti et al. (2017) adopt the position that explanation
is a model reconciliation problem – namely, that the need for
explanation is due to differences between the agent’s and the
human’s model of the planning problem. Eifler et al. (2020)
approach answering contrastive questions by explaining the
reason that a contrast case B was not in, or a feature of, the
plan by using the properties that would hold if B were the
case. Kasenberg et al. (2019) focus on justifying an agent’s
behaviour in deterministic Markov decision problems.

We are not aware of any work that focusses on explain-
ing the difference in the quality of plans. However, there is
work on explaining why planning models are unsolvable.
Gobeldecker et al. (2010) focus on finding changes to the
initial state that would make the planning problem solvable,
and provide an algorithm to produce these excuses in a rea-
sonable time. Sreedharan et al. (2019) use abstractions to
explain the unsolvability of planning problems, as opposed
to explaining the difference in quality of problems. They do
this by considering relaxations of the planning problem until
a solution can be found, then looking for landmarks of this
relaxed problem that cannot be satisfied in less relaxed ver-
sions of the problem. They assume that the existence of cer-
tain predicates cause a planning problem to be unsolvable.
Thus the only abstraction they use is the removal of pred-
icates from the model. We recognise a larger set of useful
abstractions for AI planning systems, especially those that
have languages to specify temporal characteristics of plans.

An explanation for why two similar problems produce dif-
ferent quality plans should focus on the essential character-
istics of the problems. For example, in a delivery problem,
a user might ask why a particular truck was used rather than
an alternative. The answer might be that the selected truck
is better because of a weight limit on a bridge, or refrigera-
tion properties of the truck. Inspired by Lipton’s difference
condition (Lipton 1990) we want to find and explain more
accurately the causal differences between the original and
hypothetical plans. Finding this kind of explanation requires
abstracting away unimportant details like drivers, cargo, and
perhaps route details. We show how these explanations can
be generated by abstracting features of the planning problem
until the two plans become equi-quality – that is, of equal or
similar quality. We can then explain why one plan is better or
worse than the other in terms of the abstracted features that
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impacted the difference in plan quality between the two.
The primary contribution of this paper is to define a

framework for the use of abstractions to explain plan qual-
ity differences. In this paper, we first define a valid abstrac-
tion for a planning model, these can be used to extend this
work for new abstractions. We then introduce a running ex-
ample we will use to motivate some useful abstractions. We
formalise the implementation of a number of useful abstrac-
tions for explaining quality differences of temporal plans.
We show how these abstractions fit our definition of an ab-
straction. We detail a proof-of-concept breadth-first search
algorithm for finding suitable abstractions for explanation,
and present the results of an experiment evaluating it.

2 Planning Formalism
Definition 1. A planning model is a pair Π = ⟨D,Prob⟩.
The domain D = ⟨Ps, V s,As, arity⟩ is a tuple where Ps is
a finite set of predicate symbols, V s is a finite set of function
symbols, As is a set of action schemas, called operators,
and arity is a function mapping all of these symbols to their
respective arity. The problem Prob = ⟨Os, I,G,M, T ⟩ is a
tuple where Os is the set of objects in the planning instance,
I is the initial state, G is the goal condition, M is a plan-
metric function from plans to real values (plan costs) and T
is a set of timed initial literals.

A set of atomic propositions P is formed by applying the
predicate symbols Ps to the objects Os. One proposition p
is formed by applying an ordered set of objects o ⊆ Os to
one predicate ps, respecting its arity. This process is called
“grounding” and is denoted with ground(ps, χ) = p, where
χ ⊆ Os is an ordered set of objects. The inverse of this
function ground−1(p) = ⟨ps, χ⟩ returns the predicate sym-
bol and objects. Similarly the set of ground functions V are
formed by applying the function symbols V s to Os.

A state s consists of a time t ∈ R, a logical part sl ⊆
P , and a numeric part sv that describes the values for the
ground functions at that state. The initial state I is the state
at time t = 0. We use the function S(Π) to denote the state
space for a model Π, i.e. all states reachable from the initial
state in Π. The goal G = g1, ..., gn is a set of propositions,
including a subset of the logical state variables, P , and a set
of constraints over numeric state variables in V , that must
hold at the end of an action sequence for a plan to be valid.

Similarly to propositions and functions, the set of ground
actions A is generated by the substitution of objects for op-
erator parameters. Each ground action is defined as follows:

Definition 2. A ground action a ∈ A has a duration
Dur(a) = ⟨lb, ub⟩ which constrains the length of time
that must pass between the start and end of a; a start
(end) condition Pre⊢(a) (Pre⊣(a)) which must hold in the
state that a starts (ends); an invariant condition Pre↔(a)
which must hold throughout the entire execution of a; add
effects Eff (a)+⊢ ,Eff (a)+⊣ ⊆ P that are made true at
the start and end of the action respectively; delete effects
Eff (a)−⊢ ,Eff (a)−⊣ ⊆ P that are made false at the start and
end of the action respectively; and numeric effects Eff (a)n⊢,
Eff (a)n↔, Eff (a)n⊣ that act upon some v ∈ V , at the start

of an action, continuously over the entire execution of an
action, and the end of an action.

For ease of notation we allow access to multiple types of
effects or preconditions through the ground action functions
at once. For example for some ground action a, Eff + de-
notes all add effects of a, Pre⊢⊣(a) denotes all start and
end preconditions of a but not invariant conditions, Eff (a)
denotes all effects of a including numeric effects, etc.

