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Abstract

Language-conditioned robot behavior plays a vital role in ex-
ecuting complex tasks by associating human commands or
instructions with perception and actions. The ability to com-
pose long-horizon tasks based on unconstrained language
instructions necessitates the acquisition of a diverse set of
general-purpose skills. However, acquiring inherent primi-
tive skills in a coupled and long-horizon environment with-
out external rewards or human supervision presents signif-
icant challenges. In this paper, we evaluate the relationship
between skills and language instructions from a mathemati-
cal perspective, employing two forms of mutual information
within the framework of language-conditioned policy learn-
ing. To maximize the mutual information between language
and skills in an unsupervised manner, we propose an end-to-
end imitation learning approach known as Language Condi-
tioned Skill Discovery (LCSD). Specifically, we utilize vector
quantization to learn discrete latent skills and leverage skill
sequences of trajectories to reconstruct high-level seman-
tic instructions. Through extensive experiments on language-
conditioned robotic navigation and manipulation tasks, en-
compassing BabyAI, LORel, and CALVIN, we demonstrate
the superiority of our method over prior works. Our approach
exhibits enhanced generalization capabilities towards unseen
tasks, improved skill interpretability, and notably higher rates
of task completion success.

Introduction
General-purpose robots operating alongside humans in their
environment must develop the ability to understand and re-
spond to human language in order to perform a wide range of
complex tasks. Currently, there is significant research inter-
est in language-conditioned policy learning methods, such
as Vision-Language Navigation (VLN) (Gu et al. 2022) and
Vision-Language Manipulation (VLM) (Guhur et al. 2023;
Shridhar, Manuelli, and Fox 2023), which aim to enable
robots to learn the connection between language instructions
and their perceptions and actions.

In multi-task scenarios, tasks are typically defined by dif-
ferent task IDs (Gupta et al. 2019; Yu et al. 2020). How-
ever, in complex environments, task IDs do not capture the
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Figure 1: An example of multi-task language conditioned
situation. When confronted with intricate language instruc-
tions such as ”open the drawer and turn the faucet to the
right,” the agent must decipher and execute the tasks based
on the current state.

relationships between tasks effectively and can be labor-
intensive to define. On the other hand, human language pro-
vides a more natural and flexible way to define and specify
tasks. Additionally, robots need to acquire a diverse set of
general-purpose skills that enable them to understand un-
constrained language instructions and perform long-horizon
tasks.

Most modern skill-learning methods are limited to task ID
settings and sparse reward reinforcement learning (RL) en-
vironments. Hierarchical reinforcement learning (HRL) ap-
proaches to address complex tasks by learning latent skills,
which are then used in low-level meta-control (Haarnoja
et al. 2018). Other approaches decouple skill state mutual
information into forward (Sharma et al. 2019; Campos et al.
2020; Laskin et al. 2022) and reverse (Gregor, Rezende,
and Wierstra 2016; Eysenbach et al. 2018; Achiam et al.
2018) forms, which are incorporated into the reward func-
tion. These works offer theoretical analysis and outperform
other methods in RL benchmarks (Todorov, Erez, and Tassa
2012). However, these approaches have not been applied to
language-conditioned policies.

As depicted in Figure 1, given a task specification like
open drawer and turn faucet right, traditional language-
conditioned policy struggles to effectively differentiate the
subtasks contained within language instructions based on
different states (Guhur et al. 2023). Contrastive learning
is commonly employed for establishing multi-modal rela-
tionships (Eysenbach et al. 2022). However, this approach
typically requires pre-labeling of corresponding image se-
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quences and language subtasks, which can hinder general-
ization. By learning discrete skills, we can fully demonstrate
the generalization ability of our imitation model in multi-
task scenarios without refining tasks.

Mapping complex languages to discrete skill spaces
presents a challenge. In this paper, we experimentally found
that skills can directly relate to language instructions, al-
lowing for direct optimization based on their mutual rela-
tion. Moreover, in multi-task language-conditioned environ-
ments, as illustrated in Figure 1, latent skills specified in lan-
guage instructions need to be constrained by the state.

