
A Real-Time Rescheduling Algorithm for Multi-robot Plan Execution

Ying Feng1, Adittyo Paul1, Zhe Chen2, Jiaoyang Li1

1Carnegie Mellon University, USA
2Monash University, Australia

{yingfeng,adittyop}@andrew.cmu.edu, zhe.chen@monash.edu, jiaoyangli@cmu.edu

Abstract
One area of research in multi-agent path finding is to deter-
mine how replanning can be efficiently achieved in the case
of agents being delayed during execution. One option is to
reschedule the passing order of agents, i.e., the sequence in
which agents visit the same location. In response, we pro-
pose Switchable-Edge Search (SES), an A*-style algorithm
designed to find optimal passing orders. We prove the opti-
mality of SES and evaluate its efficiency via simulations. The
best variant of SES takes less than 1 second for small- and
medium-sized problems and runs up to 4 times faster than
baselines for large-sized problems.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths that move a team of agents from
their start to goal locations. MAPF is fundamental to numer-
ous applications, such as automated warehouses (Wurman,
D’Andrea, and Mountz 2007; Kou et al. 2020), computer
games (Silver 2005), and drone swarms (Hönig et al. 2018).

Classic MAPF models assume flawless execution. How-
ever, in real-world scenarios, agents may encounter unex-
pected delays due to mechanical differences, unforeseen
events, localization errors, and so on. To accommodate such
delays, existing research suggests the use of a Temporal
Plan Graph (TPG) (Hönig et al. 2016). The TPG captures
the precedence relationships within a MAPF solution and
maintains them during execution. Each precedence relation-
ship specifies an order for two agents to visit the same loca-
tion. An agent advances to the next location in its path only
if the corresponding precedence conditions are met. Con-
sequently, if an agent experiences a delay, all other agents
whose actions depend on this agent will pause. Despite its
advantages of providing rigorous guarantees on collision-
freeness and deadlock-freeness, the use of TPG can intro-
duce a significant number of waits into the execution results
due to the knock-on effect in the precedence relationship.

In this paper, we adopt a variant of TPG, named Switch-
able TPG (STPG) (Berndt et al. 2020). STPG allows for the
modification of some precedence relationships in a TPG, re-
sulting in new TPGs. To address delays, we propose an A*-
style algorithm called Switchable-Edge Search (SES) to find

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the new TPG based on a given STPG that minimizes the
travel times of all agents to reach their goal locations. We
prove the optimality of SES and introduce two variants: an
execution-based variant (ESES) and a graph-based variant
(GSES). Experimental results show that GSES finds the op-
timal TPG with an average runtime of less than 1 second
for various numbers of agents on small- and medium-sized
maps. On larger maps, GSES runs up to 4 times faster than
existing replanning algorithms.

Preliminaries
Definition 1 (MAPF). Multi-Agent Path Finding (MAPF)
aims to find collision-free paths for a team of agents A on
a given graph. Each agent i ∈ A has a unique start location
and a unique goal location. In each discrete timestep, every
agent either moves to an adjacent location or waits at its cur-
rent location. A path for an agent specifies its action at each
timestep from its start to goal locations. A collision occurs
if either of the following happens:
1. Two agents are at the same location at the same timestep.
2. One agent leaves a location at the same timestep when

another agent enters the same location.
A MAPF solution is a set of collision-free paths of all agents.
Remark 1. The above definition of collision coincides with
that in the setting of k-robust MAPF (Atzmon et al. 2018)
with k = 1. We disallow the second type of collision be-
cause, if agents follow each other and the front agent sud-
denly stops, the following agents may collide with the front
agent. Thus, this restriction ensures better robustness when
agents are subject to delays. Note that the swapping colli-
sion, where two agents swap their locations simultaneously,
is a special case of the second type of collision.