A plan is a sequence of grounded actions, π =
⟨a1, a2, . . . , an⟩ each with a respective time denoted by
Dispatch(ai) and duration Dur(ai). A valid plan is a plan
that transforms the initial state from I into a state s such
that s |= G; such that the start and end preconditions of all
actions are satisifed at the time they start/end; all invariant
conditions hold throughout the durations of each action, and
all actions execute for their respective durations.

The plan-metric function is, by default, the makespan of
the plan. Therefore usually, and throughout this paper, the
higher the metric of the plan the worse the quality of the
plan. More generally, the metric assesses plan quality by tak-
ing into account both the extent to which a plan respects user
preferences and also the costs associated with the choices of
action or combinations of actions within a plan. It is often
the case that plans fail to meet expectations because of a
mismatch in the way that plans are evaluated.

Timed initial literals (TILs) were introduced as part of
PDDL2.2 (Hoffmann and Edelkamp 2005), allowing an ini-
tial state to include simple effects triggered at specified
times, regardless of the plan. Each timed initial literal t ∈ T
is a tuple t = ⟨ttime, tv⟩ where tv is a proposition which
becomes true or false, or a numeric effect which acts upon
some n ∈ V at the time ttime.

3 Food Delivery Problem

Figure 1: A diagram of the food delivery domain.

As a reference example, we use a simplified version of
a food delivery domain. There are two trucks: truck T1 is
a normal truck, whereas truck T2 is refrigerated. There is
only one driver. The goal of the problem is to deliver the
meat and cereals packages to their respective locations. The
meat must be delivered to loc b and the cereals to loc c. Both
trucks, the meat, and the cereals are initially at loc a. It takes
20 minutes for a truck to move between the loc a and loc b,
15 minutes from loc b and loc c, and 10 minutes between
loc a and loc c. The meat will spoil after 22 minutes, unless
it is refrigerated. The cereals do not spoil.
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For simplicity, we define two possible routes. Route 1 is
any plan in which we load the meat and cereals packages
into any truck, drive from loc a to loc b and deliver the meat,
and finally drive from loc b to loc c and deliver the cere-
als. Route 1 takes 35 minutes. Route 2 is any plan in which
we load the meat and cereals packages into any truck, drive
from loc a to loc c and deliver the cereals, and finally drive
from loc c to loc b and deliver the meat. Route 2 takes 25
minutes. Note, not every route is necessarily possible with
every truck. The optimal plan is to perform Route 2 with the
refrigerated truck T2.

4 Abstraction
Using model restriction as described in Section 1, we want
to explain the difference in the quality of plans π and π′

based on the addition of a constraint c to a planning model
Π, yielding Π+c. An explanation of the discrepancy in plan
quality should consist of elements of the planning problem
(apart from c) that cause the discrepancy. An abstraction of a
planning model is a relaxation of the problem that the plan-
ning model describes. A planning model Π′ is an abstraction
of Π if every solution of Π is a solution of Π′. Therefore, if
the plans π and π′ are not of the same quality; and the plans,
πα and π′

α, for the same problems abstracted with α are the
same quality, then we can say that what was abstracted (re-
laxed) in the problem is a cause for the difference in the
quality of the plans that can be produced for Π and Π + c
as the abstraction is what extended the plan space to include
the equi-cost plans. Therefore, to find these causes we ab-
stract away elements of both of the planning models, Π and
Π+ c, until M(π) = M(π′).

There is a large body of work on abstraction in planning.
The majority of this work focuses on the use of abstrac-
tions for computing heuristics. A planning problem can be
abstracted, making it easier to solve, this abstracted solu-
tion can then be used as an estimate for the actual solu-
tion. One abstraction for computing a heuristic is the relaxed
planning graph heuristic (Hoffmann and Nebel 2001), where
all delete effects are removed from the planning model to
make the problem easier to solve. This is then used to gen-
erate a relaxed plan that provides an estimate of distance
to a goal state in the original problem. Another example of
an abstraction for computing heuristics is merge-and-shrink
heuristics (Helmert et al. 2014), where a planning model is
separated into transition graphs on each proposition. These
transition graphs can then be merged and shrunk until a good
estimate for the total transition system implied by the origi-
nal planning model is found that can then be used for gener-
ating a heuristic. Helmert et al. (2007) define what a general
abstraction is, for providing flexible abstraction heuristics, in
the context of AI planning based on a labeled state transition
system that maps to the semantics of a planning system.

In this section we propose a more general approach to ab-
straction, where state merging is one realisation, based on
the idea that abstraction is a relaxation. We define the space
of legal abstractions using a labeled state transition system
(LST), which represents the state space corresponding to the
grounding of a planning problem, and a simple temporal
network (STN), which represents the temporal constraints

and orderings on possible solutions of a planning problem.
We rigorously define what a valid abstraction of a planning
model is as we later give the implementations of model surg-
eries that abstract planning models. We use the definitions in
this section to prove that these model surgeries are valid ab-
stractions. Abstractions that are not valid could make plan-
ning problems harder to solve, and so would not be useful
for providing explanations.

