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Abstract
Replanning methods that determinize a stochastic planning
problem and replan at each action step have long been known
to provide strong baseline (and even competition winning)
solutions to discrete probabilistic planning problems. Recent
work has explored the extension of replanning methods to
the case of mixed discrete-continuous probabilistic domains
by leveraging MILP compilations of the RDDL specification
language. Other recent advances in probabilistic planning
have explored the compilation of structured mixed discrete-
continuous RDDL domains into a determinized computation
graph that also lends itself to replanning via so-called plan-
ning by backpropagation methods. However, to date, there
has not been any comprehensive comparison of these recent
optimization-based replanning methodologies to the state-of-
the-art winner of the discrete probabilistic IPC 2011 and 2014
and runner-up in 2018 (PROST) and the winner of the mixed
discrete-continuous probabilistic IPC 2023 (DiSProd). In this
paper, we describe JaxPlan, which makes several extensive
upgrades to planning by backpropagation and its compact
tensorized compilation from RDDL to a JAX computation
graph that uses discrete relaxations and a sample average ap-
proximation. We also provide the first detailed overview of a
compilation of the RDDL language specification to Gurobi’s
Mixed Integer Nonlinear Programming (MINLP) solver that
we term GurobiPlan. We provide a comprehensive compar-
ative analysis of JaxPlan and GurobiPlan with competition
winning planners on 19 domains and a total of 155 instances
to assess their performance across (a) different domains,
(b) different instance sizes, and (c) different time budgets. We
also release all code to reproduce the results along with the
open-source planners we describe in this work.

Introduction
Stochastic planning addresses decision-making under uncer-
tainty subject to probabilistic state transitions, and plays a
major role in diverse fields such as robotics, artificial in-
telligence, and operations research. While historical empha-
sis in stochastic planning centered on discrete problems, re-
cent years have witnessed a growing interest in continuous
and mixed discrete-continuous problems due to their abil-
ity to accurately model a wide range of real-world scenarios
with continuous time, space, and resources (Li and Williams
2011; Fernandez-Gonzalez, Williams, and Karpas 2018).
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The International Planning Competition (IPC) (McDer-
mott 2000; Coles et al. 2012; Vallati et al. 2015), particu-
larly its probabilistic track (IPPC), serves as a pivotal plat-
form for evaluating stochastic planning systems. Replanning
methods, historically prominent in control (Morari, Garcia,
and Prett 1988) and planning (Hoffmann and Nebel 2001),
have demonstrated surprising efficacy in discrete probabilis-
tic planning competitions. Notably, FF-Replan (Yoon, Fern,
and Givan 2007), the winner of the first IPPC in 2004, effi-
ciently utilizes the deterministic planner FF (Hoffmann and
Nebel 2001) to obtain plans based on determinized prob-
lem variants, effectively adapting to unexpected events dur-
ing execution by replanning after each action is taken and
the stochastically sampled next state is observed. In re-
sponse to suggestions that all probabilistic planning might
be effectively reduced to determinized replanning, Little and
Thiebaux (2007) introduced a class of problems referred to
as Probabilistically Interesting that could lead to suboptimal
deterministic replanning behavior; this work influenced do-
main design in subsequent IPPCs as we highlight later.

Since 2011, RDDL (Sanner et al. 2010) has been the
standard description language for IPPCs, replacing PPDDL
(Younes et al. 2005). RDDL has the capacity to represent
discrete and continuous components, with concurrency and
exogenous and endogenous noise, while PPDDL is limited
to endogenous noise directly caused by stochastic action ef-
fects, and only a single action per time step. The IPPCs of
2011, 2014, and 2018 introduced only discrete problems and
thus did not utilize the full expressive power of RDDL.

The winners of the IPPCs over the years used a variety of
methods, mainly revolving around the idea of replanning af-
ter each action is taken. PROST (Keller and Eyerich 2012),
the winner of IPPC 2011 and IPPC 2014, is an Upper Con-
fidence Tree (UCT) based search method that leverages the
structure of the problem, and determines when to ignore ir-
relevant actions. SOGBOFA (Cui and Khardon 2016), the
runner-up of IPPC 2018, is a symbolic gradient-based op-
timization method, that symbolically represents an approx-
imation of the Q-value function as a function of the action
variables in order to perform gradient-based search over ac-
tions. DiSProD (Chatterjee et al. 2023), the winner of IPPC
2023 mixed discrete-continuous competition, is a replanning
method able to handle mixed problems by approximating the
discrete components with a second order Taylor expansion.
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DiSProD is able to perform a forward gradient-based search
and apply the first action in a rolling horizon scheme.

The challenge of mixed discrete-continuous domains has
been persistent for probabilistic planners, prompting dedi-
cated focus in the 2023 IPPC (Taitler et al. 2024). While
determinization and replanning worked well in the discrete
competition, it was interesting to observe that this approach
also proved to be effective in the mixed discrete-continuous
case. The 2023 IPPC also introduced JaxPlan as a baseline
method, evaluated in both straight-line planning mode (with-
out replanning) and deep reactive policy mode.