A MAPF solution can be represented in different formats.
We stick to the following format for our discussion, though
our algorithms do not depend on specific formats.
Definition 2 (MAPF Solution). A MAPF solution takes the
form of a set of collision-free paths P = {pi : i ∈ A}. Each
path pi is a sequence of location-timestep tuples (li0, t

i
0) →

(li1, t
i
1)→ · · · → (lizi, t

i
zi) with the following properties: (1)

The sequence follows a strict temporal ordering: 0 = ti0 <
ti1 < · · · < tizi. (2) li0 and lizi are the start and goal locations
of agent i, respectively. (3) Each tuple (lik, t

i
k) with k > 0

specifies a move action of i from lik−1 to lik at timestep tik.

Proceedings of the Thirty-Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024)

201

These properties force all consecutive pairs of locations
lik and lik+1 to be adjacent on the graph. A wait action is
implicitly defined between two consecutive tuples. Namely,
if tik+1−tik = ∆ > 1, then i is planned to wait at lik for ∆−1
timesteps before moving to lik+1. Additionally, tizi records
the time when i reaches its goal location, called the travel
time of i. The cost of a MAPF solution P is cost(P) =∑

i∈A tizi, and P is optimal if its cost is minimum.
Remark 2. Definition 2 discards the explicit representation
of wait actions. This is because, when executing P as a TPG
(specified in the next section), it may reduce the travel time if
P has unnecessary wait actions, e.g., when P is suboptimal.

Related Works Numerous recent studies on MAPF have
explored strategies for managing unexpected delays during
execution. A simple strategy is to re-solve the MAPF prob-
lem when a delay occurs. However, this strategy is computa-
tionally intensive, leading to prolonged agent waiting time.
To avoid the need for replanning, Atzmon et al. (2018) sug-
gested the creation of a k-robust MAPF solution, allowing
agents to adhere to their planned paths even if each agent
is delayed by up to k timesteps. However, replanning is
still required if an agent’s delay exceeds k timesteps. Atz-
mon et al. (2020) then proposed a different model, called p-
robust MAPF solutions, that ensures execution success with
a probability of at least p, given an agent delay probability
model. Nevertheless, planning a k-robust or p-robust MAPF
solution is considerably more computational-intensive than
computing a standard MAPF solution. Another strategy for
managing delays involves the use of an execution policy that
preserves the precedence relationships of a MAPF solution
during execution (Hönig et al. 2016; Ma, Kumar, and Koenig
2017; Hönig et al. 2019). This strategy is quick and elimi-
nates the need for replanning paths. However, the execution
results often leave room for improvement, as many unnec-
essary waits are introduced. Our work aims to address this
limitation by formally exploring the concept of optimizing
precedence relationships online (Berndt et al. 2020; Man-
nucci, Pallottino, and Pecora 2021).

Temporal Plan Graph (TPG)
In essence, we aim to optimize the passing order for multiple
agents to visit the same location. This is achieved using a
graph-based abstraction known as the TPG.
Definition 3 (TPG). A Temporal Plan Graph (TPG) (Hönig
et al. 2016) is a directed graph G = (V, E1, E2) that repre-
sents the precedence relationships of a MAPF solution P .
The set of vertices is V = {vik : i ∈ A, k ∈ [0, zi]}, where
each vertex vik corresponds to (lik, t

i
k), namely the kth move

action in path pi. There are two types of edges E1 and E2,
where each directed edge (u, v) ∈ E1 ∪ E2 encodes a prece-
dence relationship between a pair of move actions, namely
movement u is planned to happen before movement v.
• A Type 1 edge connects two vertices of the same agent,

specifying its path. Specifically, E1 = {(vik, vik+1) : ∀i ∈
A, k ∈ [0, zi)}.

• A Type 2 edge connects two vertices of distinct agents,
specifying their ordering of visiting the same location.

Figure 1: Example of converting a MAPF solution to a TPG.
The solid arrows in the TPG represent Type 1 edges, and the
dashed arrow represents a Type 2 edge.

