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Abstract

In this paper, we first define numeric additive planning
(NAP), a planning formulation equivalent to Hoffmann’s Re-
stricted Tasks over Integers. Then, we analyze the minimal
number of action repetitions required for a solution, since
planning turns out to be decidable as long as such numbers
can be calculated for all actions. We differentiate between
two kinds of repetitions and solve for one by integer linear
programming and the other by search. Additionally, we char-
acterize the differences between propositional planning and
NAP regarding these two kinds. To achieve this, we define
so-called multi-valued partial order plans, a novel compact
plan representation. Finally, we consider decidable fragments
of NAP and their complexity.

Introduction
In classical propositional planning scenarios, effects are ac-
tivations/deactivations of certain propositions, i.e., assign-
ments of truth values ⊤,⊥. Notice that activating p twice
instead of once results in the same state. Therefore, ignor-
ing preconditions, any two (propositional) plans of the form
[a, b, c], [a, b, b, c] are equivalent, i.e., repeating an action
without changing the order does not change a propositional
plan.

Conversely, order could be irrelevant in some numeric
planning scenarios. For example, if actions have no precon-
ditions and can only increase or decrease variables by a con-
stant, then it is only relevant to know how often each action
should be repeated in the plan irrespective of order. Effects
in this setting are additive. Since addition is associative and
commutative, we can assume that all additions occur in par-
allel. In numeric planning with preconditions, both order and
the number of repetitions are relevant.

To illustrate the difference, consider the effects of actions
like pay ten euros and open the door. One can immediately
see the difference when one imagines a plan containing two
successive repetitions of each action. If a minimal plan be-
gins with the action open the door, there is no need to repeat
this action later on in that plan, as long as none of its effects
is deactivated by a following action, like close the door.
However, one can easily imagine two successive repetitions
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Figure 1: Demonstration of the expressive power of additive
(below) compared to de-/activation effects (above). Com-
pare p, q, r with x, y, z, respectively, in all actions (rectan-
gles) and the resulting states (ellipses) for all three plans.

of pay ten euros, without any of its effects getting “deacti-
vated” or “reversed”. One could perform these two actions
in parallel via pay twenty euros. This looks intuitive here,
but it becomes hard to know which actions can be done
in parallel when the problem is more complicated, e.g., if
pay ten euros has preconditions that make it not always re-
peatable twice in a row.

To finalize our observations, we show in Fig. 1 six plans,
three propositional (above), and three numeric (below). All
actions are described by their preconditions above and ef-
fects below the action name. By x+=1 we mean that the ac-
tion increments x by 1 after applying it, and x−=1 means
that the value is decremented by 1. Initially, p, q, r are deac-
tivated (false), and x = y = z = 0. Compare the plans from
left to right, where (1) on the left, we begin with a simple
plan; (2) in the middle, we repeat the action b; and (3) on the
right, we add a negative effect to a. Notice that all precon-
ditions and effects have the same overall structure w.r.t. the
variables p with x, q with y, and r with z. We can see that
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all three propositional plans result in the same state, while
the numeric plans result in three different states. These ex-
amples illustrate the additional expressive power of numeric
additive over activation/deactivation effects.

In a nutshell, we say that in the plan [a, b, b, c], there are
two parallel repetitions of b, and in the plan [a, b, d, b, c],
there are two sequential repetitions of b, because they
are separated by an occurrence of d. As discussed be-
fore, no parallel repetitions of propositional actions like
open the door are relevant. However, numeric planning is a
superset of propositional planning, i.e., parallel and sequen-
tial repetitions of actions could be needed for the solution.
This paper aims to study the differences between these two
kinds and find a compact and least committing representa-
tion for both. This will help structure the search for solu-
tions to the planning problem and lead to novel decidable
fragments.

Paper outline: We define the planning problem and study
its expressivity in the 3rd section. Then, in the 4th section,
we define a new way of representing plans. In the 5th sec-
tion, we introduce the solving algorithm. Finally, we define
three decidable fragments in the 6th section.

Related Work
Introducing unbounded numeric variables makes planning
problems undecidable in general (Helmert 2002). In recent
years, many results have been published to tackle this issue
by introducing restrictions on the planning problem: (Shin
and Davis 2005; Gerevini, Saetti, and Serina 2008; Eye-
rich, Mattmuller, and Roger 2009; Coles, Fox, and Long
2013; Scala et al. 2017; Aldinger and Nebel 2017; Li et al.
2018; Piacentini et al. 2018; Kuroiwa et al. 2021; Shleyf-
man, Kuroiwa, and Beck 2023; Gnad et al. 2023). Specifi-
cally, Helmert (2002) presents decidable cases based on re-
stricting the allowed mathematical functions and relations.
We continue his work and identify decidable fragments
based on their structural properties, similar to the causal
graphs approach (CG) (Jonsson and Bäckström 1998; Braf-
man and Domshlak 2003; Helmert 2004; Giménez and Jons-
son 2008). We consider a variant of simple numeric planning
(SNP) (Scala et al. 2016), which is equivalent to restricted
tasks (RT) (Hoffmann 2003). Shleyfman et al. (2023) show
how RT/SNP with restrictions on the causal structure of vari-
ables, as in the fragment NLRT, is in PSPACE. We extend
that PSPACE-fragment by focusing instead on the “viola-
tion” relation between actions. Additionally, many complex-
ity results are considered w.r.t. total or partial order plans,
while we use the ability for some exponential length plans
to be described with a polynomial-size representation.