To address these challenges, we propose the Language
Conditioned Skill Discovery (LCSD) method to tackle the
imitation learning problem in multi-task environments. Our
approach is based on mutual information theory, which es-
tablishes the relationship between discrete skills, the current
state, and language instructions. We employ the VQ-VAE
method (Van Den Oord, Vinyals et al. 2017) for skill learn-
ing, where the encoder decomposes language and the current
state while the decoder aims to reconstruct unique discrete
skills and convert them back into language. To generate di-
verse skills, we introduce code reinitialization to prevent in-
dex collapse. We utilize the diffusion policy with the U-net
denoising model as an imitation policy, which exhibits better
adaptability to different environments.

We conduct experiments in robotic manipulation and 2D
navigation to evaluate the effectiveness of LCSD. Compared
with language condition policies and skill-based imitation
models, our method outperforms prior works. LCSD demon-
strates superior generalization, skill interpretability, and task
completion rates. Notably, it achieves a 20% improvement in
complex robot manipulation tasks.

To summarize, our contributions are as follows:

• We propose a skill-learning method based on mutual in-
formation that establishes the relationship between state,
skill, and language.

• We introduce LCSD, a hierarchical skill learning Imita-
tion policy based on VQ-VAE and diffusion model for
long-horizon, language-conditioned multi-task environ-
ments.

• We show that our skill discovery method provides bet-
ter interpretable discrete skills in different environmental
conditions than previous methods.

• We demonstrate that our method outperforms exist-
ing methods in language-conditioned multi-task environ-
ments.

Related Work
Language Conditioned Policy
Prior research has primarily addressed decision-making in
complex tasks that involve language instructions, particu-
larly in robot environments (Shridhar, Manuelli, and Fox
2022; Nair et al. 2021). Existing work has focused on em-
ploying pre-trained language models (Radford et al. 2021;
Devlin et al. 2018; Chowdhery et al. 2022) as language en-
coders due to the complexity and diversity of human lan-
guages. Some previous studies have used behavior cloning

to align the output of pre-trained language models with
observation inputs in order to predict actions (Shridhar,
Manuelli, and Fox 2022; Zheng et al. 2022). Other ap-
proaches have explored LLM (Large Language Model)
prompt engineering to decompose complex language in-
structions into sub-tasks (Brown et al. 2020; Ahn et al.
2022). A closely related work to ours is Saycan (Ahn et al.
2022), as both our work and Saycan aim to generalize latent
skills using languages and states. However, Saycan requires
a pre-defined set of skills to estimate the Q-function for each
skill, whereas we can extend our skills to unknown tasks by
utilizing a codebook of varying sizes.

Skill Discovery via Mutual Information
Skill discovery has been primarily employed in Hierarchical
Reinforcement Learning (HRL). Agents select latent vari-
ables from a set of skills at the high-level policy, which
is then executed by a meta-controller to perform sub-tasks
(Haarnoja et al. 2018; Shi, Lim, and Lee 2022). Recent stud-
ies have emphasized encouraging agents to explore and have
often relied on the mutual information between states and
skills (Gregor, Rezende, and Wierstra 2016; Campos et al.
2020). However, few works have addressed skill learning
in a language-conditioned environment. LISA (Garg et al.
2022) utilizes a skill predictor based on states and language
within specific horizons. Nevertheless, a single encoder can-
not establish a direct connection between skills and lan-
guage, leading to instability in skill learning.

Preliminary
Mutual Information Skill learning: Mutual Informa-
tion(MI) is a measure of the statistical dependence between
two variables. Given state s and skill z, the mutual informa-
tion I(z; s) can be optimized in two ways (Campos et al.
2020). The forward form: I(z; s) = H(s)−H(s|z), where
p(s|z) is estimated by a variation approximation, state en-
tropy is approximated by expectations of p(s|z) estimated
over all skills (Campos et al. 2020; Sharma et al. 2019; Park
et al. 2023). In the reverse form I(z; s) = H(z)−H(z|s), la-
tent code z is sampled from a fixed distribution and the lower
bound of conditioned entropy is estimated by ρπ(z|s) (Ey-
senbach et al. 2018; Gregor, Rezende, and Wierstra 2016).

VQ-VAE: Vector Quantized Variational Autoencoder
(VQ-VAE) (Van Den Oord, Vinyals et al. 2017) is a neu-
ral network architecture for unsupervised learning of latent
representations of data. In VQ-VAE, the encoder maps the
input data to a continuous latent space, which is then quan-
tized to a discrete codebook. The decoder maps the discrete
code to the output space, generating new samples. VQ-VAE
updates the encoder, decoder, and codebook parameters with
the following loss function.