The states of a planning model and transitions between
them via applying actions can be modeled with an LST.
Definition 3. A labelled state transition system (LST), τ , is
a triplet ⟨S,L, T ⟩, where S is a set of states, L is a set of
labels and T ⊆ S × L × S is a set of transitions. A path,
π, in τ is a pair in S × L∗, consisting of a state and a finite
sequence of labels l0, ..., ln−1, such that there is a sequence
of states, s0, ..., sn such that s=s0 and, for each i=0, ..., n-1,
(si, li, si+1) ∈ T .

Given an LST τ we define an abstraction, τ ′, as follows:
Definition 4. An LST, τ ′ = (S′, L, T ′), is an abstraction of
LST, τ = (S,L, T ), with respect to initial state, I ∈ S, and
goal set, G ⊆ S, if there is a mapping, f : S → S′, such
that for every transition, ⟨x, l, y⟩ ∈ T , from a reachable and
relevant state, x ∈ S, there is ⟨f(x), l, f(y)⟩ ∈ T ′.

An LST can be derived from a planning model:
Definition 5. Let Π be a planning model; the LST derived
from Π is τ = ⟨S,L, T ⟩. S is the set of all valuations of
valid groundings of Ps and V s. L is the set of labels cor-
responding to the ground actions A. T = {(s, o, s′)|s ∈
S, the ground action o is applicable in s, s′ is the state after
application of o to s}. We define the function σ(Π) = τ to
denote the derivation of an LST from a planning model Π.

In planning problems, only states that can be traversed
to from the initial state are reachable and only states that
support paths to a goal state are relevant to the solution:
Definition 6. Given an LST, τ = (S,L, T ), a problem is
a pair, (I,G), such that I ∈ S and G ⊆ S, and these are
referred to as the initial state and goal set of the problem.
Definition 7. Given an LST, τ = (S,L, T ), and a problem,
(I,G), a state, s ∈ S, is reachable if there is a path from I
to s in τ . A state, s ∈ S, is relevant if there is a path in from
s to some state g ∈ G in τ .

Instead of thinking about abstractions of boundless LSTs,
for planning problems we can think of abstractions of LSTs
with relevant problems. Definition 4 can be generalised to
define an abstraction that operates over all problems in some
family of problems, P , for a given LST.
Definition 8. An LST, τ ′ = (S′, L, T ′), is a general abstrac-
tion of LST, τ = (S,L, T ), with respect to a set of problems,
P , if τ ′ is an abstraction of τ for every problem, (I,G) ∈ P .

The next set of corollaries trivially follow from the set of
definitions above. These are useful for our presented proofs
in Section 5 and for proving some properties about abstrac-
tions that are generally useful, and expected from the defini-
tion of an abstraction.

Corollary 1 is very informative for abstractions for plan-
ning problems. Many relaxations of a planning problem will
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add transitions to the LST of the planning problem. Through
this corollary, we can know that these suite of relaxations are
all valid abstractions. Note that not all relaxations to a plan-
ning problem are trivially valid abstractions due to this ab-
straction. For example, if we remove negative effects from a
planning problem but we allow negative preconditions, then
this will remove edges in the derived LST. This is, of course,
not the case if the modelling language does not allow neg-
ative preconditions where this relaxation would be a valid
abstraction trivially proved by this corollary.

Corollary 1. A second specific type of abstraction that falls
trivially within those defined in Definition 4 is edge insertion
abstraction: the addition of transitions to an LST, with f as
the identity function, certainly contains all transitions in T .

Corollary 2 is a more formal way of denoting this effect
removal abstraction that is common in model relaxation.

Corollary 2. For a planning model Π with an initial state I ,
goal state G, and ground actions A we can remove an effect
e ∈ Eff +−

⊢⊣ (a) ∪ Eff n
⊢↔⊣(a) for some action a ∈ A, to

produce a planning model Π′. The LST τ ′ with the problem
(I,G) derived from Π′ is an abstraction of the LST τ with
the problem (I,G) derived from Π, if e does not make any
reachable and relevant condition c ∈ Pre⊢↔⊣(a

′) true for
any a′ ∈ A or satisfy any goal g ∈ G.

Corollary 3 is similarly informative. As abstractions of
planning problems are relevant to a problem, (I,G), then
any relaxation that affects only states that are not relevant to
the solution of the problem, of which there are often many,
is a valid abstraction shown by this corollary.

Corollary 3. Removing states s and transitions ⟨s, l, y⟩
where s is not reachable or relevant for any problem P is
a valid abstraction.

Finally, Corollary 4 shows that state merging is valid ac-
cording to our more general definition of an abstraction. This
is useful as state merging abstractions have been long used
as powerful tools in planning. However, we do not rely on
this corollary for any of our proofs.

Corollary 4. The state merging abstraction is an abstrac-
tion according to Definition 4 using the following construc-
tion: states u, v ∈ S are merged into the new state, m, by
taking S′=S \ {u, v} ∪ {m} and f(s)=s if s /∈ {u, v},
f(u)=f(v)=m, and T ′ = {⟨f(s), l, f(s′)⟩|⟨s, l, s′⟩ ∈ T}.
This is an abstraction by construction.

To model plans in which action durations, temporal hap-
penings, and temporal constraints matter; we can create a
Simple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991) on top of the LST from Definition 5 that dictates the
timings of the state transitions in the LST. An STN is a graph
whose vertices represent time points and weighted edges
represent the maximum/minimum separation between these.

Definition 9. A simple temporal network (STN), G, is a di-
rected graph denoted by the triplet ⟨V,E, L⟩, where V is a
set of vertices, E ⊆ V ×V is a set of edges, and L ⊆ E×R
is a set of labels applied to edges to represent temporal sep-
aration between vertices.