Furthermore, many results on the advancements of plan-
ning solvers show how numeric planning could benefit from
heuristic search, e.g., by using abstraction methods: (Seipp
and Helmert 2014; Illanes and McIlraith 2017, and oth-
ers). We follow the line of Hoffmann (2003), who pro-
posed an extension of the delete-lists relaxation for propo-
sitional planning to numeric planning. We will extend his
ideas about relaxed planning graphs (RPG) by ignoring “vi-
olations”. Lastly, we base our approach on some of the in-

sights from LP-RPG (Coles et al. 2008) about the number
of occurrences of an action in a plan, but we will use more
general terms like sequential and parallel repetitions.

Numeric Additive Planning (NAP)
The following definition will allow for a straightforward
translation of the planning problem into an ILP system,
as we will see in Section 4. Although, at first glance, the
formulation lacks propositional preconditions and effects,
we will include these later. We use the Greek letter π for
preconditions and σ for the additive (sum) effects.

Definition 1. A numeric additive planning domain (denoted
NAD) is a tupleA = (A, V, σ, π), where A, V are finite non-
empty sets of actions and variables, respectively. Addition-
ally, σ : A×V → Z defines the additive effect of each action
on each variable, and π : A× V → Z ∪ {−∞} defines the
numeric precondition of each action for each variable.

For each action b ∈ A and each variable x ∈ V , it is
meant for the current value of x to be greater than or equal to
π(b, x) for b to be applicable. If π(b, x) = −∞, then the pre-
conditions of b are not dependent on the value of x. After ap-
plying b, the current value of x is incremented/decremented
by the (constant) integer value σ(b, x) ∈ Z. If σ(b, x) = 0,
the action b has no effect on variable x. We say [x ≥ v] is a
precondition of b if π(b, x) = v, and [x+=v] is an effect of b
if σ(b, x) = v as well as [x−=v] if σ(b, x) = −v, for v ∈ Z.
Definition 2. For a NADA = (A, V, σ, π), we define a state
S : V → Z as a function assigning an integer value to each
variable. Additionally:
• For an action a ∈ A, a state satisfies the preconditions

of a iff S(x) ≥ π(a, x) for all x ∈ V (denoted S ⊨ a).
• An action a ∈ A can be added to a state by adding its

effects, i.e., (S + a)(x) := S(x) + σ(a, x) for x ∈ V .
With states defined, we are ready to define the validity of

any sequence of actions.
Definition 3. For n ∈ N≥1, and actions a1, ..., an ∈ A, we
call the sequence of actions l := [a0, a1, ..., an] a plan. We
denote the length of the plan with |l| = n, and say that l
is valid from an initial state S0 : V → Z if Si ⊨ ai, with
Si := Si−1 + ai−1 if i ≥ 1, for all i ∈ {0, .., n}.

In this paper, unlike many other planning formulations,
we will encode the set of goal states as a precondition of one
of the actions (usually named g). In other words, we ask the
following question: Given an initial state S0 and an action
g, does a valid plan that ends with g exist? I.e., is it possible
to reach a state S s.t. g is applicable (S ⊨ g)? Therefore, we
will denote the planning problem as {S0 → g}A.
Definition 4. For a NAD A = (A, V, σ, π), an initial state
S0 : V → Z, and an action g ∈ A, a numeric additive
planning problem (denoted NAP) {S0 → g}A is defined as
the set of plans l = [a0, ..., an], s.t. an = g and l is valid
from S0.

If the context is clear, we will use A, V, σ, π without ex-
plicitly referring to that A = (A, V, σ, π), when speaking of
NAP {S0 → g}A.
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Expressiveness
Preconditions: In NAP, we only allow preconditions of
the form [x ≥ v] for a variable x ∈ V and an inte-
ger v ∈ Z. However, for any precondition of the form
[x ≤ v], we can define a new variable x s.t. for all a ∈ A,
σ(a, x) = −σ(a, x). This implies that if the initial state
S0 : V → Z, respects S0(x) = −S0(x), then, any reach-
able state S : V → Z from S0, we get S(x) = −S(x). I.e.,
[x ≤ v] is equivalent to [x ≥ −v], which is representable in
NAP. We can, therefore, represent preconditions of the form
[x = v] as [x ≥ v]∧[x ≥ −v]. Additionally, preconditions of
the form [x > v] can be represented by [x ≥ v+1], since we
only deal with integers. Finally, if an action a has a disjunc-
tion in its preconditions, e.g., [x ̸= v] ≡ [x > v] ∨ [x < v],
we can create two actions a1, a2 with the same effects but
a1 has [x > v] as its precondition and a2 has [x < v]. Fi-
nally, for an action a with the conditional effect [x ≥ v] →
[y+=w1] ∧ [x < v]→ [y+=w2], for x, y ∈ V, v, w1, w2 ∈ Z,
we can define two actions a1, a2 s.t. a1 is applied in the
first situation (precondition [x ≥ v] and effect [x+=w1]),
and a2 is applied in the second situation. It is also important
to mention that preconditions with a linear combination of
variables, e.g., [x+2y− z ≥ v], can be represented in NAP
by defining a new variable t := x + 2y − z and ensuring
that all the effects on x, y, z are combined with effects on t
with a factor 1, 2,−1 respectively. All these transformations
can be easily implemented and reversed. For this reason, in
NAP, we can focus only on conjunctions of preconditions
of the form [x ≥ v] and unconditional additive effects.

