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Abstract

Graph Neural Networks (GNNs) have become the standard
method of choice for learning with structured data, demon-
strating particular promise in classical planning. Their inher-
ent invariance under symmetries of the input graphs endows
them with superior generalization capabilities, compared to
their symmetry-oblivious counterparts. However, this comes
at the cost of limited expressive power. Particularly, GNNs
cannot distinguish between graphs that satisfy identical sen-
tences of C2 logic.
To leverage GNNs for learning policies in PDDL domains,
one needs to encode the contextual representation of the plan-
ning states as graphs. The expressiveness of this encoding,
coupled with a specific GNN architecture, then hinges on the
absence of indistinguishable states necessitating distinct ac-
tions. This paper provides a comprehensive theoretical and
statistical exploration of such situations in PDDL domains
across diverse natural encoding schemes and GNN models.

Introduction
Deep learning Neural Networks (NNs) occupy a promi-
nent position in contemporary artificial intelligence (AI) re-
search, exerting a substantial influence over all AI domains.
Their recent generalization to variable-sized structured data,
in the form of GNNs, then enabled their integration into
classical planning, too (Toyer et al. 2018, 2020; Ståhlberg,
Bonet, and Geffner 2022a,b, 2023). The focus of this paper
is on their use for learning policies in PDDL domains. More
precisely, given a PDDL domain, we consider a policy-
learning algorithm that utilizes an NN model to predict the
next action to take in any state that belongs to a given do-
main instance.

Two aspects decide whether the policy-learning algorithm
successfully solves a PDDL domain. The first aspect is the
learning capacity of the underlying NN model, reflected
mostly by its size, which must adequately reflect the combi-
natorial complexity of solving the given domain instances.
The second aspect is the expressiveness of the NN model
that must be sufficient for the given domain. The central
aim of this paper is to focus on the latter. This is impor-
tant since the structured NN architectures, such as GNNs,
lack the universal approximation capabilities of their classic

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

state Encoding GNN prediction
input

structure

Figure 1: Procedural flow of the selected approach

feed-forward counterparts. GNNs represent functions whose
output is invariant under the (permutation) symmetries of its
inputs, which significantly improves their learning general-
ization. However, this comes at the cost of limited expres-
sive power. Particularly, GNNs cannot distinguish between
graphs beyond the constraints imposed by the 1-dimensional
Weisfeiler-Lehman (WL) test (Morris et al. 2019; Xu et al.
2019; Grohe 2021). We believe this aspect should be inves-
tigated in separation to discern whether a model is insuffi-
cient because of its limited learning capacity, or insufficient
expressive power.

There are two possible approaches to developing an NN
policy-learning algorithm, either (i) design a custom, specif-
ically tailored NN model, or (ii) use one of the existing
GNN models applied on top of a suitable encoding, trans-
forming domain instances into a graph-like data structure.
An example of the first approach is ASNets (Toyer et al.
2018, 2020), specifically crafted to reflect the structure of a
planning domain and its instances, namely their actions and
facts. This class of custom approaches comes with consider-
able variability but that also makes it difficult to systemati-
cally study its expressiveness. This is why we focus on the
second approach, building on the existing, widespread GNN
architectures (Wu et al. 2020) and their associated expres-
siveness characterizations (Grohe 2021). The schema of this
approach, with example works including (Ståhlberg, Bonet,
and Geffner 2022a,b, 2023), is depicted in Fig. 1. Given a
PDDL domain, its instance, and its particular state, respec-
tively, we encode the corresponding contextual state repre-
sentation into a suitable data structure to be processed by a
GNN to output an action prediction.

The encoding, together with the GNN architecture,
then determines the overall expressiveness of the result-
ing policy-learning algorithm. This integration establishes
a function f which, for a given state s and GNN param-
eters θ, yields a prediction f(s, θ). The expressiveness of
this function then lies in its ability to distinguish between
different states. Particularly, we call two states s, s′ indis-
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tinguishable w.r.t. f if f(s, θ) = f(s′, θ) for any tuple of
parameters θ. Note that this is a desired property of all the
structured, symmetry-aware (G)NN architectures. However,
we call an indistinguishable pair bad if s, s′ should lead to
different predictions. The main contribution of this paper is
a theoretical and statistical analysis probing the prevalence
of such bad state pairs in PDDL domains.

Background
First-Order Logic
We recall several concepts from mathematical logic that we
will need in the sequel. A first-order relational language L
consists of predicate symbols together with their respective
arities and variables.1

An atomic formula is an expression of the form
R(x1, . . . , xn) where R is an n-ary predicate symbol and
each xi is a variable. The formulas of first-order logic (FOL)
are built from atomic formulas using Boolean connectives
and quantifiers ∀, ∃. A FOL-formula without free variables
(i.e., all its variables belong to the scope of a quantifier) is
called a sentence.

The FOL formulas are interpreted in L-structures. An L-
structure is a tuple S = ⟨S, ⟨RS | R ∈ L⟩⟩ where S is a
finite set of objects, andRS ⊆ Sn is the interpretation of the
n-ary predicate symbolR ∈ L. The fact that a FOL-sentence
φ holds in S is denoted S |= φ.

A (ground) atom over a set of objects S is an expression
of the form R(b1, . . . , bn) where R is an n-ary predicate
symbol and each bi ∈ S. The ground atom R(b1, . . . , bn)
holds in S iff ⟨b1, . . . , bn⟩ ∈ RS. Note that there is a one-to-
one correspondence between L-structures on S and sets of
ground atoms over S. Namely, an L-structure S can be rep-
resented as the set of ground atoms ψS that hold in S, and
conversely a set of ground atoms ψ represents an L-structure
Sψ whose relation R is defined by c⃗ ∈ RSψ iff R(c⃗) ∈ ψ.