An STN is constructed over an LST, τ , as follows: given
a finite sequence of labels in τ , {a1, a2, ..., an}. the corre-
sponding STN has n + 2 vertices, labelled I , ai (for i =
1...n) and G. The edges of the STN comprise an edge from
a1 to I and from ai+1 to ai, each weighted−ϵ (where ϵ sep-
arates interfering actions), an edge from G to an weighted
0, and, for each pair of labels, ai and ai+j , that represent the
start and the end of the same durative action instance, edges
from ai+j to ai weighted with −Dur(ai)[0] and from ai to
ai+j weighted Dur(ai)[1], i.e. for the edge e1 from ai to
ai+j , l(e1) = Dur(ai)[1], and for the edge e2 from ai+j

to ai, l(e2) = −Dur(ai)[0]. If any action starts or ends are
not paired off, the label sequence is not a valid plan; the se-
quence of labels is otherwise a valid plan if and only if it is
both a valid path in the LST and also a consistent STN.

TILs can be captured within the framework of the LST
and STN described above as follows. Given a TIL, t =
⟨ttime, tv⟩, specifying effect tv occurs at time ttime, to be
added to a planning model Π, a new proposition, t, is cre-
ated and added to the initial state, an action, TILt is created
with precondition t, that deletes t and with add effects tv and
doneT ; doneT is added to the goal. An LST is then created
in the usual way. The STN created for this temporal domain
is then adjusted by adding edges of weight ttime from I to
TILt and −ttime in the opposite direction. In this model,
a valid plan will be forced to contain exactly one copy of
the action TILt, in order to satisfy the goal. No additional
copies can appear because of the deleted precondition. The
temporal constraints can only be satisfied if TILt occurs at
exactly time ttime, along with all the other constraints of the
temporal structure of the plan.

We can then define an abstraction of an STN:

Definition 10. An STN G′=⟨V ′, E′, L′⟩ is an abstraction of
STN G=⟨V,E, L⟩, where V ′ ⊆ V and E′ ⊆ E, and if for
any two vertices v, v′ ∈ V that are connected by an edge
e ∈ E where there is a label l for e in L, we have l′ ∈ L′

where l′(e) ≤ l(e) , if v, v′ ∈ V ′ and e ∈ E′.

Finally, as we are working with temporal-numeric plan-
ning domains, we can define what a valid abstraction of a
planning model is based on their derived LST and STN:

Definition 11. A planning model Π′ is an abstraction of Π if
the LST τ ′ and the STN G′ derived from Π′ are abstractions
of the LST τ and STN G derived from Π.

In a perfect world, we would be able to explain why a
model is not solvable, by adding states, labels, and transi-
tions to the LST of a planning model. The LST would have
to represent the entire state space of a problem. LSTs can be
large even for simple planning problems (Helmert 2009).

Not only can it become infeasible to explicitly represent
the LSTs for these problems, but it can become intractable to
realise what modifications to the LST we must make for pre-
cise abstractions. We instead make changes to the lifted rep-
resentation of the planning problem with model surgeries.
This can simplify the abstraction process. However, it leads
to abstractions having potentially larger affects to the state
space than expected.
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5 Abstraction Implementation
In this section we describe the implementation of abstrac-
tions that we have identified as important for explanation.
We motivate each abstraction’s use in explanation with an
example, we give the formal process of performing the ab-
straction on a planning model, and show how these fit our
definition of abstraction. We prove proposition 1 for each
abstraction α. This proposition must hold to guarantee that
the model surgeries we propose do not reduce the number of
valid plans for a model, and therefore can be used to search
for valid solutions or solutions of better quality.

The abstractions we present here are for temporal plan-
ning problems. However the approach is general and can be
used with other abstractions in classical, numeric, temporal,
and temporal/numeric problems. Our approach requires only
that an abstraction be valid, our LST/STN methodology for
proving the validity of an abstraction can be used.

Proposition 1 (Valid Abstraction). Given an LST τ =
⟨S,L, T ⟩ and STN G = ⟨V,E, L⟩ both derived from a
planning model Π and an LST τ ′ = ⟨S,L′, T ′⟩ and STN
G = ⟨V ′, E′, L′⟩ derived from the planning model Πα, τ ′ is
a valid abstraction of τ and G′ is a valid abstraction of G,
and therefore Πα is a valid abstraction of Π.

Each proof of a valid abstraction in this section follows
the same approach. Definition 11 defines what it means for a
planning problem to be an abstraction of another. Each proof
consists of showing that for τ , τ ′, G, and G′ derived from Π
and α(Π), τ ′ is an abstraction of τ and G′ is an abstraction
of G and therefore α(Π) is an abstraction of Π.

The example we use to motivate each abstraction’s use
in an explanation is: Given the example spoken about in
Section 3 with the plan being presented to a user as one in
which truck T2 performs route 2, the user might instead pre-
fer truck T1 to be used. Through the system of model restric-
tion we can force the planner to ensure that the truck T1 is
used throughout the plan. The resultant plan will consist of
truck T1 performing route 1. This is because truck T1 cannot
perform route 2 as the meat will spoil at time 22 and it is not
possible to extend the life of the meat in the unrefrigerated
truck T1. Route 2 takes only 25 minutes. However more than
22 minutes would have passed before the meat was delivered
and so it would no longer be fresh. This new plan π takes 35
minutes compared to the original 25 minutes. The example
will be the same for each abstraction but the explanations
from which they are derived are different.