Effects: NAP lacks the de-/activating effects used in
propositional planning (PP). However, this does not nec-
essarily mean that PP cannot be reduced to NAP in poly-
nomial time. Given a PP domain A := (A,P, eff, pre) with
sets of actions and propositions A,P , respectively. We de-
fine Lit := {p,¬p : p ∈ P} as the set of literals. Finally,
pre, eff : A → 2Lit are functions defining the precondi-
tions and effects of each action. A state in PP is a func-
tion S : P → {⊤,⊥}. A PP problem is given as a tuple
(A, I, G), where I is the initial state and G ⊆ Lit describes
a set of goal states S s.t. S(p) = ⊤ iff p ∈ G, and S(p) = ⊥
iff ¬p ∈ G.

For each proposition p, we create a numeric variable
xp. For an initial state I , we create an initial state SI , s.t.
SI(xp) = 1 iff I(p) = ⊤, and SI(xp) = 0 iff I(p) = ⊥.
For each propositional precondition p, we add a numeric
precondition [xp = 1], and for ¬p, we add [xp = 0]. And
finally, for each propositional effect p, we add a numeric ef-
fect [xp+=1] and for ¬p, we add [xp−=1]. Notice that in PP,
as discussed in the introduction, an action a with a precon-
dition p can be applied even if p was activated twice before,
but this does not work for our current translation. E.g., for
a proposition r, propositional actions a, b, g, and initial state
I , if I(r) = ⊥, r ∈ eff(b)∩ pre(g), and ¬r ̸∈ eff(a), then, if
[a, b, b, g] is valid from I in PP, [a, b, b, g] is not valid from
SI in NAP with the translation above because the state S
before applying g has S(xr) = 2, but g has the precondition
[xr = 1], compare the middle plans in Fig. 1. Therefore, for
each proposition r, we need two new actions cr, c¬r that cor-

rect the numeric value representing a proposition r from any
value greater than 1 to 1 and from any value less than 0 to
0, i.e., cr has the precondition [xr > 1] and effect [xr−=1],
and c¬r has the precondition [xr < 0] and effect [xr+=1].
Now, if [a, b, b, g] is valid from I in PP, then, [a, b, b, cr, g]
is valid from SI in NAP, where cr corrects one of the two
activations of r caused by the two repetitions of b before
a. Therefore, any PP domain A = (A,P, eff, pre) can be
translated to a NAD with |A| + 2|P | actions and 2|P | vari-
ables, and any propositional plan of length n corresponds to
a numeric plan with length less than n(|P |+ 1).

Complexity
We study the complexity of NAP w.r.t. ∥A∥, the minimal
number of bits required to encode a NAD A.
Theorem 1. Hoffmann’s Restricted Tasks (RT) can be re-
duced to NAP in polynomial time.

Proof. NAP is similar to RT, except that it does not allow
for propositional variables, which were shown to be included
in NAP without exponential blowup. Additionally, we can
transform any NAP over rationals into a NAP over integers
by scaling all variables with suitable factors. Parts of this
proof were discussed by Hoffman (2003).

Therefore, NAP is undecidable as it can model Abacus
programs, as Helmert (2002) shows. In that paper, a NAP
problem is equivalent to PLANEX-(Cc, Cc, E±c). Gnad et
al. (2023) show that multiplication and division by constant
and general assignment effects are included in RT/NAP,
proving the undecidability by reducing Collatz problems to
it.

Example
An investment company starts with an initial capital c0 ∈ N
and can perform buying and selling actions to reach a goal
profit of p ∈ N. Let us model a small example of this prob-
lem as NAP: We define the variables c for the current capital
and q for the number of products in stock. Additionally, two
actions: b for buying one instance of a product for 4 units of
money, σ(b, c) = −4, preconditioned by having this amount
of money, π(b, c) = 4, and s for selling it with 25% profit,
σ(s, c) = 5. In a simpler notation:
• The action b, to buy, with preconditions {[c ≥ 4]}, and

effects {[c−=4], [q+=1]}.
• The action s, to sell, with preconditions {[q ≥ 1]}, and

effects {[c+=5], [q−=1]}.
• The goal action g, with preconditions {[c ≥ c0 + p]}.

Finally, the initial state is defined by S0(c) := c0 and
S0(q) := 0. E.g., if p = 2 and c0 = 8, then l1 = [b, b, s, s, g]
and l2 = [b, s, b, s, g] are both valid plans. However, if the
initial capital c0 = 7, then only l2 is valid because there is
not enough capital to buy twice in a row before selling once.
This example will be used (always in italic) to demonstrate
the algorithms discussed in this paper because of its sim-
plicity. Of course, any sophisticated investment process in-
volves more actions than buying and selling the same prod-
uct. However, the results of this paper generalize to many
other planning domains with complicated dependencies.
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Multi-Valued Partial Order Plans (MvPOPs)
Let us first discuss the idea of a multi-valued relation. For
example, a classical binary relation r over a set K is a subset
of K2. We can represent this relation by fr : K2 → {0, 1},
s.t. fr(b, s) = 1 iff (b, s) ∈ r. We extend the concept by
allowing values other than 0 and 1, e.g., fr : K2 → N. We
usually represent solutions in planning as a partial order re-
lation <. An action b is ordered before s, denoted b < s,
here f<(b, s) = 1, if b occurs before s. With f<(b, s) = 2
we can represent that b occurs twice before s. We will use
this representation for the number of needed parallel rep-
etitions of actions. In cases where b occurs once before s
and once after it as in l2 = [b, s, b, s, g], we define b′ to be
a new action with the same preconditions and effects as b.
l2 is thus equivalent to l′2 = [b, s, b′, s, g], where b, b′ are
sequential repetitions of b. We can alleviate the need for la-
beling different sequential repetitions (e.g., via b, b′, b′′, ...,
or b1, b2, b3, ...) by using multi-sets of actions A = (A,µ)
for µ : A → N, where µ(a) is equal to the number of se-
quential repetitions of action a. Let |A| :=

∑
a∈A µ(a).