Procedure 1: TPG Execution
1 Define a counter cost;
2 Function INITEXEC(V)
3 cost← 0;
4 Mark vertices in V0 = {vi0 : i ∈ A} as satisfied;
5 Mark vertices in (V \ V0) as unsatisfied;
6 Function STEPEXEC(G = (V, E1, E2))
7 S ← ∅; // Vertices to be marked as satisfied
8 forall i ∈ A : vizi unsatisfied do
9 cost← cost+ 1;

10 k ← min{k : vik unsatisfied};
11 if ∀(u, vik) ∈ E2 : u satisfied then
12 Add vik into S;

13 return S;
14 Function EXEC(G = (V, E1, E2))
15 INITEXEC(V);
16 while ∃v ∈ V : v unsatisfied do
17 S ← STEPEXEC(G);
18 forall vik ∈ S do Mark vik as satisfied;
19 return cost;

Specifically, E2 = {(vjs+1, v
i
k) : ∀i ̸= j ∈ A, s ∈

[0, zj), k ∈ [0, zi] satisfying ljs = lik and tjs+1 < tik}.

Example 1. Figure 1 shows an example of converting a
MAPF solution into a TPG. Both agents are planned to visit
location D, and the red agent is planned to visit D earlier
than the blue agent. Consequently, there is a Type 2 edge
from vred

3 to vblue
2 , signifying that the blue agent can move to

D only after the red agent has reached F. Note that we define
Type 2 edge as (vred

3 , vblue
2) instead of (vred

2 , vblue
2) to avoid

the second type of collision in Definition 1.

Executing a TPG Procedure 1 describes how to execute
a TPG G, which includes a main function EXEC and two
helper functions INITEXEC and STEPEXEC, along with two
marks “satisfied” and “unsatisfied” for vertices. Marking a
vertex as satisfied corresponds to moving an agent to the
corresponding location, and we do so if and only if all in-
neighbors of this vertex have been satisfied. The execution
terminates when all vertices are satisfied, i.e., all agents
have reached their goal locations. The cost of executing G,
namely cost(G) = EXEC(G), is the sum of travel time for

202

agents following G (while assuming no delays happen).
We now introduce some known properties of TPGs. All

proofs are delayed to the appendix. We use G to denote a
TPG constructed from a MAPF solutionP as in Definition 3.

Proposition 1 (Cost). cost(G) ≤ cost(P).
Intuitively, cost(G) < cost(P) if P has unnecessary wait

actions and cost(G) = cost(P) otherwise.

Proposition 2 (Collision-Free). Executing a TPG with Pro-
cedure 1 does not lead to collisions among agents.

Next, we present two lemmas regarding deadlocks of ex-
ecuting a TPG, which were used in previous work (Berndt
et al. 2020; Su, Veerapaneni, and Li 2024) and are helpful
for our discussion of switchable TPGs in the next section.

Definition 4 (Deadlock). When executing a TPG, a dead-
lock is encountered iff, in an iteration of the while-loop of
EXEC(G), V contains unsatisfied vertices but S = ∅.
Lemma 3 (Deadlock ⇐⇒ Cycle). Executing a TPG en-
counters a deadlock iff the TPG contains cycles.

Lemma 4 (Deadlock-Free). If a TPG is constructed from a
MAPF solution, then executing it is deadlock-free.

Switchable TPG (STPG)
TPG is a handy representation for precedence relationships.
Yet, a TPG constructed as in Definition 3 is fixed and bound
to a given set of paths. In contrast, our optimization algo-
rithm will use the following extended notion of TPGs, which
enables flexible modifications of precedence relationships.

Definition 5 (STPG). Given a TPG G = (V, E1, E2), a
Switchable TPG (STPG) GS = (V, E1, (SE2,NE2)) parti-
tions Type 2 edges E2 into two disjoint subsets SE2 (switch-
able edges) andNE2 (non-switchable edges) and allows two
operations on any switchable edge (vjs+1, v

i
k) ∈ SE2:

• fix(vjs+1, v
i
k) removes (vjs+1, v

i
k) from SE2 and add it

intoNE2. It fixes a switchable edge to be non-switchable.
• reverse(vjs+1, v

i
k) removes (vjs+1, v

i
k) from SE2 and add

(vik+1, v
j
s) into NE2. It switches the precedence relation-

ship and then fixes it to be non-switchable.