In this study, we evaluate PROST and DiSProD on the
domains they previously won, alongside JaxPlan in a re-
planning mode with a comprehensive method description.
Additionally, we introduce for the first time GurobiPlan, a
novel replanning method based on compiling RDDL de-
scriptions into mathematical optimization problems. We
evaluate GurobiPlan and JaxPlan across all domains from
three IPPCs, providing insights into their capabilities in both
purely discrete and mixed discrete-continuous domains.

One of our core objectives in this paper is to establish
replanning baselines (JaxPlan and GurobiPlan) for mixed
discrete-continuous problems and to further evaluate how
well they work in purely discrete scenarios. We notably ex-
clude FF-Replan from our evaluation here due to its speci-
ficity to PPDDL and challenges in adapting to RDDL do-
mains featuring concurrency or continuous components; this
is attributed to the unbounded number of potential outcomes
in the lifted RDDL specification (cf. RDDL domains like
Wildfire) that PPDDL cannot model. Additionally, while the
2018 IPPC (Geißer 2019) introduced other PROST variants
and methods such as SOGBOFA (Cui and Khardon 2016),
it introduced a variant of RDDL that has not been supported
in the 2023 IPPC, which precludes comparative evaluation
with JaxPlan or GurobiPlan that is the focus of this work.

Background
Markov Decision Process A Markov decision process
(MDP) is a tuple (S,A, P, r, γ), where S is the state space,
A is the action space, P is the next-state distribution, r is
the single step reward function and γ is the discount factor.
A plan is a sequence of actions a1, . . . aT , while a policy π
is a mapping from states to actions. The goal of probabilistic
planning is to find a sequence of actions that maximizes the
cumulative expected reward over a planning horizon T

max
a1...aT

Est∼P (st−1,at−1,·)

[
T∑

t=1

r(st, at)
∣∣∣ s1 = s

]
. (1)

Since the optimization problem above can be computation-
ally intractable for long horizon, replanning approaches typ-
ically use a much shorter receding horizon T ′ ≪ T and
solve Eq. (1) periodically starting from the current state st
at every decision epoch (or more generally, every k epochs).

Planning-By-Backpropagation (PBBP) compiles a plan-
ning problem into an unrolled differentiable computational
graph (Schulman et al. 2015), thus enabling the direct cal-
culation of return gradients with respect to action-fluents
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Figure 1: A differentiable computation graph for an abstract
MDP with a horizon of 3 decision time steps. Here, st and
at denote the state and action variables, respectively. Red
dotted arrows indicate the flow of gradients from the return
objective

∑
t rt with respect to actions in the computation

graph.

or policy parameters (Wu, Say, and Sanner 2017; Bueno
et al. 2019; Patton et al. 2022) as illustrated concep-
tually in Figure 1. Consider first a deterministic MDP
with state transition model st+1 = f(st, at) and re-
ward r(st, at), where f and r are both differentiable func-
tions. Trajectories s1, s2 . . . sT can be forward sampled di-
rectly from the model, and the gradients of the return
∇a1,...aT

V (a1, . . . aT , s1) = ∇a1,...aT

∑T
t=1 r(st, at) can

be used to update the actions by taking a gradient ascent.
For stochastic problems, the reparameterization trick often
allows rewriting the next-state distribution P (st, at, st+1) as
a deterministic differentiable function f(st, at, ξt) of exoge-
nous i.i.d. noise ξt (Bueno et al. 2019; Patton et al. 2022).
However, we note that many discrete distributions such as
Bernoulli do not support differentiable reparameterization.

PROST (Keller and Eyerich 2012) is a planning system
rooted in the Upper Confidence Bounds applied to Trees
(UCT) algorithm. PROST strategically traverses a search
tree derived from a factored MDP, efficiently managing the
branching factor of chance nodes to reduce the search space
size. The algorithm employs a bias parameter that scales
with the expected reward of an optimal policy, contribut-
ing to convergence. A regret minimization strategy, derived
from the UCB1 algorithm, is integrated to enhance perfor-
mance. PROST also introduces a search depth limitation,
prioritizing decisions with more immediate impacts on ex-
pected rewards. Additionally, the algorithm excludes actions
that lack influence under specific circumstances, leading to
a streamlined branching factor. PROST also introduces re-
ward locks for dead-ends and Q-value initialization to avoid
random walks, based on a single outcome determinization
of the MDP.

DiSProD (Chatterjee et al. 2023) is an on-line planner
suitable for hybrid domains. Leveraging the stochastic com-
putation graph paradigm, it builds a computation graph cap-
turing an approximation of the distribution over future tra-
jectories and rewards, conditioned on a probabilistic open-
loop policy. At each decision step, DiSProD performs a par-
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allel search over multiple policies, each optimizing the ap-
proximate cumulative reward by differentiating through the
computation graph, and then using the first action from the
maximizing policy. DiSProD’s innovation is its ability to
handle mixed discrete-continuous domains by approximat-
ing the dynamics with second order Taylor expansions.