We use matrices P ∈ N|A|×|A| to describe the multi-valued
relation f< mentioned before. Instead of enumerating the
actions to match them with rows and columns, we label
the matrix entries by their respective actions directly, where
f<(a, b) = P[b, a], and P[b, a] is the entry in the row of b
and column of a in the matrix P, and it represents the num-
ber of parallel repetitions of a before b. Finally, we assume
that “for all a ∈ A” goes through all sequential repetitions
of all actions.

For the plan l2 = [b, s, b, s, g]. Given the (unordered)
multi-set A2 = {g, s, b, s, b}, the MvPOP P2 over A2 with
max. g described by the following matrix, is an equivalent
representation to l2 (Fig. 2):

P2 g s b s b

g 0 1 1 1 1
s 0 0 1 1 1
b 0 0 0 1 1
s 0 0 0 0 1
b 0 0 0 0 0

Notice the two different rows and columns for b. For exam-
ple, P2[b, s] = 1 (3rd row, 4th column) corresponds to the
occurrence of the first sequential repetition of b before s, and
P2[s, b] = 1 (2nd row, 3rd column) corresponds to the oc-
currence of s before the second sequential repetition of b.

On a side note, for any MvPOP P over A, an ordering
of A must exist, s.t., the matrix of P is triangular because
otherwise, the represented relation contains a cycle.
Definition 5. An MvPOP P over a multi-set A = (A,µ) is
a matrix in N|A|×|A| s.t. for all a, b, c ∈ A:
• Irreflexive: P[a, a] = 0.
• Asymmetric: P[b, a] > 0 implies P[a, b] = 0.
• Transitive: P[c, b] > 0 implies P[c, a] ≥ P[b, a].

We say that g ∈ A is a maximum (denoted max.) of P iff
P[a, g] = 0 for all a ∈ A.

Classically, partial order plans are a compact representa-
tion of a set of plans, known as linearizations of the partial

Figure 2: Partial orders representing P1(left) and P2(right).

order. E.g., if a < b, then a should occur before b in any
linearization of <. However, in an MvPOP P, there might
be multiple occurrences of an action a ∈ A. We will assume
that a linearization of P must have at least P[b, a] occur-
rences of a before the first occurrence of b for all a, b ∈ A.

Let #a(l) be the number of occurrences of action a in a
plan l, and let l[..b] be the sub-plan of l from the first ac-
tion to the first occurrence of b. E.g., if l = [a, c, c, b, e, b, g],
then l[..b] = [a, c, c, b]. Notice that in any MvPOP, if g is
the only maximum, it occurs at the end of any linearization.
Additionally, the number of occurrences of an action a ̸= g
should be fixed #a(l) = P[g, a] for all linearizations l of
P. Therefore, and because of transitivity, l[..b] must be con-
tained in l[..g], i.e., P[g, a] ≥ P[b, a]. We can thus define the
number of occurrences of a before b to be between P[b, a]
and P[g, a] in any linearization, for all a, b ∈ A

Definition 6. The set of linearizations of an MvPOP P (de-
noted lin(P)) over A = (A,µ) with exactly one maximum g
is the set of plans l ∈ A∗ s.t. P[b, a] ≤ #a(l[..b]) ≤ P[g, a]
for all a, b ∈ A, and g occurs once at the end of l.

Multi-Valued Total Order Plans
We call a multi-valued partial order with exactly one lin-
earization a multi-valued total order plan (MvTOP).
Lemma 1. For any plan l = [a0, ..., an] there exists a multi-
set A = (A,µ) and an MvTOP Pl over A with max. an s.t.
lin(Pl) = {l}.

Proof. Let µ(a) := #a(l), Pl[aj , ai] = 1 if i < j, and
Pl[aj , ai] = 0 else, for ai, aj ∈ A. Then, lin(Pl) = {l}.

Next, we will show, through an example, an illustration of
the translation of the NAP validity checking of an MvPOP
into an ILP satisfiability problem by constraining the states
that are produced through the plan, similar to Helmert’s ap-
proach (2002). For a NAD A = (A, V, σ, π) and a multi-set
A = (A,µ), we define the matrices that represent the effects
and preconditions, respectively, Σ,Π ∈ (Z∪{−∞})|A|×|V |,
with Σ[a, x] := σ(a, x), Π[a, x] := π(a, x), for all actions
a ∈ A over all variables x ∈ V . Finally, S0 ∈ Z|A|×|V | is a
matrix representing an initial state S0, by S0[a, x] := S0(x)
for all a ∈ A, x ∈ V .
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In our example, Σ and Π over A = {g, s, b} are:
Σ c q

g 0 0
s +5 −1
b −4 +1

Π c q

g 10 −∞
s −∞ 1
b 4 −∞

Given l1 = [b, b, s, s, g]. Let P1 be an MvPOP over {g, s, b}
with max. g, s.t. lin(P1) = {l1} (Fig. 2):

P1 g s b

g 0 2 2
s 0 0 2
b 0 0 0

Now, for an initial capital c0 = 8, if S := S0 +P1Σ, then:

S[s, q] = 0 + 0 · σ(s, q) + 2 · σ(b, q)
= 0 + 0(−1) + 2(+1) = 2 ≥ 1 = Π[s, q]

S[g, c] = 8 + 2 · σ(s, c) + 2 · σ(b, c)
= 8 + 2(5) + 2(−4) = 10 ≥ 10 = Π[g, c]

These are the values of the variables q, c before applying the
actions s, g, in any linearization of P1, respectively, which
satisfy the precondition of both action on the respective vari-
able, ensuring the plan’s validity (compare Fig. 2). We gen-
eralize this result.
Lemma 2. If l ∈ {S0 → g}A, then:

S0 +PlΣ ≥ Π

where ≥ applies to each element of the matrices.