Remark 3. Reversing the precedence relationship repre-
sented by (vjs+1, v

i
k) produces (vik+1, v

j
s) because, based on

Definition 3, Type 2 edge (vjs+1, v
i
k) indicates locations ljs

and lik are the same. Thus, after reversing, vertex vik+1 needs
to be satisfied before vjs can be marked as satisfied.

Example 2. Figure 2 shows an example of reversing an
edge. After the reverse operation, edge (vred

1 , vblue
2) in the

left TPG is replaced with edge (vblue
3 , vred

0) in the right TPG.

Definition 5 defines a strict superclass of Definition 3. A
STPG degenerates into a TPG if SE2 is empty.

Definition 6 (GS -producible TPG). Given a STPG GS , a
TPG is GS -producible if it can be generated through a se-
quence of fix and reverse operations on GS .

Figure 2: Example of reversing an edge in a TPG.

We now show the roadmap of our algorithm. Given a
MAPF solution P , we construct TPG G0 from P as in Defi-
nition 3 and then run Procedure 1. When a delay happens, we
(1) construct a STPG GS based on G0 and (2) finds a TPG
G∗ with cost(G∗) = min{cost(G) : G is GS -producible},
representing an optimal ordering of agents visiting each lo-
cation, upon sticking to the original location-wise paths. We
describe Step (1) below and Step (2) in the next section.
Construction 1. Assume that, during the execution of G0 =
(V, E1, E2), agent d is forced to delay at its current location
ldc for ∆ timesteps. We construct STPG GS as follows:
1. Construct STPG GS = (V, E1, (SE2,NE2)) with SE2 =

{(vjs+1, v
i
k) ∈ E2 : vjs+1 is unsatisfied and k < zi} and

NE2 = {(vjs+1, v
i
k) ∈ E2 : vjs+1 is satisfied or k = zi}.

2. Create ∆ new dummy vertices Vnew = {v1, · · · , v∆}
and (∆ + 1) new Type-1 edges Enew = {(vdc , v1),
(v1, v2), · · · , (v∆−1, v∆), (v∆, v

d
c+1)} and modify GS

with V ← V ∪Vnew and E1 ← (E1∪Enew)\{(vdc , vcc+1)}.
If there are multiple agents delayed at the same timestep, we
repeat Step 2 for each delayed agent.

Remark 4. In Step 1, (vjs+1, v
i
k) is non-switchable when

vjs+1 is satisfied because agent j has already visited ljs.
(vjs+1, v

i
zi) is non-switchable because agent i must be the

last one to visit its goal location. The dummy vertices added
in Step 2 are used to account for the delays in Procedure 1.

We now show an intuitive yet crucial theorem.
Theorem 5. If STPG GS is constructed by Construction 1,
then there is at least one deadlock-free GS -producible TPG.

Proof. We generate a naı̈ve solution Gnaive by fixing all
switchable edges in GS . Lemma 4 ensures that G0 is
deadlock-free. GS constructed in Step 1 is identical to G0
if we fix all switchable edges. Step 2 behaves as expand-
ing a pre-existing edge (vik−1, v

i
k) into a line of connecting

edges, which does not create any new cycles. Therefore, by
Lemma 3, Gnaive is deadlock-free.

Switchable Edge Search (SES) Framework
We describe our algorithm, Switchable Edge Search (SES),
in a top-down modular manner, starting with a high-level
heuristic search framework in Algorithm 2. We define the
partial cost of a STPG as the cost of its reduced TPG, which
is defined as follows.
Definition 7 (Reduced TPG). The reduced TPG of a STPG
GS = (V, E1, (SE2,NE2)) is the TPG that omits all switch-
able edges, denoted as red(GS) = (V, E1,NE2).

203

Algorithm 2: Switchable Edge Search (SES)
HEURISTIC and BRANCH are modules to be speci-
fied later. X stores auxiliary information accompa-
nying a STPG and will be specified later.