Lvq−vae = log p
(
x | q(zkq )

)
+

∥∥sg [p(x)]− zkq
∥∥2
2
+

β
∥∥p(x)− sg[zkq ]

∥∥2
2

(1)

the first term represents the reconstruction from discrete
code to original input for updating the encoder p and de-
coder q. The second term leads the discrete vectors in the
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Figure 2: Overview of LCSD. In the skill learning stage, the encoder decomposes the current state and language to a lower-
dimensional latent space, while the decoder recovers the quantized latent skills to the language embeddings. A single vector
is chosen from the codebook in each step and used to quantize the encoder outputs. The diffusion model is used as an action
predictor conditioning on current state and skill(or language).

codebook z1...Nq to approach the nearest output of the en-
coder, while the last term is commitment loss, encouraging
the output of the encoder to stay close to the chosen kth
codebook vector zkq . The codebook update can also use ex-
ponential moving averages instead of the second in the loss
function.

Approach
LCSD is a two-stage imitation learning structure that com-
prises an encoder-decoder model for skill acquisition and a
conditional diffusion policy for action prediction. In the first
stage, the skill encoder and decoder learn a codebook of la-
tent skill vectors corresponding to languages conditioned on
states. The diffusion policy then predicts the subsequent ac-
tion directly, conditioned on the current state and latent skill
generated by the skill encoder. An overview of our approach
is depicted in Figure 2.

Problem Formulation
We consider learning in general environments modeled as
the Markov decision processes (MDPs). In each environ-
ment, we are provided with an offline dataset consisting of
N demonstration sequences obtained from a diverse set of
tasks using a behavior policy. Each trajectory consists of
state-action pairs with one language label over T time steps.

For multi-task environments, each language describes a
set of tasks with varying quantities. The states and actions
performed by the agent were stored as pairs along with a
single language instruction in each trajectory .

τi = {s0, a0, s1, a1, ..., sT , aT , l}Ni=0 .

Mutual Information Skill Learning in LCSD
In language-based imitation learning environments, the
agent executes actions based on tasks specified through lan-
guage. Therefore, the skills we learned must closely relate
to the language instructions. Two metrics for measuring in-
terrelated relationships are I(·) and H(·), respectively rep-
resenting mutual information and Shannon entropy. Firstly,
we directly maximize the Mutual Information between skills
and language I(z, l), where z represents skill sets for the
entire trajectory. In multi-task environments, a single lan-
guage may involve multiple skills, as shown in Figure 1. In
such cases, skills need to segment the trajectory into sub-
tasks based on different states. For example, when execut-
ing the instruction open the drawer and pick up the cup, our
skill needs to distinguish the current task of the agent based
on whether the drawer is already open or not. To this end,
we further aim to maximize the mutual information between
skill and language conditioned on the current state, denoted
as I(l; z|s). In summary, our goal is to maximize:

F = I(z; l) + I(l; z|s)
= H(l)−H(l|z) +H(z|s)−H(z|l, s) (2)
= H(z|s) + Ez∼p,s∼D[log p(z|s, l)]+
Ez∼p,l∼D[log p(l|z)] + Const, (3)

As shown in Equation (2), we use forward form on I(z; l)
and reverse form on I(z|l, s). H(l) represents the entropy
of language instructions, which is constant in our offline
dataset. The second term focuses on how our skills are re-
lated to language. The third term expects our skill distri-
bution to have high entropy for better generalization con-
ditioned on states. For the last term, our goal is to map de-
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terministic discrete skills with current state and language in-
structions as conditions.

In Equation (3), we express the formula in the form of a
probability distribution, where skills are sampled from a uni-
form distribution p(z), and states s and language l are sam-
pled from the stationary offline dataset. We implicitly opti-
mize H(z|s) by initializing unused codes for a broader range
of skill selection and explicitly approximate the lower bound
of conditional probability distribution by neural networks,
the skill encoder pθ(z|l, s) and the skill decoder qϕ(l|z). The
encoder constrains the predicted skills for each step, while
the decoder updates macroscopic language instruction re-
construction after skill generation on the entire trajectory.
The ultimate optimization goal can be simplified as maxi-
mizing the lower bound of our objective F(θ, ϕ):

F(θ, ϕ) ≥ H(z|s)+E[log pθ(z|s, l)]+E[log qϕ(l|z)]. (4)

Our method aimed to enhance the diversity of skill codes
by enabling the skill encoder to leverage a broader range of
codebook latents. To achieve this, we explicitly augmented
H(z) from Equation (4) using the proposed skill reinitial-
ization approach mentioned below.