Proof. Let S := S0 +PlΣ, i.e.:

S[b, x] = S0(x) +
∑
a∈A

Pl[b, a]σ(a, x)

Then, S[b, x] represents the state of variable x ∈ V before
one of the occurrences of action b in l, because Pl[b, a] = 1
iff a is before b in l. This holds for all occurrences of b in l
because there is a row in S for each such occurrence. Since
S0 +PlΣ ≥ Π, then S[b, x] ≥ π(b, x) for all b occurring in
l and all variables x ∈ V .

Incomparability and Violation in MvPOPs
The result of Lemma 2 is not reversible, i.e., if S0+PΣ ≥ Π,
this does not ensure that P has only valid linearizations. This
happens because some actions could be incomparable, sim-
ilar to partial order plans, where two incomparable actions
w.r.t. the partial order relation can cause a threat or a vio-
lation. This is solved classically by demotion or promotion.
A similar phenomenon arises in MvPOPs, but the number of
these incomparable occurrences here matters. In the MvTOP
case, the set lin(P) was a singleton, i.e., no incomparability
was allowed and thus no threats. However, if lin(P) contains
at least two different plans, then at least two occurrences of
two actions a, b ∈ A are ordered differently in these lists.
We call such occurrences incomparable.

In our investment example, in case the initial capital is
c0 = 7, l1 = [b, b, s, s, g], is not valid because, after one
occurrence of b, the remaining capital is 3 < 4 = π(b, c),
i.e., the two incomparable occurrences of b cause a threat.

Definition 7. For any MvPOP P over A with max. g and
an action b ∈ A, we say that there are n incomparable
occurrences of a to b in P (denoted IP[b, a] = n) iff there
are at least n occurrences of a in any linearization of P
(P[g, a] ≥ n), and there are n+ 1 linearizations s.t. a’s oc-
currences are split into i before b and n − i after b for all
i ∈ {0, ..., n}.
Lemma 3. In any MvPOP P over A with max. g and ac-
tions a, b ∈ A, s.t. a ̸= g ̸= b, and P[g, b] > 0:
• IP[b, a] = 0 if P[a, b] > 0.
• IP[b, a] = P[g, a]−P[b, a] if a ̸= b.
• IP[b, b] = P[g, b]− 1.

Proof. First, if P[g, b] = 0, b does not occur in any lin-
earization. Second, notice that P[g, a] − P[b, a] ≥ 0, be-
cause of transitivity. In any linearization, there are P[g, a]
occurrences of a. P[b, a] represents the number of a’s oc-
currences before b; thus P[g, a] − P[b, a] are free to occur
before or after b. Finally, there are P[g, b] − 1 occurrences
of b that are incomparable to each of the other occurrences
of that b.

In P1, IP1 [b, b] = P1[g, b]− 1 = 2− 1 = 1, which is the
number of incomparable occurrences of the action b to itself.
Remember that the pair (b, b) causes a threat. Intuitively,
there is not enough capital to buy twice in a row.

Next, we formalize the idea of threats in the two following
definitions.
Definition 8. For actions a, b ∈ A, we say a violates b in A
(w.r.t. x ∈ V ) iff π(b, x) > −∞ and σ(a, x) < 0, and write
a ∼x b, as well as a ∼ b if such a variable exists.
Definition 9. For a NAD A, the violation multi-valued
relation of an MvPOP P over A with max. g w.r.t. variable
x ∈ V (denoted VP

x ∈ N|A|×|A|) is defined for a, b ∈ A as:
• VP

x [b, a] := IP[b, a] if a ∼x b and b ̸= g.
• VP

x [b, a] := 0 else.
Back to our example, there is exactly one incomparable

repetition of b to itself, i.e., IP1 [b, b] = 1. Since b ∼c b, we
get VP1

c [b, b] = 1. Therefore, if the initial capital is c0 = 7,
in P1 (see Fig. 2), accounting for an additional b parallel
repetition w.r.t. the variable c results in the state S before ap-
plying the second b in l1 = [b, b, s, s, g] ∈ lin(P1), where:

S(c) = S0(c) +
∑

a∈{g,s,b}

(P1[b, a] +VP1
c [b, a])σ(a, c)

= 7 + (0 + 1)σ(b, c) = 7− 4 = 3 < π(b, c)

Which indicates that P1 contains a non-valid linearization
l1 = [b, b, s, s, g]. This corresponds to the fact that we can-
not buy twice in a row with such initial capital, i.e., that the
second occurrence of b is invalid. We can generalize this re-
sult.

In the following theorem, we define sufficient conditions
for MvPOP validity by ensuring it contains only valid lin-
earizations. We can use the violation multi-valued relation
defined above to account for all violating occurrences of ac-
tions to each other and consider the worst-case linearization
w.r.t. each variable.
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Theorem 2. For a NAP {S0 → g}A, a multi-set (A,µ),
and an MvPOP P over (A,µ) with max. g:

If for all x ∈ V : S0 + (P+VP
x )Σ ≥ Π

then, lin(P) ⊆ {S0 → g}A

NAP as Search
In this section, we use Th. 2 to reformulate the planning
problem as a combination of ILP and search. We have al-
ready shown that for a fixed number of sequential repeti-
tions, the problem can be solved by ILP. Let us formalize
this in a definition.
Definition 10. For a NAP {S0 → g}A, an numeric additive
planning fixed problem [S0 → g]AA is defined as the set of
linearizations of the MvPOPs P over a fixed multi-set A
with max. g s.t. S0 + (P+VP

x )Σ ≥ Π for all x ∈ V .
Notice that a fixed NAP over a multi-set A is empty if

no MvPOPs over A with max. g possessing only valid lin-
earizations exist. In the next corollary, we show that solving
the NAP by solving fixed NAPs over all possible combina-
tions of sequential repetitions covers all solutions to estab-
lish the completeness and soundness of the search.
Corollary 1 (NAP as Search). For any NAP {S0 → g}A:

{S0 → g}A =
⋃

A=(A,µ)
µ:A→N

[S0 → g]AA

Proof. From Lemmata 1, 2:

{S0 → g}A ⊆
⋃

A=(A,µ)
µ:A→N

[S0 → g]AA

And from Theorem 2:⋃
A=(A,µ)
µ:A→N

[S0 → g]AA ⊆ {S0 → g}A

Corollary 1 can be used to formulate any NAP as a search
problem that aims to find the (minimal) number of needed
sequential repetitions of each action, i.e., a minimal multi-
set A, s.t. an MvPOP P over A containing only valid lin-
earizations exists. We can always find the number of parallel
repetitions needed for each action a ∈ A because we can
calculate that using ILP, as shown in Th. 2. Therefore, the
undecidability of NAP comes from the hardness of finding
the needed number of sequential repetitions in the plan (i.e.,
µ(a) for each action a), specifically, knowing whether such
a number exists or not. To demonstrate the importance of
this result, notice that, in general, any planning problem is
presented as a path search problem in the states graph from
the initial state to one of the goal states. Numeric planning is
generally undecidable because the number of states is infi-
nite. Finding an upper bound for the number of needed rep-
etitions of each action makes the graph finite, and thus, the
problem becomes decidable in that case. However, in our
representation, we only need to find an upper bound for the
number of sequential repetitions of each action to guarantee
decidability. This will be our approach to finding decidable
fragments of numeric planning.

Algorithm 1: NAP as Search
Input: A NAD A, a g ∈ A, and S0 : V → Z.
Output: A plan l ∈ {S0 → g}A.
µ : A→ N : a 7→ 1;
while True do

A← (A,µ);
Minimize f(P) s.t. for all x ∈ V :

S0 + (P+ λVP
x )Σ ≥ Π

if There exists MvPOP solution P over A with
max. g for λ = 1 then

return l ∈ lin(P);
else if There exists MvPOP solution Pr over A
with max. g for λ = 0 then

Analyse Pr and update µ;
else

return “No solution found”;

Soundness and Termination of Alg. 1: Th. 2 proves the
soundness of Alg. 1, and Corollary 1 and Lemma 1 show
that Alg. 1 terminates for any solvable instance of NAP af-
ter less than |A||l|while-loops, where l is the minimal length
solution. We solve an ILP with O(|A|2) integer variables
and O(|A||V |) constraints in each while loop. However, if
{S0 → g}A = ∅, the algorithm may never terminate. The
minimization objective f(P) is irrelevant for the next sec-
tions, but we can use it to search for minimal length or cost
plans. Furthermore, updating µ relates to adding sequential
repetitions. We will discuss that in the next section.

We use a parameter λ to differentiate between the stan-
dard and relaxed case. If λ = 0, then the term VP

x is re-
moved, and violations are ignored, which makes one sequen-
tial repetition of all a ∈ A enough for a (relaxed) solution
to exist. The algorithm keeps delivering relaxed solutions
Pr (with λ = 0) until it finds a valid solution P (with
λ = 1). Notice that any valid solution is also a relaxed one.
Thus, this relaxation forms an admissible heuristic, and it
is a strict generalization of the delete-lists relaxation (Hoff-
mann 2003).
Definition 11. For a NAP {S0 → g}A, a relaxed MvPOP
solution P over A of {S0 → g}A, is an MvPOP over A
with max. g s.t. S0 +PΣ ≥ Π.

In a relaxed solution, the preconditions of the first repeti-
tion of any a ∈ A are satisfied in at least one linearization.
After analyzing the violations in a relaxed solution, we only
need to update the number of sequential repetitions (update
µ) when required. Therefore, this heuristic can also help by
finding an upper bound for the number of sequential repeti-
tions needed for each action.

In our investment example with initial capital c0 = 7,
Alg. 1 would first find the relaxed solution l1 = [b, b, s, s, g],
and then notice that no two parallel buying actions can be
performed and thus add sequential repetitions of b and s to
reach the valid solution l2 = [b, s, b, s, g] which requires
indeed two sequential repetitions of b and s. We will show
later that this works for any goal profit p ∈ N.
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Decidable Fragments of NAP
It is easy to see that any NAP without violations (denoted
nvNAP) can be solved directly by ILP since any relaxed
solution is valid in that case, i.e., one sequential repetition
of each action suffices. Let us first enlarge that NP fragment.

Maintainability
A threat could emerge whenever two actions a, b ∈ A, with
a ∼ b, are considered incomparable in a relaxed solution.
The threat can be solved by promoting a over b. However,
a could be needed before b as well. Therefore, we might
need two sequential repetitions of a to distinguish between
occurrences of a before and after b. For this reason, we will
rely on the relaxed solution to discover action pairs a ∼ b,
where an additional sequential repetition of a is needed.
Definition 12. For a relaxed MvPOP solution P over A,
we define a binary relation ≾P over A, s.t., for all a, b ∈ A,
a ≾P b iff a ∼ b, P[b, a] > 0, and IP[b, a] > 0 .