5.1 Abstracting Predicates
Through the use of abstractions we can determine the cause
of the disparity in solution quality. If we abstract away the
predicates, ps ∈ Ps, that are responsible for modelling the
need for refrigeration, then we can produce a plan, π′, in
which truck T1 can perform route 2. This is a plan of the
same quality as the original plan, but we are instead using
truck T1 rather than truck T2 as the user expected. We can
therefore produce an explanation: {Remove predicate: (re-
frigerated t - truck)}, which combined with the constraint
added and the plans allows the user to infer that if there were

no need for refrigeration, then truck T1 could be used such
as in π′, otherwise our new plan will be π which is slower
by 10 minutes. Abstracting a predicate consists of removing
the predicate from everywhere that is appears in the model.

The formal process for abstracting a predicate from a
planning model is as follows. Given a planning model, Π,
and a set of predicates, ps ⊆ Ps, the abstracted model is
Πps = ⟨D,Prob⟩, where D = ⟨Ps \ {ps}, V s, As′, arity⟩
and As′ = {a′|∀a ∈ As : Dur(a′) = Dur(a), P re(a′) =
Pre(a) \ {ps},Eff (a′) = Eff (a) \ {ps}}; and Prob =
⟨Os, I\{p}, G\{p},M, T ⟩, where Prop(ps) = p and Prop
takes a set of predicates and returns each of the propositions
in P that were formed from it’s grounding, i.e. for a set of
predicates ps, Prop(ps) = {p ∈ P |∃ps′ ∈ ps, χ ⊆ Os :
ground−1(p) = ⟨ps′, χ⟩}.

Proof. Removing a predicate ps from the planning model is
a valid abstraction. Removing a predicate obviously causes
all preconditions involving that predicate to be removed.
However, it also removes all effects (positive and negative)
on that predicate, but these effects no longer matter, since
no transition depends on them. This operation is equivalent
to merging states that are otherwise identical except for the
presence or absence of ps.

This can be seen by realising that, for the LST τ with
a set of problems P , the mapping f(s) = s \ {ps} main-
tains that for every transition ⟨x, l, y⟩ ∈ T from a reach-
able and relevant state s with respect to the problems in P ,
⟨f(x), l, f(y)⟩ ∈ T ′.

5.2 Abstracting Preconditions
In some cases abstracting away an entire predicate may be
extreme. Instead we can abstract away certain preconditions
for actions. If we abstract away the preconditions, ps ∈ Ps,
that are responsible for checking that the produce is fresh be-
fore it is delivered, then we can produce a plan π′ in which
truck T1 can perform route 2. We can therefore produce an
explanation: {Remove precondition: (fresh p - produce)},
which would allow the user to infer that if the produce did
not need to be fresh for it to be delivered, then truck T1
could be used such as in π′, otherwise our new plan will be π
which is slower by 10 minutes. An abstraction of a precondi-
tion consists of removing a predicate from all preconditions
that the predicate appears in.

The formal process of abstracting a precondition from a
planning model is as follows. Given a planning model, Π,
and a set of predicates, ps ⊆ Ps, the abstracted model is
Πpre(ps) = ⟨D,Prob⟩, where D = ⟨Ps, V s,As′, arity⟩
and As′ = {a′|∀a ∈ As : Dur(a′) = Dur(a), P re(a′) =
Pre(a) \ {ps},Eff (a′) = Eff (a)}.

Proof. Removal of preconditions from actions is a valid ab-
straction. This is because removing preconditions manifests
as adding transitions in the LST, as can be seen from Defini-
tion 5 (the ground action o represents is applicable in s), so
by Corollary 1, it is a valid abstraction.

By Corollary 1 this is an abstraction with T ′ = T ∪
{⟨s \ {ps}, a,Eff a(s \ {ps})⟩|⟨s, a,Eff a(s)⟩ ∈ T} where
Eff a(s) is the result of updating s with the effects of a.
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5.3 Abstracting Durations
In our example, if we abstracted the duration of the action
for driving the truck, then we can produce a plan π′ in which
truck T1 can perform route 1 quicker. An abstraction of an
action’s duration involves editing the action’s duration con-
straint so that the planner can select any positive duration.

Given a planning model, Π, and action schemas, as ⊆
As, the abstracted model is Πas = ⟨D,Prob⟩, where D =
⟨Ps, V s,As′, arity⟩ and As′ = As \ {as} ∪ {a′|∀a ∈ as :
Dur(a′) = ⟨0, inf⟩, P re(a′) = Pre(a),Eff (a′) = (a)}.

Proof. Our abstraction has no effect on the derived LST:
τ == τ ′, there is therefore no effect on the vertices and
edges in the STN: V ′ == V and E′ == E, only L′ ̸= L.

For any two vertices vi, vi+1 ∈ V connected by an edge
e1 ∈ E and vi+1, vi connected by e2 ∈ E, then vi, vi+1 ∈
V ′ and e1, e2 ∈ E′ and l(e1)

′ >= l(e1) and l(e2)
′ <=

l(e2). This is because the labels in the STN are defined by
the duration’s of actions, the smallest possible duration of an
action is 0, and the largest is inf. Therefore the labels in G
are contained within the labels of G′.