Skill learning
VQ-VAE is an unsupervised generative model for represen-
tation learning that uses an encoder to map images into la-
tent space and a decoder to reconstruct the original image.
In previous works on imitation learning, a skill encoder was
used to directly map states to skills without a decoder, re-
sulting in unstable, non-interpretable skills for task analysis
(Sudhakaran and Risi 2023; Garg et al. 2022). (Mazzaglia
et al. 2022) used the complete VQ-VAE framework for skill
discovery, where a decoder was used to reconstruct states
for computing rewards to update the world model in Actor-
Critic training. LISA (Garg et al. 2022) introduced language
into VQ training to solve decision-making problems with
IL. However, a single encoder mapping discrete skills from
language-state embeddings is inadequate in learning the di-
rect relation between skills and languages, resulting in poor
stability in different environment settings(Figure 4). More
LISA skill maps are shown in the Appendix.

To address this, we jointly map the state and language
to latent skill vectors when selecting skills, following VQ-
VAE. The skill encoder pθ(s, l) learns as a language-state
representation. In vector quantization (VQ), a codebook
comprising M latent codes of skill vectors z1...M is utilized,
and the skill vector closest to the encoder output is selected.

Instruction Semantic Recovery: In language-based
multi-task environments, we propose a language
reconstruction-based VQ-VAE to better learn the spe-
cific tasks corresponding to skills in different states. We
introduce a decoder corresponding to the last term of our
optimization goal (Equation (4)), which solely aims to align
the skill vectors with the language representation. Unlike
previous work (Mazzaglia et al. 2022), our decoder does not
participate in subsequent policy updates but rather serves
to optimize the correspondence between the embeddings
generated by the skill encoder and the language.

Figure 3: Instruction Semantic Recovery Diagram. The de-
coder’s objective is to choose a distinct skill from each con-
secutive group within a trajectory and calculate the mean
squared error (MSE) loss using the frozen CLIP (Radford
et al. 2021) language embedding.

We present the structure of our skill decoder in Figure 3.
As language contains varying amounts and types of skills in
different trajectories, we consider consecutive selections of
the same skill as a sub-task and choose the first code from
every consecutive group of equivalent skill codes. The de-
coder takes a discrete set of skills as input and outputs a
vector, which is compared to the language vector obtained
from a frozen CLIP text encoder (Radford et al. 2021) using
MSE loss.

Lskill = − log qϕ(l|z)− log pθ(z|s, l)
= ∥qϕ(U(zq(s, l)))− E(l)∥22 +
β ∥pθ(s, l)− sg(zq)∥22 .

(5)

U represents the unique selection of discrete skills, and E
refers to the CLIP text encoder that is frozen during train-
ing. The skill loss is comprised of two components: the re-
construction loss and the commitment loss, both of which
are incorporated in the VQ training procedure according to
Equation (1). By minimizing the skill loss, we simultane-
ously maximize the Mutual Information based on Equation
4.

Skill Reinitialization: Selecting a single code may lead
to index collapse during the skill learning period due to pref-
erential selection (Kaiser et al. 2018). We also encountered
similar situations in some environments during evaluation,
as shown in the upper image in Figure 4. To address this
issue, we used codebook reinitialization, which aims to in-
volve more codebook vectors in skill learning and code se-
lection. Inspired by (Mazzaglia et al. 2022), We recorded
times of codes selected within a certain training iteration and
reinitialized codes with proper skill encoder vectors. Reini-
tialized codes can directly participate in skill selection and
updates in subsequent training.