Notice that ≾P is a partial order over A because an
MvPOP P respects irreflexivity, asymmetry, and transitiv-
ity. Therefore, ≾P has a maximum for any relaxed solution
P. Only one sequential repetition is required of such a max-
imum because it does not cause any violation to any action
occurring after it. However, this only holds for actions not
violating themselves; thus, a distinction is needed.
Definition 13. For an action a ∈ A in a NAD A, if a does
not violate itself (i.e., a ̸∼ a , or more precisely, a ̸∼x a for
all x ∈ V ), we say that a is a maintainable action.

If there exists a state S : V → Z s.t. S ⊨ a and a is
maintainable, then a can be repeated arbitrarily often from
S using one sequential repetition, i.e., any plan [a, ..., a] is
valid from S. Therefore, in this case, we call a maintainable.

In our investment example, buying, b, is not-maintainable.
For an initial c0 = 7, b can be applied once but not arbitrar-
ily often. Any repetition after that must be preceded by a sell
action, s, to collect capital and be able to buy again.

Now that we know how to repeat a maintainable action
a ∈ A, we can prove that for a relaxed solution P over A,
if we have upper bounds for all the actions that a can cause
a threat to, denoted TP(a) := {b ∈ A : a ≾P b}, then, we
can also find an upper bound for a.
Theorem 3. For a NAP {S0 → g}A, a maintainable action
a ∈ A, and a function µ∗ : TP(a) → N that defines an up-
per bound for the number of sequential b repetitions needed
for all b ∈ TP(a). We can extend the definition set of µ∗ to
a by:

µ∗(a) := 1 +
∑

b∈TP(a)

µ∗(b)

Proof. For any two actions a, b ∈ A, if a ̸∼ b, the number
of sequential repetitions needed of a does not depend on b.
If a ∼ b and P[b, a] = 0, then, either IP[b, a] = P[g, a]
or IP[b, a] = 0. In the first case, all occurrences of a are
incomparable to b in P. Therefore, all a occurrences can be
promoted over all b occurrences to solve a threat (a, b). Fi-
nally, for IP[b, a] = 0, no ocurrences of a are incomparable
to b in P. Therefore, since a is maintainable, i.e., whenever

a is applicable once, it can be repeated arbitrarily often with
one sequential repetition, we conclude that sequential repe-
titions of a are required only to differentiate between a oc-
currences after and before each sequential repetition of an
action b only if a ≾P b.

Definition 14. If all actions in a NAP {S0 → g}A are
maintainable, we call it a maintainable NAP problem (de-
noted mNAP).

We can characterize mNAP as the fragment of NAP,
where a polynomial number of sequential repetitions is suf-
ficient to find solutions for any solvable instance.

Corollary 2. mNAP is NP-complete.

Proof. First, notice that ILP can be reduced polynomially
to a NAP without any preconditions, proving the NP-
hardness. Second, if no relaxed solution exists, the problem
is unsolvable. Otherwise, given that all actions are maintain-
able, the upper bounds µ∗ can be calculated iteratively for
all actions starting from the maxima in A w.r.t. ≾P. The
upper bound for the number of sequential repetitions of any
action is at most

∑|A|
i=1 i = |A|(|A|+ 1), i.e., the size of the

MvPOP solution is polynomial w.r.t. ∥A∥.

The plan length could be exponential w.r.t. ∥A∥, if, e.g.,
the goal g has one precondition [x ≥ 2n], then n ≤ ∥A∥.
If additionally, S0(x) = 0, and the action a has no pre-
conditions and one effect [x+=1], then the minimal valid
plan [a, ..., a, g] has exponential length w.r.t. n. However,
we need only O(n) ⊆ O(∥A∥) bits to encode this plan in an
MvPOP as 2n is an entry in the matrix. That is, an MvPOP
can be exponentially more compact than its linearizations.

Repetition Policies
We can repeat any maintainable action without needing ad-
ditional sequential copies. This allows us to easily calculate
upper bounds for the number of sequential repetitions once
a relaxed solution is found. However, this does not apply to
non-maintainable actions. In this subsection, we will study
how such actions are repeated to avoid irrelevant sequential
repetitions during the search. For a ∈ A, let aA∗a denote
the set of plans that start and end with a. We call a plan l an
a-repetition if l ∈ aA∗a. E.g., [a, b, c, d, a] is an a-repetition.
We denote with σ(l, x) :=

∑
c∈A #c(l)σ(c, x) the total ef-

fect of a plan l. We will define two types of repetitions that
ensure termination for Alg. 1.

Definition 15. An a-repetition l ∈ aA∗a is called beneficial
iff for all x ∈ V , if σ(a, x) > 0, then σ(l, x) > σ(a, x),
and l is called de-violating iff for all y ∈ V , if a ∼y a, then
σ(l, y) > σ(a, y).

While searching for the number of sequential repetitions
needed of an action a ∈ A, beneficial repetitions ensure that
the a effects remain after repeating a, i.e., repeating a does
not introduce new actions that reverse the effects of a. Fur-
thermore, de-violating repetitions ensure that the need for
additional sequential repetitions terminates eventually, i.e.,
there exists a future point in that search where only parallel
repetitions will suffice for the existence of a solution.
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Let R(a) := {S : V → Z, ∃l ∈ aA∗a s.t. l valid from S}
be the set of states from which a can be validly repeated.
Definition 16. For an action a ∈ A, we call the function
ρa : R(a) → aA∗a an a-repetition policy iff for all states
S ∈ R(a), ρa(S) is valid from S.