Algorithms and Methodology
Vectorized Computation Graphs Our proposed ap-
proach to PBBP in RDDL domains, called JaxPlan, lever-
ages the JAX framework (Frostig, Johnson, and Leary 2018)
to automatically compile the computation graph directly
from the lifted RDDL domain description. By working with
the lifted problem, it is straightforward to vectorize the com-
putation graph. To illustrate this, consider the conditional
probability function

cpf(?x, ?y) = sum {?z : type} values(?x, ?y, ?z),

where ?x, ?y and ?z are free parameters. Working in a depth-
first fashion, the values(?x, ?y, ?z) fluent is compiled to a
rank-3 tensor of dimensions equal to the number of objects
corresponding to types ?x, ?y and ?z, respectively. Aggrega-
tions are compiled to their equivalent tensor operations over
one or more axes of the argument (in the example above, a
JAX sum operation over the last axis of values tensor). The
vectorized just-in-time compilation of RDDL allows Jax-
Plan to optimize action fluents over a long planning horizon
while being efficient in both space and time.

T-Norm Fuzzy Logic The novelty of JaxPlan is its ability
to handle hybrid continuous-discrete state and action spaces.
Specifically, suppose the state factors as st = [st,1, . . . st,n]
where st,i = fi(Pa(st,i)) is a function of the parents Pa of
st,i in the computation graph, which includes other state and
action variables. At the core of its strategy, JaxPlan translates
the conditional probability functions fi into differentiable
relaxations, formalized as families of functions {f̃i,τ : τ >
0} indexed by some hyper-parameter τ . The variables s̃t,i =
f̃i,τ (Pa(s̃t,i)) and s̃1,i = s1,i then define a differentiable
relaxation of the original model.

Given that Boolean logic in RDDL lacks inherent dif-
ferentiability, it becomes essential to choose functions fi,τ
that effectively approximate Boolean logic. One novel con-
tribution of JaxPlan is to substitute Boolean operations with
t-norms (Hájek 2013). Specifically, a t-norm is a function
T : [0, 1]2 → [0, 1] that satisfies four properties: commuta-
tivity, monotonicity, associativity, and inclusion of the iden-
tity element. For a, b ∈ [0, 1], JaxPlan defines the axioms:

• a ∧ b ≈ T (a, b)

• ¬a ≈ 1− a,

from which other logical RDDL operations can be derived,
e.g.:

• a ∨ b ≡ ¬(¬a ∧ ¬b) ≈ 1− T (1− a, 1− b)

• a =⇒ b ≡ ¬a ∨ b ≈ 1− T (a, 1− b)

• ∀{x1, x2, . . . xm} ≡ x1 ∧ x2 · · · ∧ xm ≈
T (x1, T (x2, T (. . . )))

Exact RDDL Operation Differentiable Relaxation
a ∧ b T (a, b)
¬a 1− a
a ∨ b 1− T (1− a, 1− b)

a =⇒ b 1− T (a, 1− b)
forall{?p:type}x(?p)

∏
?p x(?p)

exists{?p:type}x(?p) 1−
∏

?p (1− x(?p))
if c then a else b c× a+ (1− c)× b

a > b sigmoid((a− b)τ)
a == b sech2((b− a)/τ)

signum(x) tanh(x/τ)

argmax{?p:type} x(?p)
∑|type|

i=1 i× softmax(x/τ)[i]
Bernoulli(p), Discrete(p) Gumbel-Softmax

Table 1: List of differentiable relaxations used in JaxPlan.

• ∃{x1, x2, . . . xm} ≡ ¬∀{¬x1,¬x2, . . .¬xm} ≈ 1 −
T (1− x1, T (1− x2, T (. . . ))).

For example, the product t-norm defines T (a, b) = a × b,
which calculates the logical conjunction exactly when a and
b are Boolean.

In addition, JaxPlan approximates the conditional branch-
ing statement such as “if c then a else b” as

f(a, b, c) = c× a+ (1− c)× b,

which is a differentiable function of its arguments. A popular
choice for approximating relational operations, such as a >
b, a < b and a == b is the logistic sigmoid approximation
(Petersen et al. 2021):

a > b ≈ sigmoid((a− b)/τ)

a == b ≈ sech2((b− a)/τ),

where τ refers to the temperature parameter.
Finally, discrete distributions are (approximately) repa-

rameterized using the Gumbel-Softmax trick (Jang, Gu, and
Poole 2016). Formally, samples z from a categorical distri-
bution with density {pi}Ki=1 is approximated by sampling
ξ ∈ RK with i.i.d. Gumbel(0, 1) entries, and computing

z = softmax((ξ + log p)/τ)

for a temperature hyper-parameter τ > 0.
A more concrete description of the rewriting rules in

JaxPlan to facilitate automatic differentiation based on the
product fuzzy logic is summarized in Table 1. An inter-
esting property of this set of relaxations is that as τ →
∞, the overall error in the model relaxation decreases to
zero. However, in practice, there is a trade-off between
high error in the gradient (for small τ ) and vanishing/sparse
gradient (for large τ ). Our empirical evaluation performs
Bayesian hyper-parameter optimization (Snoek, Larochelle,
and Adams 2012) to determine the best overall value of τ
for each problem instance, as discussed in a later section.

Action Parameterization During optimization, the goal
of JaxPlan is to find optimal “soft” actions parameterized as
logistic sigmoids, ãi = σ(θi) = 1/(1 + exp (−w × θi)), by
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optimizing the real-valued parameters θi using gradient as-
cent. Here, w is a general hyper-parameter that controls the
overall sharpness of the approximation. At test time, since
Boolean actions are required, the soft actions ãi are con-
verted to “hard” actions ai by the rounding operation

ai =

{
1, if ãi = σ(θi) > 0.5

0, otherwise.