5.4 Abstracting Timed-Initial-Literals
Rather than abstracting the time it takes to drive the truck,
so that we can deliver the meat before it spoils, we could
abstract the TIL that is responsible for the meat spoiling.
Through this abstraction we can produce a plan π′ in which
truck T1 takes route 2. We can still deliver the meat when
we arrive to location c in the unrefrigerated truck because
it would not have spoiled. We can therefore produce an ex-
planation: {Remove TIL: (at 22 (not (fresh meat)))}, which
combined with the constraint added and the plans allows the
user to infer that if the meat did not stop being fresh after 22
minutes, then truck T1 could be used such as in π′, other-
wise our new plan will be π which is slower by 10 minutes.
An abstraction of a TIL consists of creating an action that
models the TIL. This action can be performed at any time
and will have the same effect as the TIL.

Given a planning model, Π, and a set of TILs,
t ⊆ T , the abstracted model is Πt=⟨D,Prob⟩, where
D= ⟨Ps′, V s, As′, arity⟩ and Ps′=Ps ∪ {pt, dt|∀t}, and
As′=As ∪ {at|∀t : Dur(at)=⟨0, 0⟩, P re(at) = {pt},
Eff x(at)={tv},Eff −(at)={pt}}, x is + if the TIL is posi-
tive and - otherwise; and Prob=⟨Os, I,G∪{dt|∀t},M, T \t.

Proof. The abstraction of a TIL consists of modelling it as
an action, which is exactly how TILs are handled in the LST
and STN. This is an exact copy of the TIL in the LST and
therefore the TIL is not changed and therefore τ == τ ′.
This differs in the LST only in that the action can now be
executed at any time, i.e. V ′ == V and E′ == E, only
L′ ̸= L. In the same way as the proof in Section 5.3 this is a
valid abstraction as per Definition 10.

6 Searching for Suitable Abstractions
As described in Section 1 we consider the problem where
we have a planning model, Π, with a solution, π, and a con-
strained model, Π+c, which we will call Π′, with a solution,
π′, and there is a difference in quality between π and π′.

We consider an abstraction, α, of a model, Π′, to be suit-
able as part of an explanation if both the solution to the
abstracted constrained model Π′

α, π′
α, and the abstracted

original model Πα, πα, have costs, M(π′
α) and M(πα) and

|M(π′
α) −M(πα)| < n. Where n is a user-defined bound

below which we consider plans to be equi-cost. We do not
insist on a difference of zero because it might not be possible
to find a plan of exactly equal cost.

This creates a suitable explanation as it abstracts details
from both of the models until they produce equi-cost plans.
We can therefore say that it is those details that cause the dis-
crepancy between the quality of the solutions for the original
and constrained models. However, there may be many possi-
ble abstractions that produce equi-cost plans. To distinguish
between these we are guided by the principle that we want
to maintain, as much as possible, the most important and
relevant structures of the problem. To this end we prioritise
abstractions first by their size (fewer composed abstractions
is better) and then by the similarity of the solutions to the
abstracted and original problems, i.e the abstraction with the
smallest |M(πα)−M(π)|.

6.1 Search
In this section we propose a search algorithm to identify cor-
rect abstractions that produce informative explanations.

The approach we take is to search over a poset of possible
abstractions. Definition 12 allows us to determine a poset
given a planning model, Π, the set of possible abstractions,
α, as L(Π, α) = (MΠ,≤). This gives an ordering on the
models that can be reached through the set of abstractions α.
This underpins our approach of abstraction for explanation.

Definition 12. Given a planning model, Π, and a set of ab-
stractions, α, the collection of associated models, MΠ, is
the closure of the image of Π under the application of the
abstractions, α. The partial ordering onMΠ is defined by:
for Π1,Π2 ∈MΠ, Π1 ≤ Π2 iff ρ(Π1) ⊆ ρ(Π2). This deter-
mines the poset L(Π, α) = (MΠ,≤).

For an abstraction poset, elements higher up in the poset
are more abstract than those at the bottom. The abstractions
that will form A in our search are all the possible abstractions
defined in Section 5. We do not construct this poset a priori,
we generate parts of the poset during search time.

We provide a search algorithm for finding suitable ab-
stractions for explanations in Algorithm 1. This algorithm
implements a bottom-up breadth first search. We start from
the constrained model and apply all possible abstractions at
each level of the poset before traversing up the poset in a
single step. This is repeated until we reach a model that pro-
duces an equi-cost plan to the original solution. This algo-
rithm takes as input the constrained model, Π′, the set of
possible abstractions, A, (see Sec. 5), the original plan, π,
and a real value specifying the bound for equi-cost plans,
n. A queue is constructed, queueA, from the abstractions,
A, the current abstraction, curra, is then dequeued. The first
model that abstractions are applied to, currΠ, is a copy of
the model Π′. This is abstracted with curra to give the ab-
stracted model, Π′

a, the function abstract takes an abstrac-
tion, a, and a model, Π, and returns an abstracted model, Πa.
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A queue, queueΠ, is constructed from the abstracted model,
curra, that model is then solved, the function, solve, takes a
model, Π, and returns a valid solution plan for, Π. The algo-
rithm then checks if the abstracted plan and original plan are
equi-cost, the function bound is as described in the introduc-
tion to this section. The algorithm then loops, repeating this
process for each model in the queue, for each abstraction in
the queue until there are no models left in the queue. In each
iteration there is a further check that an abstraction, curra,
has not already been applied to the current model, currΠ.