We say that two L-structures S,S′ are isomorphic if there
is a bijection σ : S → S′ such that c⃗ ∈ RS iff σ(c⃗) ∈ RS′

for
each predicate R ∈ L. In the expression σ(c⃗), the bijection
σ is applied component-wise to each object in c⃗.

We call an L-structure binary if all its relations are
at most binary. A graph is a binary L-structure G =
⟨G,EG, PG

1 , . . . , P
G
m ⟩ for the language L consisting of a

binary predicate symbol E representing edges, and sev-
eral unary predicate symbols P1, . . . , Pm representing node
properties. As graphs are not directed, EG must be a sym-
metric relation. Given G and a node u ∈ G, the set of its
neighbours is denoted NG(u) = {v ∈ G | ⟨u, v⟩ ∈ EG}.

The logic C is an extension of FOL, adding counting
existential quantifiers ∃≥n for each n ≥ 1. A sentence
∃≥nxφ(x) holds in a structure if there are at least n pairwise
different objects b such that φ(b) holds. The counting quan-
tifiers are definable in FOL, but they are not if we restrict
the number of variables. The logic Ck is the fragment of

1For simplicity, we assume that L does not contain constants.
They can be easily simulated by unary predicates. More precisely,
for each constant c, one introduces a unary predicate symbol Pc

such that Pc(x) holds iff x = c.

Figure 2: Two example C2-equivalent graphs

C having only k variables. To express more complex prop-
erties of a structure like a graph in Ck, one often needs to
“reuse” variables in nested formulas. For instance, in C2 one
can express that there is a node in a graph with property P1,
such that all of its neighbours have at least three neighbours
without property P2, as follows:

∃xP1(x) ∧ ∀y(E(x, y) → ∃≥3x(E(y, x) ∧ ¬P2(x)))

The last quantifier ∃≥3 reuses the variable x. Inside the
scope of ∃≥3, we cannot refer to x introduced by the first
existential quantifier anymore. Due to this limitation, C2 can
express that there is a path in a graph of any length, but not a
cycle of length greater than 2, since once we reuse a variable
we cannot refer back to check whether we closed the cycle.

We say that two L-structures S,S′ are Ck-equivalent
if they satisfy the same Ck-sentences, i.e., for each Ck-
sentence φ we have S |= φ iff S′ |= φ. Two example non-
isomorphic C2-equivalent graphs are depicted in Fig. 2.

Classical Planning
We assume that the reader is familiar with classical plan-
ning and Planning Domain Definition Language (PDDL).
We consider the normalized, non-numeric, non-temporal
PDDL tasks without conditional effects, axioms, and neg-
ative preconditions, and with all formulas being conjunc-
tions of atoms. The types are modeled as unary predicates.
Hence, for each type (i.e., a set of objects), a correspond-
ing unary predicate is interpreted by that set of objects; for
details see (Helmert 2009).

A PDDL Domain is a pair D = ⟨L,A⟩ where L is a
first-order relational language and A is a collection of ac-
tion schemas. A state in D is an L-structure S. The action
schemas define a state transition system using grounding in
the usual way (Corrêa et al. 2020). Since we only deal with
states, we skip the formal definition of the transition system.

Given a state S, a goal is a set of ground atoms built from
objects in S. A goal state is a state where all atoms from ψG
hold. A planning instance for a domain D is a pair ⟨S, ψG⟩
where S is a state and ψG is a goal. Following (Ståhlberg,
Bonet, and Geffner 2022a), we integrate the goal ψG into the
state S by expanding its language L. We define an expansion
LG of L such that for each n-ary predicate R in L, there
is a new n-ary predicate RG in LG. Given a state S and
a goal ψG, an enriched state SG is an LG-structure where
RSG = RS for each predicate R ∈ L, and RSG

G = {c⃗ |
R(c⃗) ∈ ψG} for each predicate RG ∈ LG \ L. From now
on, when we refer to a state, we mean a state enriched by the
goal information.

A plan for a state SG is a sequence of ground actions
transforming S into a goal state. A plan is called optimal
if it is shortest among all plans.
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The optimal value function V ∗ assigns to a state the length
of its optimal plan, and ∞ if there is none. The greedy policy
for V ∗, selecting a successor state with the minimum value
of V ∗, is the optimal policy for the domain D.

To make the GNN predictions concrete in our experi-
ments, we assume that the GNN predicts the optimal value
function V ∗ that defines the optimal greedy policy, in the
same way as (Ståhlberg, Bonet, and Geffner 2022a).

The following theorem ensures that we can represent V ∗

by a model that is invariant under symmetries of its inputs.
Theorem 1. Let D = ⟨L,A⟩ be a PDDL domain and S,S′

two isomorphic LG-structures. Then V ∗(S) = V ∗(S′).
The theorem can be proven by induction on the length of

the plan. From Theorem 1, it also follows that states with
different values of V ∗ can be distinguished by a FOL sen-
tence. Unfortunately, this need not be true for C2-sentences,
as we will see in the next sections.

Graph Neural Networks
GNNs have recently become the standard architecture for
structured data, applied across various tasks in the form of
node, edge, and graph classification/regression, with the lat-
ter corresponding to the prediction of V ∗ that we consider
in this paper. GNN models generally take as input a binary
graph-like structure whose nodes, and possibly edges, are la-
beled by real-valued “feature vectors”. These are then con-
secutively processed through a series of parameterized dif-
ferentiable transformations into the output prediction value.