Constraint Handling Boolean-action domains in IPPC
2011 and 2014 place non-trivial constraints on the maximum
number of non no-op concurrent actions that can be selected
in each decision epoch. For example, in the Elevator domain,
an agent could open or close the elevator door, or move the
elevator up or down in each decision epoch, but cannot per-
form a combination of the above simultaneously. We assume
such constraints can be expressed in the form

∑
i ai ≤ B

over all action-fluents ai, for some suitable bound B.
In order to ensure constraint satisfaction during op-

timization, JaxPlan projects the action parameters θ =
[θ1, θ2, . . . θN ] after each gradient ascent step to the fea-
sible region as follows. First, the soft actions are sorted
in descending order to obtain the order statistics ã(1) ≥
ã(2), · · · ≥ ã(N). Next, the B + 1-st largest action value
determines the amount ∆ by which the soft actions needed
to be shifted downwards to satisfy the constraint on the cor-
responding hard actions, i.e., ∆ = ã(B+1) − 0.5. If ∆ > 0,
then all soft action values are shifted downwards to obtain
ã′i = max(ãi − ∆, 0). Finally, JaxPlan computes the new
parameter θ′i by inverting the logistic sigmoid θ′i = σ−1(ã′i).
Box constraints for problems in IPPC 2023 are handled by
clipping any out-of-bounds actions to their valid ranges after
each gradient descent update (Wu, Say, and Sanner 2017).

GurobiPlan
Planning as Mixed-Integer Nonlinear Programming
GurobiPlan is an alternative to JaxPlan that could perform
better in discrete problems where the model relaxations as
defined above could be inaccurate. In summary, this ap-
proach involves compiling the return maximization problem
into a mixed-integer nonlinear program (MINLP). For ex-
ample, if st+1 = Ast+Bat and r(st, at) = c ·st+d ·at for
some appropriately sized matrices A,B and vectors c, d, and
a compact (e.g. box-bounded) action space A, the two-stage
problem compiles to the mixed-integer linear program:

max
a1,a2∈A

c · s1 + d · a1 + c · s2 + d · a2

s.t. s2 = As1 +Ba1,

where optimization is performed over all future actions in-
dexed by time. GurobiPlan leverages the state-of-the-art
Gurobi optimizer (Gurobi Optimization, LLC 2023) to com-
pile RDDL domains directly into MINLPs and efficiently
solve them. Gurobi version 10 naturally handles a large sub-
set of the nonlinear RDDL operations through piecewise-
linear approximations (Mitsos, Chachuat, and Barton 2009).

Additionally, outcomes of relational operators, and some
nonlinear functions, are expressed as indicator variables δ ∈

{0, 1} with suitable constraints imposed on them (see Ta-
ble 2). For instance, we rewrite a ≥ b in terms of a binary
variable δ, constrained as follows:

δ = 1 =⇒ a− b ≥ 0

δ = 0 =⇒ a− b ≤ −ε,

where ε is a small positive constant.

Constraint Handling Another innovation of GurobiPlan
is the propagation of tight bounds on variables through in-
terval arithmetic (Hickey, Ju, and Van Emden 2001; Scala
et al. 2016). To illustrate, for the expression s′ = (s + a)2

with s ∈ [0, 2] and a ∈ [0, 1], the sub-expression s + a is
bounded in [0, 3], and thus s′ ∈ [0, 9]. Action preconditions
are compiled directly as (possibly nonlinear) constraints on
action-fluents using the rewriting rules described above. The
box constraints computed through interval arithmetic, and
the constraints generated through rewriting relational and
other operators per Table 2, jointly constitute the constraint
set of the complete mixed-integer program.

Stochastic Variables Stochastic variables are not directly
compatible with mixed-integer programming, which is in-
herently deterministic in nature, thus some form of approxi-
mation is required. One option is the sample average approx-
imation, which would require a large sample size in practice
and would therefore produce a large nonlinear program that
is difficult to solve computationally (Kleywegt, Shapiro, and
Homem-de Mello 2002). An alternative and much simpler
approach, that is employed in the current implementation of
GurobiPlan, is to determinize stochastic samples by replac-
ing them with their mean estimates. For example:

b(?p) = Bernoulli(rate(?p)) → b(?p) ≈ rate(?p)

z(?p) = Normal(mean(?p), var(?p)) → z(?p) ≈ mean(?p).

A more complete list of rewriting rules employed by Guro-
biPlan is summarized in Table 2.

Empirical Evaluation
The code to reproduce all experiments and Ap-
pendix can be found at https://github.com/mike-
gimelfarb/ICAPS2024Exp.