In our example, the s-repetition [s, b, s] is beneficial:
2σ(s, c) + σ(b, c) = 2(5) + (−4) = 6 > 5 and valid
from any state S ∈ R(s). Therefore, increasing the capi-
tal c is possible by repeating s, and any goal profit p ∈ N
is reachable by a plan [b, s, b, s, ..., b, s, g]. Additionally, the
b-repetition [b, s, b] is valid from any state S ∈ R(b) and de-
violating: σ(s, c) + 2σ(b, c) = (5) + 2(−4) = −3 > −4.
Consider that from the initial capital c0 = 7 we cannot buy
twice in a row, but after buying and selling once, the capital
increases by 1 and two parallel repetitions of b are possible,
i.e. [b, s, b, b, s, s] is valid from that initial state.
Definition 17. For an action a ∈ A, an a-repetition policy ρ
is called beneficial / de-violating iff for all S ∈ R(a), ρa(S)
is beneficial / de-violating, respectively.

In this characterization, any maintainable action a ∈ A
has the simplest form of a constant, beneficial and de-
violating repetition policy ρa : R(a) → aA∗a : S 7→ [a, a],
which is why one sequential repetition of a maintainable ac-
tion suffices for arbitrarily many parallel repetitions.
Definition 18. A NAP is called beneficially maintainable
(denoted bmNAP) iff all actions have beneficial repetition
policies, and finitely maintainable (denoted fmNAP) iff all
actions have beneficial or de-violating repetition policies.

We can use these terms to characterize PP within NAP.
Lemma 4. There exists a polynomial time reduction of PP
to bmNAP.

Proof. Remember that we can translate any PP domain to
a NAD in polynomial time. Additionally, notice that, in PP,
any repetition is beneficial. We can intuitively validate that
from our understanding of PP because an activation effect
p of a cannot be reversed by an effect ¬p even if it occurs
many times before that a. E.g., if {p} = eff(a) = pre(g),
and {¬p} = eff(b), then, after applying the propositional
plan [b, b, b, a, g], the effect p of a still satisfies the precon-
dition for g even if b deactivates it arbitrarily many times
before. In NAP, this can be done by using the correct-
ing actions cp, c¬p, e.g., [b, b, b, a, g] in PP translates to
[b, b, c¬p, b, c¬p, a, g] in NAP.

In other words, all actions in PP have beneficial repeti-
tion policies. This is the second characterization for the dif-
ference between PP and NAP we deliver after stating that
only sequential repetitions are needed in PP.

On a side note, we can prove the existence of benefi-
cial repetition policies for all actions in Shleyfman’s NLRT
(2023), and show that NLRT ⊊ bmNAP.

Next, we can use induction over the number of non-
maintainable actions to prove that bmNAP is in PSPACE.
Calculating a beneficial repetition is an mNAP problem, if
all other actions are maintainable. With that, we can show
that a bmNAP problem can be decomposed into mNAP
problems, which can all be solved with polynomial space.

Figure 3: NAP and Repetitions. In ellipses, PP: Propo-
sitional Planning, NAP: Numeric Additive Planning, m:
maintainable, f: finitely, b: beneficially, nv: non-violating. In
rectangles: Types of repetitions needed.

Theorem 4. bmNAP is PSPACE-complete.

Furthermore, by focusing the search on the number of se-
quential repetitions needed of exactly one action a ∈ A, we
get a trace of successive applications of a repetition policy.
We can define the sufficient conditions for how such traces
can be pruned in fmNAP to prove the following result.

Theorem 5. fmNAP is decidable.

Conclusion and Future Work

We conclude with Fig. 3: Numeric additive planning (NAP)
is a superset of propositional planning (PP) where additive
effects are allowed; therefore, in NAP, we distinguish be-
tween two types of action repetition: (1) Sequential as in
PP, and (2) Parallel as in NAP without violations (nvNAP),
a superset of ILP. We use search methods for the first and
ILP for the latter. Additionally, solving NAP becomes eas-
ier when using a compact and least committing plan rep-
resentation, multi-valued partial order plans, that differen-
tiates structurally between the parallel and sequential rep-
etitions. In general, we prove that finding an upper bound
for the number of sequential repetitions needed for each ac-
tion is sufficient for NAP to be decidable. We can use this
observation to study repetition and define mNAP, an NP-
complete fragment of NAP, bmNAP, a PSPACE-complete
fragment of NAP and a superset of PP, and fmNAP, a de-
cidable superset of both. Finally, we draw a clearer picture
of the factors that make NAP undecidable; we characterize
these factors as differences to its subsets PP/nvNAP, since
only sequential/parallel repetitions are needed for each sub-
set, respectively. Finally, we deliver an algorithm for NAP
that always returns a valid solution if it exists and develop
heuristics and pruning rules that help decide in many cases
if action repetition is irrelevant.

Concerning future work, currently, knowing if an action
has a any special kind of repetition policies is proven to be in
PSPACE; we are searching for a tractable characterization
of that. Furthermore, we suspect fmNAP to be EXPTime-
complete. In general, we believe that developing suitable
repetition policies can help discover many more decidable
fragments of NAP.
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Jonsson, P.; and Bäckström, C. 1998. State-variable plan-
ning under structural restrictions: Algorithms and complex-
ity. Artificial Intelligence, 100(1-2): 125–176.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2021. LM-cut and operator counting heuris-
tics for optimal numeric planning with simple conditions. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 31, 210–218.

Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In IJCAI, 4787–4793.
Piacentini, C.; Castro, M.; Cire, A.; and Beck, J. C. 2018.
Compiling optimal numeric planning to mixed integer lin-
ear programming. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 28,
383–387.
Scala, E.; Haslum, P.; Magazzeni, D.; Thiébaux, S.; et al.
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