The specific GNNs may differ in many aspects. The rel-
evant one for this paper is their input format, which can be
an actual graph but also an arbitrary binary structure. If it is
a graph, we only have a single undirected edge relation, and
all the nodes must be of the same type, reflected by shared
feature vector dimensions. If it is a binary structure, we
can have several directed edge relations, corresponding to
a multi-graph. Moreover, if the nodes are of different types,
reflected by differently sized feature vectors, we call the in-
put a heterogeneous (multi) graph, with a special case being
the bipartite graph where we only have two types of nodes.
Independently from the above classification, a GNN archi-
tecture either supports edge features or not.

GNN models are generally based on the concept of
“message-passing”. From the theoretical point of view, the
expressiveness of message-passing architectures has been
extensively studied for graphs without edge features, as de-
fined in the section on FOL. We recall the most important
results here; for an overview see (Grohe 2021).

Given a graph G = ⟨G,E, P1, . . . , Pn⟩, the feature vec-
tor u ∈ {0, 1}n of a node u ∈ G is constructed from the
unary predicates Pi as follows: ui = 1 iff Pi(u) holds in G.
We refer to the above construction as a multi-hot encoding.

A GNN g based on the message passing scheme consists
of several layers ℓ1, . . . , ℓk. Each layer ℓi for i < k takes a
graph G whose nodes are labeled by a real-valued vector and
updates its labeling. For a node u ∈ G, we denote the feature
vector entering the first layer by u(0). Each layer ℓi for i < k
then produces new vectors u(i) based on the formula:

u(i+1) = comb(u(i), agg({{v(i) | v ∈ NG(u)}})) (1)

where {{. . .}} denotes a multiset, agg is a function aggregat-
ing the multiset of the feature vectors of all neighbours of a
node u, and comb is a function combining the feature vector
of u with the result of agg.

The final “read-out” layer ℓk then takes the multiset of
all the vectors from the ℓk−1 layer and, similarly to agg,
aggregates them into a single output value:

ro({{u(k−1) | u ∈ G}}) (2)

We denote the tuple of all the parameters contained within
the respective comb, agg, and ro parameterized differen-
tiable functions from all the layers of the GNN g as θ, and
the output of such g as g(G, θ).

Note that the computation done by the message-passing
is conceptually the same as in the Color Refinement Al-
gorithm (CR). CR computes a node-coloring for a colored
graph by applying Equation (1), with agg being the identity
function and comb being concatenation. CR can be used as
an isomorphism test for two graphs that is as strong as the
1-dimensional Weisfeiler-Lehman test (1-WL); see (Grohe
2021). It is known that 1-WL cannot distinguish all non-
isomorphic graphs. More precisely, it can distinguish exactly
those that are not C2-equivalent (Cai, Fürer, and Immerman
1992). Thus, it is not surprising that message-passing GNNs
have the same limitations. The following two theorems were
independently proved in (Morris et al. 2019; Xu et al. 2019).

Theorem 2. Let g be a GNN and G,G′ two graphs. If
G,G′ are C2-equivalent, then g(G, θ) = g(G′, θ) for any
tuple of parameters θ.

It follows from the above theorem that we cannot distin-
guish two C2-equivalent graphs by a message-passing GNN,
no matter its number of layers or dimensionality of the pa-
rameters used in their comb and agg functions.

The reverse direction holds as well, even though the result
is not uniform. Particularly, for each n there is a GNN that
is able to distinguish all pairwise C2-non-equivalent graphs
up to size n.

Theorem 3. Let n ≥ 1. There is a GNN g and parameters θ
such that for all graphs G,G′ of order at most n, if G,G′

are not C2-equivalent, then g(G, θ) ̸= g(G′, θ).

Whether a particular GNN actually distinguishes two
graphs depends on the number of layers and the functions
comb, agg and ro. Crucially, it depends on how well agg
can separate two different multisets of (feature) vectors. For
instance, it is known that agg based on the summation sum
are more expressive than those based on mean, with max
being the least expressive variant (Xu et al. 2019).

To further increase the GNN expressiveness, there are
various higher-order GNN variants, mostly mimicking the
k-dimensional WL test; see (Grohe 2021). Here, instead
of single nodes, we compute the 1-WL over a graph built
from all k-tuples of nodes. Such variants can then distin-
guish graphs up to Ck-equivalence. However, the number of
k-tuples grows fast with k, hence variants based on k-sets
(sets of size k) were introduced instead (Morris et al. 2019).
Although k-sets are more efficient, they lose the theoretical
connection with the WL test.
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Encodings
To apply a GNN to learn a policy, one needs to design an en-
coding of the enriched state into a data structure compatible
with the GNN’s input format. In this section, we system-
atically explore the space of such possible encodings to be
later tested in our experiments. Each encoding converts an
L-structure S either to a labeled graph, multi-graph, or bi-
partite (multi) graph. We further decompose each encoding
into two steps. The first step converts the L-structure S to a
binary structure S2. The second step transforms the binary
structure into the GNN input.

To define a binary structure S2 from an L-structure S,
there are several natural choices for creating its objects:

• the objects in S2 are the objects in S,
• the objects in S2 are the atoms that hold in S,
• the combination of the above cases, i.e., we create objects

in S2 from both the objects and the valid atoms in S,
• the objects in S2 are (ordered) pairs of objects from S.