Setting and Metrics
Benchmark Problems The evaluation of JaxPlan and
GurobiPlan encompasses the domains of IPPC 2011 (Coles
et al. 2012), 2014 (Vallati et al. 2015), and 20231. We note
that IPPC 2018 (Geißer 2019) was excluded due to unique,
unsupported RDDL language components used exclusively
in that iteration of the competition. The evaluation prob-
lems benchmark was thus comprised of the 12 domains from
IPPC 2011 and IPPC 2014, each with 10 instances, and 7 do-
mains from IPPC 2023, excluding the RecSim domain due
to its excessively large combinatorial nature and since no
method achieved results significantly better than random be-
haviour on it. This results in a total of 19 domains and 155
instances. All domains are summarized in the Appendix.

1https://ataitler.github.io/IPPC2023/
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Exact RDDL Operation Gurobi Constraint(s)
δ = ¬a δ + a == 1, δ ∈ {0, 1}

δ = if c then a else b

{
c = 1 =⇒ δ = a

c = 0 =⇒ δ = b

δ = a > b

{
δ = 1 =⇒ a− b ≥ ε

δ = 0 =⇒ a− b ≤ 0

δ = a ≥ b

{
δ = 1 =⇒ a− b ≥ 0

δ = 0 =⇒ a− b ≤ −ε

δ = a == b

{
δ = 1 =⇒ |a− b| ≤ 0

δ = 0 =⇒ |a− b| ≥ ε

δ = a ̸= b

{
δ = 1 =⇒ |a− b| ≥ ε

δ = 0 =⇒ |a− b| ≤ 0
y = a/b y × b == a

δ = ⌊a⌋
{

δ ≤ a

δ + 1 ≥ a+ ε

δ = ⌈a⌉
{

δ ≥ a

δ − 1 ≤ a− ε
Bernoulli,Normal... Determinization

Table 2: List of rewriting rules using in GurobiPlan.

Baselines In the case of IPPC 2011 and IPPC 2014, which
were exclusively discrete competitions, we benchmarked the
performance of JaxPlan and GurobiPlan against the win-
ner of these two iterations, PROST (Keller and Eyerich
2012). Meanwhile, the IPPC 2023 iteration introduced con-
tinuous and mixed discrete-continuous domain components
in the state and possibly action spaces. The winner, DiS-
ProD (Chatterjee et al. 2023), served as the benchmark for
this set of problems. Complete raw unnormalized results for
each evaluated method are provided in the Appendix while
this section specifically focuses on the aggregated compara-
tive analysis of the planners on their applicable discrete and
mixed discrete-continuous domains.

To preempt perceived discrepencies in the the evaluation
of JaxPlan vs. DisProd in this work vs. the 2023 IPPC, it
is important to note that JaxPlan in this paper is run in re-
planning mode, whereas in IPPC 2023 a straight-line (no
replanning) and reactive policy version were used. Since
JaxPlan without replanning failed to outperform DisProd in
IPPC 2023, adding this mode would not add significantly to
the analysis, since it does not get to recover from its mis-
takes in stochastic problems and performs worse. Finally,
as discussed previously, winners of pre-2011 PPDDL com-
petitions such as FF-Replan are not generally appropriate
for RDDL domains in IPPC 2011, cf. (Kolobov et al. 2012),
hence we do not compare against them.

Additional Details All evaluations were executed on the
IPPC 2023 simulation platform pyRDDLGym (Taitler et al.
2023). For PROST, we used the settings as employed in
the IPPC 2014 competition, and for DiSProD we used
the same settings as employed in the IPPC 2023 com-
petition, except that we modified the algorithms to allow
for the increased time budget. For the GurobiPlan and
JaxPlan baselines, prior to evaluation, we performed tun-
ing to identify the best hyper-parameter setting for each

baseline method on each problem instance. The maximum
time budget allowed for tuning was fixed at 2 × h hours,
where h ∈ {1, 3, 5} was the maximum allowed time bud-
get per decision epoch (in seconds). For GurobiPlan, we
identified the receding horizon T ′ as the sole key hyper-
parameter, whereas for JaxPlan the 5 hyper-parameters and
their ranges are described in the Appendix. To identify the
best hyper-parameter value for GurobiPlan, we ran a grid
search on {1, 2, . . . 20, 22, 24 . . . 30, 35, 40}. To identify the
best hyper-parameter value for JaxPlan efficiently within the
time budget, we ran Gaussian-process Bayesian optimiza-
tion (Snoek, Larochelle, and Adams 2012), evaluating the
average performance of each acquired hyper-parameter set-
ting across 5 independent rollouts of the planner, with ran-
dom seeds chosen to be different than those used at test time.

Key Questions Our evaluation aims to address three key
questions:
1. Performance Across Domains: We explore how each

method performs in each domain, averaging over the do-
main’s instances. The results are normalized in [0,1].

2. Scalability: We assess how each method fares as in-
stances scale up in size, measured by win rate.

3. Time Management: We investigate how each method
handles the allocated planning time, examining win rates
versus the time per step size.

These questions form the basis of our comprehensive eval-
uation, providing insights into the strengths and limitations
of the considered methods across different dimensions.

Results and Analysis
We begin the section with a detailed analysis of results, and
conclude with a summary of key performance observations.

Normalized Performance Across Domains Following
the procedures of the previous IPPC competition, for each
instance we compute a normalized score as follows: a score
of zero corresponds to the best average return of the no-
op and random policy, a score of one corresponds to the
best average return across all baselines, and in general the
normalized score of a return R is computed as score =
(R− base)/(best− base) and clipped to [0, 1], where best
is the best return, and base is the maximum of the no-op and
random returns. The average score is averaged across all in-
stances for each domain and baseline, and reported in Table
3 for the IPPC 2011 and 2014 domains, and Table 4 for the
IPPC 2023 domains.