We selected encoder outputs pθ(si, l) to reinitialize
inaccessible code zkq with a probability of d2p(z

k
q , si, l)

d2
p(z

k
q ,si,l))∑

s d2
p(z

k
q ,si,l)

, Where i is the index corresponding to the out-
put of the encoder that selected the replacement code pθ(s, l)
is the output from the skill encoder on the last training batch,
N represent the total number of skills in the codebook, and
dp is the fraction of the Euclidean distance between the en-
coder output and codebook embedding. Unlike (Mazzaglia
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et al. 2022), we choose an embedding closer to the current
code for more stable skill generalization.

d2p(z
k
q , si, l) =

1∥∥pθ(si, l)− zkq
∥∥2
2

. (6)

Unlike previous works, our approach incorporates a gen-
eralized strategy of not only initializing unused codes but
also resetting the entire code set with a specified probability.
This decision is motivated by our observation that inactive
skills during the initial training phase can lead to significant
instability in the early stages of training. To determine the
reset probability, we calculate it proportionally to the ratio
of each skill to the average skill selection. By adopting this
method, we aim to enhance the stability and effectiveness of
the training process.

zkq =

p(
d2
p(pθ(si,l))∑
s d2

p(pθ(s,l))
) · pθ(si, l), y > Mk·N∑N

j=1 Mj
,

zkq , y < Mk·N∑N
j=1 Mj

(7)

Where M represents the number of times each skill is
selected during this training session, and y is a randomly
generated float value ranging from 0 to 1. We aim to initial-
ize the code with fewer prior selections, enabling more effi-
cient updates in subsequent training iterations. We anticipate
improved training efficiency and effectiveness by prioritiz-
ing initializing less frequently selected codes. Notably, our
skill reinitialization method only takes place in the first 200
epochs of training, as we aim to make the most of each skill
as possible while maintaining the way skills are learned.
Therefore, fewer steps to initialize can avoid excessive hu-
man intervention in training and achieve better results.

Diffusion policy for Imitation Learning
We adopt the Denoising Diffusion Probabilistic Model
(DDPM) (Ho, Jain, and Abbeel 2020) as our policy base
model. The denoising network aims to predict the random
noise added to the action in each iteration. The noisy input in
each iteration can be formulated as ai =

√
ᾱia+

√
1− ᾱiϵ,

where ᾱ are process variances, and random noise ϵ is sam-
pled from a Gaussian distribution N(0, I).As an imitation
policy to solve language condition tasks, our diffusion model
can support language or skill information along with the cur-
rent state as input simply by modifying the conditional input
dimension. We modified the policy training loss as follows:

Lddpm−s(θ) = Eϵ,i,s,a,l,z

[
∥ϵ− ϵθ (ai, s, z)∥2

]
.

s.t. ϵ, i ∼ U , (s, a, l) ∼ D, z ∼ zq(s, l)
(8)

Where i is sampled from U [1, T ], denoise network ϵθ is
trained to predict random noise with state, action noise, and
skill(or language) as input.

To combine skill (or language) and image features, we
used different linear layers similar to the Temporal U-Net
as our diffusion denoising network. For each MLP block,
separated linear layers were used to unify the dimensions of
the action noise, state, timestep, and skill embedding (lan-
guage), and then they were added together. The final linear

Algorithm 1: LCSD training algorithm
Initialized Model: diffusion policy π, skill encoder pθ, skill
decoder qϕ, CLIP encoder E , Codebook quantize on encoder
q

1: while training iterations i = 1...N do
2: —–Skill learning Period—–
3: Sample batch τ = {l, (s0, a0), ...(sT , aT )}Bi=0
4: for each trajectory τ do
5: z0:T ← pθ(s0:T , E(l))
6: record unselected codes in list u
7: end for
8: Compute skill loss Lskill with Equation (5)
9: if i < reinitupdate and i mod reinitstep = 0 then

10: reinitialize unused code in list u with probability
on Equation (8).

11: end if
12: —–Behavior Cloning Period—–
13: if Skill learning then
14: a

′

0:T = π(s0:T , q(pθ(s0:T , E(l))))
15: compute Behavior cloning loss Lddpm−s

16: update with LLCSD on Equation 9
17: else
18: a

′

0:T ← π(s0:T , E(l))
19: update with Lddpm−l on Equation 10
20: end if
21: end while

layer of the network outputs noise with the same dimension
as the action. This network was designed to fully utilize con-
ditional information. The detailed structure is shown in the
Appendix.

LCSD is an end-to-end imitation policy, and we provided
an overall structure feature in Figure 2. We developed a high-
level skill generator based on a VQ-VAE model, which dis-
cretizes the latent space. The generated skills were then used
in a diffusion policy as conditional information to predict
the next-step action. The overall LCSD implimentation al-
gorithm is shown Algorithm 1. The overall loss combines
skill and imitation policy as:

LLCSD = αLskill + γLddpm−s (9)

where α and γ are used to balance the behavior cloning (BC)
loss and skill learning loss.