Algorithm 1 gives a satisficing solution. It gives the first
of abstractions that produces a model whose solution is equi-
cost to the original. If we assume that all abstractions are of
equal cost, then this would be an optimal solution as we will
apply all possible abstractions at each level of the poset be-
fore moving on. However, as noted earlier in this section, we
can evaluate abstractions based on the distance between the
quality of the solution of the abstracted model and the origi-
nal solution. We can modify the stopping condition of Algo-
rithm 1 to give an optimising search algorithm that evaluates
the quality of certain solutions based on this metric.

6.2 The Explanation
The explanation will be composed of the abstractions that
were used in order to get a satisfiable plan under the re-
stricted model. The specific explanation will be contextu-
alised by the constraint applied to the original model that
lead to a difference in the quality of the solutions. Each ab-
straction acurr is popped from the set of abstractions a. The
type of the abstraction is then checked, these are each of the
abstractions outlined in Section 5. The explanation is then
formed by the types of, and the abstractions that allow the
problem to produce an equi-cost solution. The user does not
need to understand the implementation of these abstractions,
which are automatically applied. They need only understand
the explanations that are generated. In the next section we
give some more examples of these generated explanations.

7 Experiments and Results
In this section we present an empirical evaluation of our ap-
proach to finding explanations. Whilst we present results in-
dicating the performance of our algorithm; our focus is on
testing the ability of our approach to find explanations. Op-
timizing the efficiency of the algorithm is left to future work.

Evaluation uses 6 differently structured planning prob-
lems. 2 of these problems are based on our running example
and the other 4 are instance 1 of Rovers and 2 of Satellite
from the International Planning Competition (IPC) (Long
and Fox 2003). The 2 explainable problems are the Delivery
domain discussed in Section 3 and an augmented version of
this domain in which there are two drivers, D1 and D2, and
only one driver, D2, has the ability to drive the refrigerated
truck, we call this problem delivery+.

In Rovers, rovers take samples of soil, rock, and image
data to send back to a lander. Not all rovers are equipped for
all sample types. Cameras must be calibrated to take images,
rock data must be stored before it can be communicated, and
soil data can be collected and communicated. The optimal

Algorithm 1: Breadth first search over an abstrac-
tion poset L(Π′,A) to find a set of abstractions a ∈ A
supporting a plan π′ such that |M(π′)−M(π)| < n

Data: {Π,Π′,A, n}
Result: a ⊆ A ∨ FAIL

1 queueA← queue(A);
2 curra ← dequeue(queueA);
3 Πa ← abstract(Π, curra);
4 Π′

a ← abstract(Π′, curra);
5 queueΠ← queue(Πa);
6 queueΠ′ ← queue(Π′

a);
7 π ← solve(Πa);
8 π′ ← solve(Π′

a);
9 if |M(π′)−M(π)| < n then return a ;

10 while ¬empty(queueΠ′) do
11 while ¬empty(queueA) do
12 curra ← dequeue(queueA)′;
13 if ¬applied(Π′

a, curra) then
14 Πa ← abstract(currΠ, curra);
15 Π′

a ← abstract(currΠ′ , curra);
16 enqueue(queueΠ,Πa);
17 enqueue(queueΠ′,Π′

a);
18 π ← solve(Πa);
19 π′ ← solve(Π′

a);
20 if |M(π′)−M(π)| < n then return a ;

21 Πa ← dequeue(queueΠ);
22 Π′

a ← dequeue(queueΠ′);
23 queueA← queue(A);
24 return FAIL;

plan for problem 1 is to use rover R1, calibrate the camera
and take an image, traverse to and collect the rock sample,
store it, and communicate the data; and finally traverse to the
soil sample, collect it, and communicate the data.

In our Satellite problem there is a satellite with two instru-
ments able to take photos in different modes. Instrument I1
can take infrared images and I2 can take both infrared and
visible images. The goal of the problem is to take images of
certain targets in certain modes. The optimal plan is to turn
on and calibrate I2 and take the required images.

Each problem is solved, then constraints are added to
make the problem unsolvable or to require a plan of worse
quality. We search for suitable abstractions using Algo-
rithm 1 set with a bound of n = 2. Experiments ran on a
4gb machine with an i7-12800H CPU, and a 4 hour timeout.
We use the full set of abstractions detailed in Section 5.

The delivery problem is constrained so that truck T1 must
be used, requiring the poorer route 1 to be taken. The deliv-
ery+ problem is similarly constrained, but also so that driver,
D1, who cannot use the refrigerated truck, must make the
deliveries. This is unsolvable.

The Rovers problem is constrained so that the image must
be taken before the camera is calibrated. The resulting plan
has the image capture in a different place in the solution. The
problem is separately constrained by removing the capabil-
ity of the rover to sample soil or rocks, which is unsolvable.
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Domain Size of A First/s Optimal/s # Suitable # Optimal Size # Nodes Time/s
Delivery 21 20.04 20.04 489 8 1 585 20

Delivery+ 25 220.37 1382.22 307 12 2 868 20
Rovers Worse 64 520.61 1802.31 33 2 1 178 40

Rovers Unsolvable 64 10295.09 10295.09 10 4 2 350 40
Satellite Worse 22 420.31 420.31 11 2 1 52 140

Satellite Unsolvable 22 280.20 280.20 26 2 1 79 140

Table 1: Time taken to find and number of suitable and optimal abstractions for a selection of planning problems.