On the IPPC 2011 and 2014 domains, we see that Gurobi-
Plan achieves the best performance on the AcademicAdvis-
ing and CooperativeRecon domains. One possible explana-
tion is that these domains require backwards sequential log-
ical reasoning to identify the optimal path to the goal. For
instance, to solve the AcademicAdvising problem, it is nec-
essary to start from the desired course(s) the student wishes
to pass (the goal), then pursue their direct prerequisites, the
prerequisites of the prerequisites, and so forth. Complex log-
ical constraints on state transitions in these domains renders
it more difficult to discover the goal using forward search
methods alone – on which JaxPlan and PROST are based.
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Domain GurobiPlan JaxPlan PROST
1 5 1 5 1 5

AcademicAdvising 0.47± 0.31 0.79± 0.26 0.19± 0.20 0.14± 0.20 0.37± 0.28 0.38± 0.29
CooperativeRecon 0.92± 0.06 0.91± 0.07 0.17± 0.13 0.23± 0.14 0.90± 0.02 0.93± 0.02
CrossingTraffic 0.68± 0.13 0.61± 0.16 0.46± 0.13 0.45± 0.14 0.97± 0.04 1.00± 0.00
Elevators 0.88± 0.05 0.88± 0.04 0.29± 0.10 0.36± 0.08 0.97± 0.02 0.97± 0.01
GameOfLife 0.76± 0.24 0.81± 0.14 0.87± 0.07 0.87± 0.08 0.95± 0.02 0.95± 0.04
Navigation 0.20± 0.21 0.37± 0.23 0.56± 0.23 0.74± 0.14 0.81± 0.15 0.96± 0.09
SysAdmin 0.70± 0.09 0.71± 0.10 0.88± 0.06 0.89± 0.07 0.80± 0.09 0.92± 0.04
TriangleTireworld 0.21± 0.26 0.36± 0.30 0.12± 0.13 0.16± 0.19 0.81± 0.23 0.99± 0.02
Wildfire 0.29± 0.26 0.69± 0.15 0.94± 0.05 0.97± 0.02 0.64± 0.20 0.64± 0.22

Table 3: Average normalized performance across instances per domain and per baseline on the combined discrete IPC 2011 and
IPC 2014 benchmark problem sets. The best average normalized score achieved per domain is indicated in bold, and intervals
represent 95% confidence intervals around the mean score.

Domain GurobiPlan JaxPlan DiSProD
1 5 1 5 1 5

HVAC 0.00± 0.00 0.00± 0.00 0.99± 0.01 0.98± 0.03 0.96± 0.00 0.96± 0.00
MarsRover 0.12± 0.15 0.12± 0.15 0.72± 0.38 0.41± 0.39 0.24± 0.21 0.24± 0.21
MountainCar 0.00± 0.00 0.00± 0.00 0.54± 0.45 0.88± 0.24 0.48± 0.41 0.77± 0.38
PowerGen 0.63± 0.19 0.64± 0.19 0.98± 0.03 0.97± 0.02 0.91± 0.05 0.92± 0.05
RaceCar 0.00± 0.00 0.00± 0.00 0.20± 0.39 0.00± 0.00 0.00± 0.00 0.00± 0.00
Reservoir 1.00± 0.00 1.00± 0.00 0.99± 0.01 1.00± 0.00 0.96± 0.04 0.96± 0.04
UAV 0.02± 0.03 0.01± 0.02 0.99± 0.00 1.00± 0.00 0.97± 0.01 0.97± 0.01

Table 4: Average normalized performance across instances per domain and per baseline on the mixed discrete-continuous
IPC 2023 benchmark problem set. The best average normalized score achieved per domain is indicated in bold, and intervals
represent 95% confidence intervals around the mean score.
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(a) Win rate performance across all 12 do-
mains of IPPC 2011, 2014 vs instance IDs
for time step budget of 1 second.
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(b) Win rate performance across all 12 do-
mains of IPPC 2011, 2014 vs instance IDs
for time step budget of 3 second.
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(c) Win rate performance across all 12 do-
mains of IPPC 2011, 2014 vs instance IDs
for time step budget of 5 second.
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(d) Win rate performance across all 7 do-
mains of IPPC 2023 vs instance IDs for time
step budget of 1 second.
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(e) Win rate performance across all 7 do-
mains of IPPC 2023 vs instance IDs for time
step budget of 3 second.

1 2 3 4 5

Instance
0.0

0.5

1.0

W
in

R
at

e

GurobiPlan JaxPlan DiSProD

(f) Win rate performance across all 7 domains
of IPPC 2023 vs instance IDs for time step
budget of 5 second.

Figure 2: Win rate over all domains vs instance IDs.

On the other hand, GurobiPlan does relatively poorly on do-
mains where determinization is conjectured to be less ef-
fective. For instance, Navigation was designed to provide

dead-ends when using most likely outcome determinization,
which explains the particularly poor performance of Guro-
biPlan on this domain. Finally, we observe that the perfor-
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(a) Win rate across all 120 instances of IPPC 2011,
2014 vs time budget allocated per step.
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(b) Win rate across all 35 instances of IPPC 2023
vs time budget allocated per step.