In the following subsections, we discuss each variant in de-
tail. As a running example illustrating each encoding, we use
the LG-structure from the following example.

Example 1. Consider a language L consisting of a nullary
predicate symbol N , two unary predicates R,L, a binary
A, and ternary T . Recall that the language LG is the exten-
sion of L by the goal copies of all the predicates. The LG-
structure S is defined over the set of objects S = {r, l1, l2}
so that it satisfies exactly the following set of ground atoms:

{N,R(r), L(l1), L(l2), A(r, l1), AG(r, l2), T (r, l1, l2)}

Before we describe the particular encodings, we introduce
our notation regarding tuples of objects. For a tuple of ob-
jects c⃗, ci denotes its i-th element. Given a set of objects B
and a tuple of objects c⃗, we use the expression B ⊆ c⃗ to
state that each object fromB occurs in c⃗. For two tuples b⃗, c⃗,
the expression b⃗ ∩ c⃗ denotes the set of their shared objects.
Analogously, b⃗ ∪ c⃗ is the set of all objects occurring in at
least one of the tuples. Finally, b⃗△c⃗ = (⃗b∪ c⃗) \ (⃗b∩ c⃗) is the
symmetric difference of the elements occuring in b⃗ and c⃗.

Object Binary Structure
The first encoding keeps the sets of objects in S and S2 the
same. To reduce the arity of predicates greater than 2 to bi-
nary, we simply relate two objects if they jointly occur in an
atom that holds in S. Given a language L, we define its bina-
rization LO as the language consisting of the same predicate
symbols as L, but with arity of all the predicates beyond bi-
nary being equal to 2.

Definition 1. Let S = ⟨S, ⟨RS | R ∈ L⟩⟩ be an L-structure.
We define its object binary structure as an LO-structure
S2 = ⟨S, ⟨RS2 | R ∈ LO⟩⟩ where RS2 = RS for a nullary
or unary predicate symbol R. For a predicate R of arity at
least 2, we define

⟨c1, c2⟩ ∈ RS2 iff {c1, c2} ⊆ c⃗ for some c⃗ ∈ RS.

R,N

L,N L,N

A
,T

T

A
G , T

Figure 3: Object binary structure S2 built from the LG-
structure introduced in Example 1.

Note that all the binary relations in S2 are symmetric by
the definition because c1, c2 might occur in any position in
c⃗. As a variant, it makes sense to keep the binary relations
in S2 the same as in S. However, for relations RS of arity
greater than 2, there is no canonical way to define directions
on RS2 . Hence, we keep all the binary relations symmetric
in S2 for simplicity. The structure S2 for S defined in Ex-
ample 1 is shown in Fig. 3. The nullary and unary predicates
are depicted as node labels. The fact that the nullary pred-
icate N holds in S2 is depicted as a label shared across all
the objects. If there are several binary relations connecting
two nodes, we list them along a single edge.

Once we have the binary structure S2, we can build the
corresponding GNN input. First, we encode the information
about nullary and unary predicates into node feature vectors.
This can be done by the multi-hot encoding, where we treat
the nullary predicates as unary ones that either hold for all
objects or none. Then, for a graph variant, we encode the
information about all the relations connecting two nodes into
a respective multi-hot edge feature vector or, for a multi-
graph variant, we treat each such relation as a separate edge
with a corresponding one-hot feature vector. Depending on
the applied GNN model, the edge feature vectors are then
either exploited or ignored.

Atom Binary Structure
The next natural choice for objects of S2 is the atoms that
hold in S. The concept of connecting two atoms is then
based on their contained and shared objects. First, we con-
nect two atoms if they share common objects. Second, we
also connect two atoms if the symmetric difference of ob-
jects occurring in the atoms is related by a relation from S.

Let L be a language and m the highest arity of a predicate
in L. We define a new language LA such that each predi-
cate from L is in LA as a unary predicate, and for each pair
⟨i, j⟩ ∈ [1,m]2 there is a binary predicate Ei,j . Finally, for
each predicateR of arity at least 2, there is a binary predicate
R̂ in LA.
Definition 2. Let S = ⟨S, ⟨RS | R ∈ L⟩⟩ be an L-structure.
We define its atom binary structure as an LA-structure S2 =
⟨A, ⟨RS2 | R ∈ LA⟩⟩ where A is the set of all atoms that
hold in S, i.e., each atom α ∈ A is of the form R(c⃗) for
some tuple c⃗ ∈ RS.

For a unary predicate R ∈ LA and an atom α ∈ A, we
define

α ∈ RS2 iff α = R(c⃗).

Hence, the unary predicates in LA express the predicate of a
given atom.
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1
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Figure 4: Atom binary structure corresponding to the struc-
ture from Example 1.

For a binary predicate Ei,j ∈ LA and atoms α, β ∈ A,
we define

⟨α, β⟩ ∈ ES2
i,j iff α = R(⃗b), β = R′(c⃗) and bi = cj .

In words, the binary predicatesEi,j tell us that the i-th object
of the atom α is the same as the j-th object in the atom β.

For a binary predicate R̂ ∈ LA and atoms α, β ∈ A, we
define

⟨α, β⟩ ∈ R̂S2 iff α = R′(⃗b), β = R′′(⃗b′) and

b⃗△b⃗′ ⊆ c⃗ for some c⃗ ∈ RS.

The meaning of the predicate R̂ is that if we remove all com-
mon objects from b⃗ and b⃗′, the remaining set of objects ap-
pear in an atom of the form R(c⃗) that holds in S.