The Satellite problem is constrained so that instrument
I1 must be used to take an image; the plan then uses I1 to
take the infrared images and instrument I2 is switched on
to take the visible light images. The problem is separately
constrained so I2 cannot be used, which is unsolvable.

The results in Table 1 show, for each problem, the num-
ber of abstractions at each search level, (the size of A); the
time to find the first suitable abstraction (henceforth, abbre-
viated to fsa); the time to find the first optimal abstraction;
the numbers of suitable and of optimal abstraction sets for
explanations found; the size of the abstraction set; the num-
ber of nodes expanded in the search; and finally the time
given to solve each problem. This is calculated by finding
the largest time taken to solve the original problem, or any
of the constrained problems, and doubling it.

The fsa for the delivery problem was found in 20.04 sec-
onds; it is also optimal. 585 combinations of abstractions
were searched of which 489 were suitable and 8 optimal.
The first optimal solution found, of size 1, abstracts away the
predicate determining whether meat or cereal is in a truck.
Now, the action that prolongs the life of the meat can be
used with truck T2 as the meat is no longer required to be in
the truck for this action to be performed. The plan is then to
use truck T1 to perform route 2 whilst using truck T2 to act
as the refrigerator from location loc a. The explanation pro-
duced is: {Remove predicate: (in ?p - produce ?t - truck)}.
There are other optimal solutions for this problem. Another
is to abstract the TIL determining when the meat spoils. The
plan for this abstracted problem uses truck T1 to perform
route 2 without worrying about the meat spoiling at all. The
explanation is: {Remove TIL: (at 22 (not (fresh meat)))}.

The fsa for the delivery+ domain is found in 220.37 sec-
onds and the first optimal abstraction in 1382.22 seconds.
868 combinations of abstractions were searched: 307 were
suitable and 12 were optimal. The first optimal solution
found, of size 2, abstracts away both the predicate for a truck
to be refrigerated and the requirement for a driver to be qual-
ified to drive certain trucks. Then truck T1 can be used in
place of the refrigerated truck, and any driver can drive any
truck. The plan for this abstracted problem is to use T1 with
the driver D1 to perform route 2.

The fsa for the rovers problem constrained to produce a
worse quality plan was found in 520.61 seconds. The first
optimal abstraction was found in 1802.31 seconds. 178 com-
binations of abstractions were searched, of which 33 were
suitable and 2 optimal. The first optimal solution found ab-
stracts away the predicate responsible for ensuring the target
of calibration matches is the objective image to be taken.

This allows for a camera to be calibrated on any target. This
removes the need for the calibration action, so the constraint
is trivially satisfied. The plan continues as in the original
plan after the camera is calibrated.

The fsa for the rovers problem constrained to be unsolv-
able is found in 10295.09 seconds; it is also optimal. 350
combinations of abstractions were searched: 10 were suit-
able and 4 optimal. The first optimal solution, of size 2,
abstracts away the preconditions of the sample rock and
sample soil actions that ensure the rover can sample rock
and soil; any rover can then gather rock and soil samples
and the plan is then the same as the original. The explana-
tion is: {Remove precondition: (equipped for soil analysis
?r - rover),(equipped for rock analysis ?r - rover)}. This ex-
emplifies the need to search over combinations of abstrac-
tions in more complex domains. Here, multiple abstractions
were necessary to minimise the quality difference. We note
that in this domain, even finding the first solution takes a
length of time that would not be reasonable for a rapid-
turnaround interactive process; however we note that this
would remain useful in safety critical scenarios. For exam-
ple, ground teams making plans for rovers/satellites usually
plan over the course of several hours for a single day of op-
erations, so here waiting longer for an explanation to ensure
a robust or optimal plan is not unreasonable.

The fsa for the Satellite problem constrained to produce
a worse quality plan is 420.31 seconds; it is also optimal.
52 combinations of abstractions were searched, of which 11
were suitable and 2 optimal. The first optimal solution, of
size 1, abstracts the precondition of the take image action
ensuring the instrument supports the relevant mode. The in-
strument I1 can then be used to take images of visible light
and the plan for the abstracted model is the same as the orig-
inal plan, other than using instrument I1 instead of I2.

The fsa for the Satellite problem constrained to become
unsolvable is 280.20 seconds; it is also optimal. 52 com-
binations of abstractions were searched of which 26 were
suitable and 2 optimal. The first optimal abstraction and re-
sulting plan is the same as the other Satellite problem.

8 Conclusion
In this paper a general definition for abstraction in planning
problems is presented. A number of surgeries on planning
models are defined, implementing a useful set of abstrac-
tions for explanation. A proof-of-concept algorithm is pre-
sented and used to find suitable and optimal abstractions for
explanation. Building natural language explanations from
these abstractions and evaluating them remains future work.

331



Acknowledgements
This work was supported by the Air Force Office of Sci-
entific Research (AOFSR) under award number FA9550-
18-1-0245 and the EPSRC-funded project ’COHERENT’
(EP/V062506/1).

References
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In Proc. Interna-
tional Joint Conf. on AI.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence, 49(1-3): 61–95.
Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In Proc. Association for Advancement of
AI, 9818–9826.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. Proc. International Joint Conf. on AI-17 workshop
on Explainable AI, abs/1709.10256.
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