Figure 3: Win rate performance across all instances vs allo-
cated time per step.

mance of JaxPlan on some “probabilistically interesting”
domains with dead ends (e.g. CrossingTraffic, Navigation)
tends to fall behind PROST, despite being able to handle
many probability distributions via reparameterization and
the Gumbel-softmax trick. One possible explanation is that
JaxPlan uses i.i.d. sampling of reparameterized stochastic
variables at each time step, hence if there exists a sequence
of low probability transitions to a dead-end, JaxPlan may
sample all of the transitions that avoid the dead-end, even
though the cumulative probability of diverting to the dead-
end may be high (Little and Thiébaux 2007). Another pos-
sible explanation is that the Gumbel-softmax trick, or even
the temperature parameter τ selected, are not optimal for the
given instances. We leave the improvement of these approx-
imations for future work.

More generally, with a 5-second time limit per decision
epoch, GurobiPlan outperforms JaxPlan on 8 out of the 12
domains. JaxPlan achieves the best performance on Wildfire,
while results on GameOfLife and SysAdmin almost match
the performance of PROST. Meanwhile, JaxPlan achieves
the worst performance on AcademicAdvising and Trian-
gleTireworld. We surmise that the performance of JaxPlan
on these domains (as well as CrossingTraffic and Cooper-
ativeRecon) is hindered by the presence of dead ends, i.e.,
terminal states that when reached, render the goal state in-
accessible during the remainder of the rollout (Guerin et al.
2012; Ng and Petrick 2022). On the other hand, JaxPlan ap-
pears to do well when there are multiple high-reward actions
available in each state, or at least the presence of a “correc-
tive” action allowing the planner to move from a region of
low to high reward, which we typically find in IPPC 2023
domains as we discuss next.

On the IPPC 2023 domains, JaxPlan generally outper-

forms DiSProD. This new finding does not contradict the
results of the IPC 2023 competition, where DiSProD only
outperformed the straight-line implementation of JaxPlan,
not the replanning approach used here. JaxPlan also sig-
nificantly outperforms GurobiPlan, which fails to make
progress on all domains, with the exception of the highly lin-
ear Reservoir and PowerGen domains. We suspect the poor
performance on the nonlinear domains is at least partially
explained by the piecewise linear approximation, which in-
troduces a large number of auxiliary variables. One way to
address this issue is to tune the parameters of the piece-
wise approximation (i.e., number of segments). Another ex-
planation for the poor performance of GurobiPlan is the
sparse goal-oriented nature of these problems in particular
MountainCar and RaceCar (and to an extent MarsRover and
UAV), where full horizon rollouts are required for identi-
fying the goal state. JaxPlan (and its derivative DiSProD)
are capable of efficiently planning over a long lookahead
horizon within the allocated time budget, since their over-
all computation cost scales linearly with the rollout horizon.
Addressing the scalability of GurobiPlan to longer rollout
horizons is an interesting direction for future research.

Instance Size Scalability We conduct an evaluation to as-
sess how each method effectively handles problems of in-
creasing size, providing insights into scalability and perfor-
mance under growing complexities. Across all domains, the
scale of the problem systematically increases with the in-
stance ID. Specifically, instance i exhibits a larger number
of objects or a more intricate topology compared to instance
i−1. This holds true for instances i ∈ {2, ..., 10} in the case
of IPPC 2011 and 2014, and i ∈ {2, .., 5} for IPPC 2023.

To gauge performance, we measure the win rate against
instance size for a given time-allocated budget. In essence,
the win rate signifies the percentage of successes for each
method on a particular instance across all domains. This
evaluation metric is applied consistently for instances 1, 2,
and so forth, with the measure being relative to the allocated
execution time. The evaluation outlined above will be exe-
cuted for three constant time allocation budgets. This strate-
gic approach allows us to comprehensively measure how
each method scales as the time allocated for a planning step
size increases. The three time allocation budgets ensure a
careful examination of scalability across various planning
time constraints. Results are given in Figure 2.

The top row in Figure 2 showcases the performance of
JaxPlan, GurobiPlan, and PROST across the domains of
IPPC 2011 and 2014. In contrast, the bottom row illustrates
the performance of JaxPlan, GurobiPlan, and DiSProD over
the 2023 IPPC domains. For both rows, the leftmost Figure
illustrates performance over the domains per instance with a
time allocation of 1 second per time step. The middle Figure
corresponds to a time allocation of 3 seconds per time step,
and the rightmost Figure represents a time allocation of 5
seconds per time step.

In the results for the 2011 and 2014 IPPC domains, it is
evident that PROST, as a highly tuned method tailored for
discrete domains, achieves the highest win rate in the ma-
jority of cases. However, specific instances reveal that as
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the time budget increases, other methods manage to gain
the upper hand. For example, in instance 1, GurobiPlan’s
performance surpasses other methods for step sizes 3 and 5
(see Figures 2b and 2c respectively). An intriguing observa-
tion is that while GurobiPlan, as a MINLP method express-
ing discrete components explicitly, generally achieves better
overall results than JaxPlan, there are instances, especially
at larger sizes, where JaxPlan outperforms GurobiPlan. No-
tably, in instance 9 and when allocated 5 seconds per step,
JaxPlan achieves the best results (see Figure 2c).