Experiments
Tasks
To verify the LCSD’s effectiveness, we selected three bench-
marks: BabyAI navigation (Chevalier-Boisvert et al. 2018),
LORel Sawyer dataset (Nair et al. 2021) and CALVIN
robot tasks (Mees et al. 2022), which are all language-based
and imitation learning environments without reward. Other
benchmarks either lack language conditioning settings (Yu
et al. 2020; Gupta et al. 2019) or focus on single-task en-
vironments with complex observation representations that
generate hardly interpretable skills (Shridhar, Manuelli, and
Fox 2022).
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Task Original Lang+DT LISA LISA+init Lang+Diffusion LCSD

BabyAI GoToSeq 40.4 ± 1.2 62.1 ± 1.2 65.4 ± 1.6 - 65.2 ± 8.6 67.8 ± 8.2
BabyAI SynthSeq 32.6 ± 2.5 52.1 ± 0.5 53.3 ± 0.7 - 55.1 ± 2.5 57.6 ± 2.2
BabyAI BossLevel 28.9 ± 1.3 60.1 ± 5.5 58.0 ± 4.1 - 55.0 ± 3.4 60.5 ± 7.4
LORel sawyer state 6 ± 1.2 33.3 ± 5.6 6.7 ± 3.3∗ 43.4 ± 0.2 43.0 ± 1.5 60.2 ± 5.7
LORel sawyer obs 29.5 ± 0.07 15.0 ± 3.4 10.3 ± 1.4∗ 24.5 ± 4.3 36.6 ± 3.8 45.5 ± 5.1
CALVIN 32.5 ± 2.5 11.7 ± 0.8 10.1 ± 3.3 10.9 ± 0.4 37.5 ± 2.6 35.6 ± 1.8

Table 1: Overall Performance. We show our LCSD’s evalution success rate (in %) in different environments compared to the
baseline imiation learning methods and skill learning method(LISA). The best method is shown in bold. We optimize LISA
with official code from (Garg et al. 2022) but cannot get normal performance on LORel due to index collapse, as indicated by
* in our results.

For the BabyAI benchmark, we used 10k trajectories eval-
uating three challenging tasks, namely GoToSeq, SynthSeq,
and BossLevel. We collected an offline dataset of 50k trajec-
tories on LORel and evaluated the performance on several
task settings. For the CALVIN benchmark, we directly se-
lect 1216 trajectories from the CALVIN-D dataset relevant
to the six tasks we modified. To eliminate interference on
image encoders and focus solely on evaluating the under-
lying policy, we directly select the 21-dimensional perspec-
tive state of the CALVIN environment as observation input.
More information on datasets is shown in the Appendix.

Baselines

We compared our proposed LCSD with several baselines in
our experiments:

Original: The BC baselines from original papers on three
benchmarks. In BabyAI we adopt their RNN-based method
(Chevalier-Boisvert et al. 2018). In the LORel environment,
we compared with the planner algorithm as language con-
ditioned BC baseline. We trained MULC from (Mees et al.
2022) on our CALVIN setting by changing the vision en-
coder into a simple MLP for perspective state observation.

Language conditioned DT policy: A behavior cloning
Decision Transformer (DT) (Chen et al. 2021) based policy
that takes the language instruction and past observations as
inputs to predict action.

LISA (Garg et al. 2022): A hierarchical imitation learning
structure based on a skill encoder and DT based policy.

LISA with code reinitialization: LISA with code reini-
tialize to better generalize skill code, denoted as LISA init.

LCSD on DT policy: We apply the skill learning method
of LCSD to the DT policy, referred as LCSD+DT.

Language Condition Diffusion Policy: An imitation
learning structure with diffusion policy condition on lan-
guage. Different from LCSD, the input of the diffusion
model is language tokens generated by the CLIP text en-
coder and current observation. We modify the structure by
directly minimizing the behavior cloning loss in Equation
(10).

Lddpm−l(θ) = Eϵ,i∼U ,(s,a,l)∼D

[
∥ϵ− ϵθ (ai, s, l)∥2

]
.