The atom binary structure S2 for the running example
is depicted in Fig. 4. Each atom is labeled by its predi-
cate. For example, the atom T (r, l1, l2) is labeled by T , and
AG(r, l2) is labeled by AG. Then note the directed edge
from T (r, l1, l2) to AG(r, l2) labeled by E1,1 and E3,2, as
the first object r in T (r, l1, l2) is also the first object in
AG(r, l2). Likewise, the third object l2 in T (r, l1, l2) is the
second object in AG(r, l2). Also note that the atom A(r, l1)

and AG(r, l2) are related by T̂ , since if we remove their
shared object r, the remaining objects l1, l2 occur in the
atom T (r, l1, l2).

To make a GNN input from the atom binary structure, we
follow a process analogous to the object binary structure.
That is, the unary predicates are encoded into the node fea-
tures, and the binary relations are encoded into edge fea-
tures, forming either graph or multi-graph, depending on the
choice of multi-hot or one-hot encoding, respectively.

Object-Atom Binary Structure
The next encoding builds the binary structure S2 on both
objects and atoms. This naturally leads to a bipartite graph
as we have two sorts of nodes. The edge relations connect an
object with an atom if the object occurs in the atom. Let L
be a language andm the highest arity of a predicate in L. We

R L L

TR A AG L LN

E
1

E
1

E
1

E
1

E
2 E

2

E
1

E 3

E
2

E
1

Figure 5: Object-atom binary structure corresponding to the
structure from Example 1.

define a new language LOA such that each predicate from L
is in LOA as a unary predicate, and for each i ∈ [1,m] there
is a binary predicate Ei. Finally, LOA has two extra unary
predicates O,F to distinguish objects from atoms.
Definition 3. Let S = ⟨S, ⟨RS | R ∈ L⟩⟩ be an L-
structure. We define its object-atom binary structure as an
LOA-structure S2 = ⟨S ∪A, ⟨RS2 | R ∈ LOA⟩⟩ where A is
the set of all atoms that hold in S, OS2 = S, and FS2 = A.
For a predicate R ∈ L and an atom α ∈ A, we define for the
unary R ∈ LOA:

α ∈ RS2 iff α = R(c⃗).

In other words, each atom knows its predicate. Moreover, if
R ∈ L is unary and an object b ∈ S, we further define

b ∈ RS2 iff b ∈ RS.

This means that each object knows its unary properties.
For an object b ∈ S and an atom α ∈ A, we define

⟨b, α⟩, ⟨α, b⟩ ∈ ES2
i iff α = R(c⃗) and b = ci.

In other words, we relate the object b with the atom α via Ei
iff b occurs in the i-th position within the atom α.

The object-atom binary structure for the structure S from
Example 1 is shown in Fig. 5. The atoms (i.e., elements of
A) are depicted as black dots whereas the objects (i.e., ele-
ments of S) as black boxes. The atoms are labeled by their
predicates and objects by the unary predicates from L they
satisfy. An object is connected to an atom if it appears in that
atom. For instance, the object l2 is connected to T (r, l1, l2)
via E3, to AG(r, l2) via E2, and to L(l2) via E1.

The GNN input is then formed analogously to the pre-
vious two cases, forming edge features from the respec-
tive binary relations, and two types of feature vectors for
the object and atom nodes, respectively, resulting in a bi-
partite (multi) graph. Thus the information from the feature
vectors attached to objects is propagated to the feature vec-
tors of atoms, and vice versa. We note that the multi-graph
variant of this bipartite encoding, together with a suitable
GNN architecture, roughly corresponds to the model applied
in (Ståhlberg, Bonet, and Geffner 2022a,b, 2023).

Object-Pair Binary Structure
To reach beyond the expressive power of the C2 logic, we
also introduce an encoding inspired by the higher-order
GNNs, namely 2-GNN (Morris et al. 2019). Given a graph
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G, 2-GNN applies the message passing scheme to a graph
built on 2-sets of objects. Two 2-sets {b1, b2} and {c1, c2}
are connected by an edge if |{b1, b2} ∩ {c1, c2}| = 1, i.e., if
they share a single object. Morris et al. also consider a “lo-
cal” variant of the graph where the 2-sets are connected if
they share a single object and the objects in their symmetric
difference are connected by an edge in G.

We model these 2-sets as 2-tuples whose components are
sorted by a fixed total order ≤ on the set of objects, i.e.,
b⃗ = ⟨b1, b2⟩ for objects b1, b2 such that b1 ≤ b2. Using the
non-strict ≤, unlike Morris et al., we thus also consider the
singletons, represented as ⟨b, b⟩. Given a finite set S, we de-
note [S]2 = {⃗b = ⟨b1, b2⟩ | b1, b2 ∈ S, b1 ≤ b2}. We refer
to the elements of [S]2 as ordered pairs.

Let L be a language. We define a new language LOP . The
languages L and LOP agree on the nullary predicates. For
each unary predicate P in L we have two copies P1, P2 in
LOP . For the remaining predicates R ∈ L of arity at least
2, we have one unary predicate R and one binary R̂ in LOP .
The language LOP further has an extra binary predicate E.

Definition 4. Let S = ⟨S, ⟨RS | R ∈ LOP ⟩⟩ be an L-
structure. We define its object-pair binary structure as an
LOP -structure S2 = ⟨[S]2, ⟨RS2 | R ∈ LOP ⟩⟩ where S2 is
the set of all ordered pairs of objects in S. The interpretation
of nullary predicates in S2 is the same as in S. For a unary
predicate P ∈ L and an ordered pair b⃗ = ⟨b1, b2⟩ ∈ [S]2,
we define b⃗ ∈ PS2

1 iff b1 ∈ PS and b⃗ ∈ PS2
2 iff b2 ∈ PS.