Turning to the 2023 IPPC domains, JaxPlan stands out as
clearly superior to GurobiPlan and DiSProD. It consistently
achieves the best performance across all instance sizes and
time budgets, as evidenced in Figures 2d, 2e, and 2f. This
demonstrates JaxPlan’s robustness and effectiveness in han-
dling the challenges posed by the mixed discrete-continuous
nature of the 2023 IPPC domains.

Time Management and Anytime Performance Here, we
evaluate each method relative to the allocated budget time.
The assessment encompasses several time settings in in-
creasing length, to comprehensively understand how each
method adapts to varying time constraints.

For every instance, each method underwent execution
with three different time budgets: 1, 3, and 5 seconds per
decision epoch of total training/search time. Time allocation
was determined on a per-instance basis and was linear with
respect to both the horizon and the “step-budget.” I.e., for a
problem with a horizon T and a step-budget of h, the total
allocated time for execution was T ×h seconds per episode.

Performance was measure via win rates, considering all
instances across all domains. To maintain clarity and rele-
vance, results from IPPC 2011 and 2014 were distinguished
from those of IPPC 2023 due to variations in instance quan-
tity and the methods used for comparison. This separation
ensures a focused and controlled analysis of each iteration’s
results. The results are provided in Figure 3.

We can observe conclusive evidence supporting the asser-
tion that PROST consistently achieves the best results across
the domains of IPPC 2011 and 2014, while JaxPlan emerges
as the top performer for IPPC 2023. This conclusion holds
true across all allocated time step budgets, underscoring the
reliability and consistency of these findings.

Notably, an interesting observation from both Figures 3a
and 3b is the stability of the win rate distribution among the
methods across various time budgets. This consistency im-
plies that the relative performance of each method remains
proportionate across different time allocations. Moreover, it
is worth noting that all methods demonstrate a capacity to
leverage the increased time allocated per step to some de-
gree. Surprisingly, no method establishes a significant lead
over the others, indicating a collective adaptability to the ad-
ditional computational resources provided.

Results Summary and Key Observations We now sum-
marize our observations along key evaluation dimensions.

• Discrete Domains (IPPC 2011 & IPPC 2014):

– PROST, being an optimized discrete MCTS method,
performs best overall in purely discrete domains.

– GurobiPlan outperforms JaxPlan on domains with
heavy sequential, logical reasoning, but struggles on
Probabilistically Interesting domains with avoidable
probabilistic dead-ends (e.g., Navigation) that are
known to provide a failure mode for deterministic re-
planners (Little and Thiébaux 2007).

– JaxPlan tends to work better in highly stochastic
domains requiring reasoning about many concurrent
independent exogenous events where myopic, but
stochastic outcome-aware policies can often work well
(e.g., Wildfire, SysAdmin and GameOfLife).

• Mixed Domains (IPPC 2023):
– JaxPlan (in replanning mode) performs best.
– Gurobi’s MINLP solver appears to significantly strug-

gle with the horizon required to plan effectively in
these challenging mixed discrete-continuous domains.

• Instance Difficulty and Time Budget:
– JaxPlan typically performs better relative to other

planners as the instance difficulty increases, particu-
larly in the mixed discrete-continuous instances and
very often in the discrete instances.

– No planner clearly dominates the others as the plan-
ning time budget increases.

Conclusion
In this study, we introduced two distinct optimization-based
replanning approaches, JaxPlan and GurobiPlan, designed
to address the complexities of planning in mixed discrete-
continuous stochastic environments, while also demonstrat-
ing the ability to plan in purely discrete scenarios. Our eval-
uation encompassed a diverse spectrum of problems drawn
from past planning competitions, covering both discrete and
mixed discrete-continuous domains. In addition to assess-
ing JaxPlan and GurobiPlan, we benchmarked them against
the winners of previous competitions (PROST and DiS-
ProD), with the overarching goal of establishing baseline ap-
proaches and gaining insights into their performance across
various scenarios.

Notably, PROST excels in discrete domains, leveraging
optimized search-based methods. GurobiPlan, operating as
an explicit MINLP method, outperforms JaxPlan in some
discrete domains requiring heavy logical, sequential reason-
ing. However, JaxPlan demonstrated a remarkable ability to
surpass GurobiPlan in many discrete instances, in particu-
lar with highly stochastic transitions. A key highlight from
our evaluation of the mixed discrete-continuous 2023 IPPC
domains is that JaxPlan emerged as the superior performer,
consistently excelling across diverse instance sizes and time
budgets. This performance underscores JaxPlan’s robustness
across a range of problem and evaluation types.

Our study positions JaxPlan and GurobiPlan as two
unique optimization-based replanning baselines capable of
addressing challenges across the spectrum of discrete, con-
tinuous, and mixed discrete-continuous problems. These
findings not only offer valuable insights into the strengths
of each planning method, but also identify key challenges
for further advances in the realm of probabilistic planning.
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