(10)

CALVIN Tasks DT Diffusion
lang skill lang skill

Turn on ledbulb 0 0 0.63 0.13
Turn off ledbulb 0.25 0.13 0.25 0.25
Move slider left 0 0.13 0.12 0.38
Move slider right 0 0 0.5 1.0
Open drawer 0 0 0.25 0.13
Close drawer 0.25 0.25 0.5 0.25

Overall 0.083 0.085 0.375 0.357

Table 2: Evaluation Success rate (in %) on CALVIN tasks

Results
We evaluated our approach in three environments. BabyAI
serves as the most straightforward task with discrete ac-
tions for 2D navigation, while LORel is a medium-difficulty
multi-task language environment based on Meta-world. Ta-
ble 1 presents the overall results for different tasks. All base-
line algorithms were trained over 1500 iterations using three
distinct seeds to ensure the reproducibility and diversity
of results. For a more statistically significant analysis, our
LCSD was tested with five different seeds. Notably, LCSD
outperformed the other language condition BC methods in
various tasks. Specifically, LCSD showed superior perfor-
mance in multi-task and complex LORel environments.

Diffusion model can leverage stability in difficult
tasks: While serving as a long-horizon benchmark, the lan-
guage label in CALVIN corresponds to a single skill, which
is different from the other two benchmarks (See appendix
for more dataset details). We mainly introduce CALVIN
to evaluate the performance of different imitation learning
models on difficult tasks rather than to measure the effect
of skill learning. The dataset we selected for CALVIN only
contains only 1216 trajectories, making the tasks even more
challenging.

Our diffusion policy performed well in different tasks
without requiring special modifications to the parameters,
particularly excelling four times in CALVIN tasks (Compar-
ing DT and Diffusion column in Table 1).

Table 2 lists the success rates in six different tasks, clearly
showing that the diffusion-based policy outperforms DT-
based models. It is typical for language-based models to ex-
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Language Settings Observations LISA LISA+init LCSD+DT Lang+Diffusion LISA+Diffusion LCSD

Seen State 6.0 43.4 43.3 46.6 30.0 60.2
Image 3.5 23.5 30.3 36.5 31.2 50.8

Unseen verb State 0.0 31.5 20.0 26.5 33.5 50.2
Image 10.0 14.1 30.6 23.1 29.5 30.4

Unseen noun State 4.7 27.5 24.1 24.5 20.0 29.3
Image 13.5 20.0 24.4 26.8 20.5 27.5

Unseen verb & noun State 3.5 24.5 26.6 17.5 27.0 28.7
Image 7.2 27.4 33.3 13.7 27.9 36.5

Human State 1.5 23.5 25.0 26.2 25.0 35.5
Image 7.5 24.5 32.5 23.7 25.2 33.4

Overall State 3.2 30.1 27.8 28.3 27.1 40.8
Image 8.3 22.0 30.2 24.8 26.9 35.8

Table 3: The Performance in LORel Sawyer Environment on different task settings. The evaluation success rate (in %) of
different algorithms on different task settings on LORel Sawyer state and image environments. The three algorithms on the left
are all based on the DT model, while the three on the right are based on the diffusion model. The best performance of each
settings are shown in bold.

Figure 4: Skill-language mapping in LORel state environ-
ment. Up: skill-language graph on LISA (single encoder);
Down: skill-language diagram of our LCSD.

hibit slightly superior performance compared to skill-based
models as a result of employing limited training data in
CALVIN, along with massive redundant data. More detailed
information about CALVIN’s task settings can be found in
the Appendix.

Skill Visualization: To demonstrate the specific mean-
ing of the discrete skills generated by our algorithm, we
recorded the correlation between language and the selection
of skill codebook during evaluation, as done in (Garg et al.
2022). We first show the skill map of (Garg et al. 2022) in
the upper image and find that most of the skills in the code-
book are not involved in training. Different tasks can only
be divided into two types of skills, which cannot be effec-
tively trained, lea-ding to index collapse. The lower image
in Figure 4 shows that all 20 codes were selected during
evaluation, with a strong correspondence observed between
language tokens and skill codes. For instance, Skill code 19

(the nineteenth column) corresponds to the action ”turn/ro-
tate faucet right/clockwise,” while skill code 0 (the zero col-
umn) represents ”rotate handle rightward and open drawer.”
It is reasonable for a single skill to indicate these two tasks
because in LORel, the faucet is placed before the drawer,
making it convenient for the agent to move the handle to the
right while opening the drawer. More detailed skill maps are
shown in the Appendix.