For a unary predicate R ∈ LOP corresponding to a
predicate R ∈ L of arity at least 2 and an ordered pair
b⃗ = ⟨b1, b2⟩ ∈ [S]2, we define

b⃗ ∈ RS2 iff {b1, b2} ⊆ c⃗ for some c⃗ ∈ RS.

In other words, the ordered pairs know if their inner objects
are related by the predicate R. For two ordered pairs b⃗, c⃗ ∈
[S]2, we define

⟨⃗b, c⃗⟩ ∈ ES2 iff b⃗ ̸= c⃗ and |⃗b ∩ c⃗| = 1.

Lastly, for a binary predicate R̂ ∈ LOP and two ordered
pairs b⃗, c⃗ ∈ [S]2, we define

⟨⃗b, c⃗⟩ ∈ R̂S2 iff ⟨⃗b, c⃗⟩ ∈ ES2 and b⃗△c⃗ ⊆ d⃗ for d⃗ ∈ RS.

The object-pair binary structure for the structure S from
Example 1 is shown in Fig. 6. Note that the validity of the
nullary atom N is depicted as a label N attached to all or-
dered pairs. The predicates labeling the ordered pairs with
the subscript 1 (resp. 2) refer to properties of the first (resp.
second) object in the pair. Ordered pairs are also labeled by
the predicates relating their components. For instance, the
ordered pair ⟨r, l2⟩ is labeled by AG and T because r, l2 oc-
cur in AG(r, l2) and T (r, l1, l2). The edges labeled by E
connect different ordered pairs sharing a common object,
e.g., ⟨l1, l1⟩ is related to ⟨l1, l2⟩ by E. Further edges connect
those ordered pairs, already connected by E, whose sym-
metric difference-objects are related by a predicate. For in-
stance, there is an edge T̂ between ⟨r, l1⟩ and ⟨r, l2⟩ because

N,R1, R2

N,R1, L2, A, T N,R1, L2, AG, T

N, L1, L2 N,L1, L2, T N, L1, L2

E
, Â

, T̂
E
, Â
G
, T̂

E, T̂

E
, Â

, T̂
E
, Â
G
, T̂

E
, Â
G
, T̂E

, Â
, T̂

E, T̂ E, T̂

Figure 6: Object-pair binary structure corresponding to the
structure from Example 1.

they are related by E, ⟨r, l1⟩△⟨r, l2⟩ = {l1, l2} and both
l1, l2 occur in T (r, l1, l2).

The GNN input is created from the LOP -structure S2 in
the same way as for the object binary structure.

Expressiveness
The previous section detailed several encodings transform-
ing an enriched state to a data structure suitable for existing
GNN models. In this section, we take a theoretical point of
view on their expressive power. Recall that we are interested
in whether a PDDL domain D contains bad indistinguish-
able pairs of enriched states. Since the policy algorithm is
supposed to solve instances within a given D, we only need
to distinguish pairs of states from a single instance, which
are always defined on a fixed set of objects and enriched by
the same goal.

Firstly, the expressive power of the algorithm might be
limited by the encoding. In practice, this is often due to the
conversion of the arbitrary input structure to the binary one.
For instance, consider a language L with a single ternary
predicate T and an L-structure S = ⟨{0, 1, 2}, TS⟩ where
TS = {⟨0, 1, 1⟩, ⟨1, 2, 2⟩, ⟨2, 0, 0⟩}. The object binary struc-
ture for S (Definition 1) is then just a triangle with self-loops
on the set {0, 1, 2}. Now consider a similar L-structure S′

whose interpretation of T is TS′
= TS ∪{⟨0, 1, 2⟩}. Appar-

ently, if we create the object binary structure for S′, we end
up with the same triangle as before. Thus S and S′ are in-
distinguishable if we apply the encoding from Definition 1.
On the other hand, the encodings given by the atom binary
(Definition 2) and object-atom binary (Definition 3) struc-
tures can distinguish S and S′, as these structures differ in
the number of valid ground atoms, corresponding to nodes.

Secondly, the expressiveness of a GNN is primarily lim-
ited by the C2-equivalence (Theorem 2) w.r.t. its input
graphs. Hence, if the graphs produced by the encoding for a
pair of enriched states S and S′ are C2-equivalent, the GNN
will predict the same output for both. For instance, con-
sider the well-known “blocksworld” PDDL domain, which
contains at most binary predicates, ensuring that none of
the introduced encodings loses information. Nevertheless,
one can construct C2-equivalent blocksworld states S,S′

such that V ∗(S) ̸= V ∗(S′), an example of which is shown
in Fig. 7. The goal for both states is defined by ψG =
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Figure 7: Two C2-equivalent states in the blocksworld

{OnG(c, a), OnG(c′, a′)}, as depicted by arrows. The struc-
ture S satisfies the following C3-sentence, while S′ does not:

∃x, y, z(On(y, x) ∧On(z, y) ∧OnG(z, x))
This sentence expresses that there is a “cycle” of length 3
that cannot be equivalently expressed in C2. If we encode
S,S′ by the object binary structure (Definition 1), we ob-
tain just their symmetric versions that are C2-equivalent as
well. Similarly, the encoding based on the object-atom bi-
nary structure (Definition 3) does not resolve the issue, as it
also produces C2-equivalent graphs.

Nevertheless, we can overcome the limits of C2-
equivalence for the above-mentioned blocksworld states us-
ing the object-pair binary structure encoding (Definition 4).
Recall that this encoding forms ordered pairs of objects that
are connected if they share a common object. This shared
object can then be exploited as a “memory” for detecting
the cycles. More precisely, the object-pair binary structure
for S satisfies the following C2-sentence:

∃x, y(On(x) ∧OnG(y) ∧ Ôn(x, y))
Note that the variables x, y are now interpreted as or-
dered pairs. The witnesses showing that the above sentence
holds are the pairs ⟨a, b⟩ and ⟨a, c⟩. This yields On(⟨a, b⟩),
OnG(⟨a, c⟩), and Ôn(⟨a, b⟩, ⟨a, c⟩) as these pairs share the
object a, and the remaining objects b, c are related by On
in S. On the other hand, the object-pair encoding of S′ does
not satisfy the above sentence since none of the ordered pairs
sharing a single object is related by Ôn.

Note that similar reasoning can also be applied to the
atom binary structure (Definition 2) since each atom, in fact,
represents a tuple of objects. Therefore it effectively distin-
guishes the C2-equivalent blocksworld states as well. How-
ever, the collection of atoms need not represent all k-tuples
of objects (e.g., all the ordered pairs). Consequently, the
atom binary structure and object-pair binary structure encod-
ings are not directly comparable in their expressive power.

Experimental Study
The theoretical investigation of expressiveness for all the
particular encodings and GNNs is considerably challenging,
given the plethora of existing models and the limited appli-
cability of Theorem 2 and Theorem 3 to only a selected sub-
set (Xu et al. 2019). To efficiently address this challenge,
we propose an alternative, experimental protocol based on
testing whether a given encoding-GNN integration correctly
recognizes bad indistinguishable pairs in a set of generated
planning states.2 To conduct this evaluation, we consider

2The code to reproduce the presented experiments is available
at https://github.com/GustikS/GNN-expressiveness-planning

IPC domains. For each domain and each of its instances (12
on average), we generate random states and label them with
the value of V ∗, computed by a planner (if a plan is found).

Recall that each combination of an encoding and a GNN
model yields a function f , assigning a prediction f(S, θ) to
each state structure S given some GNN parameters θ, and
that for any indistinguishable pair of states S,S′ it must hold
f(S, θ) = f(S′, θ) for any θ. Thus, if f(S, θ) ̸= f(S′, θ)
for some θ, we may instantly refute the pair from being
bad. On the other hand, if the states yield an equal value,
it may still be due to chance rather than being indistinguish-
able. Note, however, that f is continuous in θ, as we com-
monly use injective activation functions, such as tanh,3 and
most of the sampled parameters in θ are non-zero. Conse-
quently, the probability of this happening is rather small,
which we further reduce by the “amplification trick” used
in design of randomized algorithms (Sourek, Zelezny, and
Kuzelka 2020). Specifically, we repeatedly sample θ and
evaluate all the states in a given set to yield a list of predic-
tions (f(Si, θ1), . . . , f(Si, θrep)) for each Si. Using a rea-
sonable combination of the prediction value numeric pre-
cision (digits = 6) and number of repeated θ-evaluations
(rep = 3), we effectively detect all the indistinguishable
subsets of states. Note that this can be done efficiently in
linear amortized time using a hash table. The resulting num-
ber of “bad” state pairs then comes from combining the in-
distinguishable subsets with the V ∗-equivalent subsets, and
reporting the sum of their C(n, 2) combinations.

Tab. 1 contains the results of our analysis. The consid-
ered encodings are O, A, O-A, and O-P, corresponding to
the object, atom, object-atom, and object-pair binary struc-
tures, respectively. The superscripts G, MG, BG, and BMG
then denote whether the resulting GNN encoding is a graph,
multigraph, bipartite graph, or bipartite multigraph, respec-
tively. None of the A encodings use the R̂ predicates (see
Definition 2) except for ÂMG.

The selection of the presented GNN models for the ex-
periments was based on their practical prevalence and com-
patibility with the input structures, ensuring comprehensive
support for the respective edge features, multi-graphs, and
bipartite graphs. All their implementations come from the
standardized PyTorch Geometric library (Fey and Lenssen
2019), where they are available under the reported names.
We performed ablation w.r.t. their parameter dimensionali-
ties, number of layers, and aggregation operators. We found
the dimensionalities to be of negligible statistical importance
beyond a reasonably low value (dim = 16), and similarly
for the number of layers (layers = 8), corresponding to the
iterations of the CR. The choice of the aggregation has a
significant impact though, with aggr = sum being clearly
superior to mean and to max, respectively, in accordance
with the findings in (Xu et al. 2019).