Ablation Study
Importance of Code Reinitialization and Instruction Re-
covery: To evaluate the efficacy of our approach for skill
acquisition, we conducted an analysis that involved plotting
the mutual information (MI) during the training phase across
various models, with the aim of investigating the interplay
between language proficiency and skill development. Figure
5 depicts the MI trajectories for four distinct methods of skill
learning: LISA (encoder only), LISA augmented with skill
reinitialization, VQ-VAE (incorporating the last two terms
of Equation 4), and LCSD. Notably, the utilization of a skill-
language decoder and skill reinitialization leads to a more
pronounced increase in mutual information. It is important
to highlight that, in the LORel dataset, each trajectory corre-
sponds to multiple sub-tasks, necessitating a stronger corre-
lation between language and skills when compared to the
CALVIN environment. To clarify the specific meaning of
discrete skills, we plot corresponding word frequency on
LCSD with and without code reinitialization and reconstruc-
tion in Figure 4. The comparison between the two figures
clearly indicates that without the support of these two meth-
ods, the selection of code skills is limited to a small number,
which is also observed in the DT (Chen et al. 2021) model,
with even greater severity. The usage of code reinitializa-
tion provided a significant improvement in this case. In Ap-
pendix we display more skill maps with different LCSD set-
tings in different environments.

Generality of skill learning method: Our skill-learning
method can be extended to different models. In DT-based
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Figure 5: MI training curve in CALVIN and LORel with
difference skill learning methods. We show the mutual in-
formation curves of our method during training in different
environments on different skill learning methods.

Policy Timestep N CALVIN LORel BabyAI

DDPM

25 297 623 560
50 619 720 840
75 880 1023 1240
100 1200 1400 2000

DDIM - 256 525 450

DT - 225 801 500

Table 4: Inference time of LCSD and DT based model in
three benchmarks. (second per episode).

models, we observed index collapse in LORel environments,
leading to poor test results. However, this problem was re-
solved by adding code reinitialization (Table 1). Table 3
shows more detailed experiment results on LORel. By com-
paring our approach with LCSD combined with DT, it be-
comes evident that our approach can be used for the DT-
based model for better skill discovery. More skill frequency
figures and results are shown in the Appendix.

Stability in multi task settings and varying parame-
ters: We conducted detailed experiments on different types
of language settings in the LORel environment, as shown in
Table 3, to investigate whether language settings affect the
model’s performance in multi-tasks. By manipulating vari-
ous words within sentences, we aimed to enhance skillful
semantic comprehension. ”seen tasks” refers to language de-
scriptions that were identical to the training set. At the same
time, ”human” indicates completely different sentences that
convey the same meaning. Our LCSD with code reinitializa-
tion and language recovery outperformed other methods in
almost all the task settings. In VQ-VAE, the number of skill
vectors in the codebook M and the number of combined
skill vectors in the language decoder are relatively essen-
tial parameters. However, we found our LCSD to be robust
enough to these choices, as shown in the Appendix.

Inference time of Diffusion policy: The diffusion pol-
icy’s inference phase is time-consuming and depends on the
hyperparameter timestep n. Therefore, we explored the im-

pact of different timestep values in the BabyAI environment
in the appendix. When set to 100 in the experiment, the eval-
uation time is approximately two to three times longer than
the DT-based model. We list different inference times on dif-
ferent timestep among three benchmarks in Table 4. To en-
sure both efficiency and accuracy, we recommend that the
n timestep should be defined as 50 for the experiment. For
further study, we adopt the DDIM evaluation phase on our
model and set the time step to 10. In this case, LCSD per-
formed faster than DT during the evaluation phase and per-
formed better than DDPM with low timesteps.

Conclusion
In this paper, we have presented LCSD, a novel skill-
based imitation learning framework designed for the pur-
pose of multi-task skill discovery and behavior cloning
in a language-conditioned environment. Our approach has
demonstrated excellent performance in generating discrete
skills while aligning with language in different environ-
ments. By initializing with diverse codes and establishing
a stronger connection between skills and language through
the language decoder, we have achieved more accurate and
stable skill representations.

Limitations and Future Work: Our approach does not
analyze the interconnections between different skills, which
can be crucial in multi-tasking problems that are typically
decomposed into a series of related sub-tasks. It is an inter-
esting avenue for future research, with the potential to learn
powerful skills to extend to more unknown tasks.
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