All the selected PDDL domains come from IPC, with the
exceptions of “vacuum-sep” and “vacuum-sh” introduced
in (Ståhlberg, Bonet, and Geffner 2022a). These domains
model multiple robots cleaning a single spot. The two vari-

3This is slightly complicated by the fixed ReLU functions used
in some of the GNNs, but is of negligible practical impact.
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Models OG OMG O-ABG O-ABMG AG AMG ÂMG O-PG O-PMG

GCN (Kipf and Welling 2016) 222,04 30,09
SAGE (Hamilton, Ying, and Leskovec 2017) 249,78 32,66 54,80 61,94 71,72 4,54 21,80 340,03 31,48
GIN (Xu et al. 2019) 227,46 24,55 142,20 35,05 42,41 18,49 17,73
GINE (Hu et al. 2020) 12,22 61,33 40,19 4,55 1,67 26,46 23,31
GATv2 (Brody, Alon, and Yahav 2021) 32,56 22,03 99,19 78,21 50,85 6,38 4,18 7,64 6,27
NN (Gilmer et al. 2017) 29,40 38,16 44,26 3,72 1,03 5,34 1,73
Transformer (Shi et al. 2021) 34,55 30,44 102,30 66,82 49,12 3,64 1,65 12,66 9,89
PDN (Rozemberczki et al. 2021) 23,04 19,47 45,38 6,56 2,48 43,08 17,95
GEN (Li et al. 2020) 29,46 32,06 54,83 65,96 53,74 1,75 2,05 1,30 1,00
General (You, Ying, and Leskovec 2020) 31,79 39,59 52,25 49,12 46,39 3,57 3,21 337,92 32,92
RGCN (Schlichtkrull et al. 2018) 212,42 44,64 62,70 51,92
FiLM (Brockschmidt 2020) 233,12 27,91 59,93 48,43

Domains #objects #states V ∗

barman 23,3 45,5 4,2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
blocks 11,9 88,4 11,0 0,31 0,31 0,00 0,00 0,00 0,00 0,00 0,04 0,04
depot 21,3 81,5 7,5 0,00 0,00 0,13 0,13 0,00 0,00 0,00 0,13 0,13
elevators 19,2 60,7 7,8 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00
floortile 16,0 43,0 10,9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
freecell 51,1 21,3 1,9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
gripper 17,0 89,1 10,0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
logistics 19,9 100,0 13,5 0,00 0,00 0,15 0,25 0,00 0,00 0,00 0,05 0,30
parcprinter 46,0 61,2 11,0 59,83 60,17 57,83 57,83 61,83 84,50 77,00 7,50 7,33
pegsol 33,0 37,2 9,8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
rovers 41,4 91,5 5,7 0,00 0,00 0,04 0,04 0,17 0,55 0,55 0,00 0,00
satellite 32,9 80,0 5,8 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,21 0,79
scanalyzer 13,0 66,5 3,6 87,00 153,50 6,75 8,00 27,75 1,25 27,75 6,50 6,00
sokoban 111,6 116,2 27,2 644,55 695,85 1243,15 1508,00 1209,35 8,95 19,26 1,00 0,67
tidybot 27,4 64,1 3,7 0,05 0,05 0,05 0,05 0,00 0,00 0,00 0,10 0,00
tpp 16,9 87,7 4,4 0,00 0,18 0,00 0,00 0,00 0,00 0,00 0,00 0,00
transport 18,8 90,1 6,9 0,00 0,00 0,00 0,08 0,00 0,00 0,00 0,00 0,17
visitall 36,3 103,9 9,5 0,07 0,00 0,20 0,07 0,00 0,00 0,00 0,00 0,00
woodworking 39,7 73,1 5,9 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
pipesworld 27,7 41,4 2,0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
vacuum-sep 21,8 101,0 1,6 1,50 1,10 4,95 4,10 4,95 1,35 0,00 5,20 3,55
vacuum-sh 21,8 101,2 1,5 3,75 0,40 7,40 4,65 10,60 2,65 0,20 13,80 10,10

avg. instance eval. runtime (s) 1,17 1,47 3,34 2,90 6,11 6,50 7,38 11,72 13,74

Table 1: Average number of bad indistinguishable state pairs across the introduced encodings and common GNN models (upper
part); and across common planning domains (lower part) using a fixed GNN model (GEN by Li et al.). We also report average
instance statistics across the domains, and average instance runtimes across the different encodings.

ants differ in the maps defining the robots’ allowed moves.
In the first variant, each robot has its own map, unlike in the
second variant, where the map is shared across the robots.

The upper part of Tab. 1 presents the average numbers of
bad state pairs for a particular encoding and GNN model
across all PDDL domains. The absence of certain combi-
nations is due to the incompatibility of the GNN model with
the respective encoding. Notably, the combinations based on
the most expressive encodings of the atom and object-pair
binary structures tend to perform the best overall. The lower
part of the table displays the performance of the encodings
for the domains using a fixed GNN model (GEN by Li et al.).
As can be seen, for each domain there exists an encoding
that can almost perfectly distinguish the states, with excep-
tions for “parcprinter”, “scanalyzer”, “sokoban”, and both
the “vacuum” domains. Interestingly, the “sokoban” domain
appears particularly challenging across a wide range of set-
tings, but can be effectively addressed with the A, O-P en-
codings. We note that a common trait of the difficult do-
mains is the use of predicates of arity greater than 2. Con-
versely, the ”pegsol” domain employs a ternary predicate

and still exhibits no bad pairs. However, the ternary pred-
icate in “pegsol” is static (unaffected by actions), and the
states are modeled by unary predicates, making the domain
likely more manageable.

Conclusions

We systematically defined possible encodings of planning
states into data structures compatible with common GNNs.
Each such proposed encoding, in conjunction with several
compatible GNN models, was assessed for the presence of
undesirably indistinguishable state pairs. Our findings high-
light the superior expressiveness of the encodings based on
atoms and object-pairs, relative to the, more common, en-
codings based on object-atom and object binary structures.
Nevertheless, their superiority is accompanied by larger
GNN inputs and runtimes. Most of the empirical limitations
of GNN expressiveness in planning domains then seem to
stem from the presence of predicates with arity exceeding 2,
a conclusion that aligns intuitively with the binary nature of
the message-passing scheme underlying the GNNs.
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