Input: STPG GSroot
Output: TPG G

1 (hroot,Xinit)← HEURISTIC(GSroot,Xinit);
2 Q ← {(GSroot,Xinit, 0, hroot)}; // A priority queue
3 while Q is not empty do
4 (GS ,X , g, h)← Q.pop();
5 (X ′, g∆, (v

i
k+1, v

j
s))← BRANCH(GS ,X);

6 if (vik+1, v
j
s) = NULL then return GS ;

7 GSf ← fix(GS , (vik+1, v
j
s));

8 if not CYCLEDETECTION(GSf , (vik+1, v
j
s)) then

9 (hf ,Xf)← HEURISTIC(GSf ,X ′);
10 Q.push((GSf ,Xf , g + g∆, hf));

11 GSr ← reverse(GS , (vik+1, v
j
s));

12 if not CYCLEDETECTION(GSr , (vjs+1, v
i
k)) then

13 (hr,Xr)← HEURISTIC(GSr ,X ′);
14 Q.push((GSr ,Xr, g + g∆, hr));

15 throw exception “No solution found”;
16 Function CYCLEDETECTION(GS , (u, v))
17 Run depth-first search (DFS) from v on red(GS);
18 if DFS visits vertex u then return true;
19 return false;

Lemma 6. The partial cost of a STPG GS is no greater than
the cost of any GS -producible TPG.

Proof. Let G be a GS -producible TPG. Consider running
Procedure 1 on G and red(GS), respectively. Since an edge
appears in red(GS) must appear in G, we can inductively
show that, in any call to STEPEXEC, if a vertex v can be
marked as satisfied in G, then it can be marked as satisfied
in red(GS). Thus, the total timesteps to satisfy all vertices
in red(GS) cannot exceed that in G.

As shown in Algorithm 2, SES runs A* in the space of
STPGs with a root node corresponding to the STPG GSroot
constructed as in Construction 1. The priority queueQ sorts
its nodes by their f -values (namely g+ h). The f -value of a
node is defined as the partial cost of its STPG. When expand-
ing a node, SES selects one switchable edge in the STPG by
module BRANCH and generates two child nodes with the
selected edge being fixed or reversed. We abuse the oper-
ators fix and reverse on Lines 7 and 11 to take a STPG and
a switchable edge as input and return a new STPG.

SES uses function CYCLEDETECTION to prune child
nodes with STPGs that definitely produce cyclic TPGs,
namely STPGs whose reduced TPGs are cyclic. Specifically,
CYCLEDETECTION(GS , (u, v)) returns true iff red(GS)
contains a cycle involving edge (u, v). As GSroot is acyclic, it
holds inductively that CYCLEDETECTION(G, (u, v)) returns
true iff red(GS) contains any cycle. This is because, when

we generate a node, we add only one new non-switchable
edge, so any cycle formed must contain the new edge.

Assumption 1. The modules in SES satisfy:

A1 BRANCH(GS ,X) outputs an updated auxiliary informa-
tion X ′, a value g∆, and a switcable edge of GS if exists
or NULL otherwise.

A2 HEURISTIC(GS ,X) computes a value h such that g+h is
the partial cost of GS for every node (GS ,X , g, h) ∈ Q.

Theorem 7 (Completeness and Optimality). Under As-
sumption 1, SES always finds a deadlock-free TPG G with
cost(G) = min{cost(G) : G is GSroot-producible}.

Proof. First, SES always terminates within a finite time be-
cause there are only finitely many possible operation se-
quences from GSroot to any TPG, each corresponding to a
node that can possibly be added to Q. Second, Theorem 5
ensures that there always exist solutions for SES since GSroot
is constructed as in Construction 1. Therefore, to prove the
completeness of SES, we just need to prove the following
claim: At the beginning of each while-loop iteration, for any
deadlock-free GSroot-producible TPG G, there exists GS ∈ Q
such that G is GS -producible. Here, we abuse the notation
GS ∈ Q to denote a node in Q with STPG GS . This claim
holds inductively: At the first iteration, GSroot ∈ Q. During
any iteration, if some GS ∈ Q such that G is GS -producible
is popped on Line 4, then one of the following must hold:

• GS contains no switchable edge, i.e., GS = G: SES ter-
minates, and the inductive step holds vacuously.

• G is GSf -producible: Since G is acyclic, so is red(GSf).
Thus, GSf is added into Q.

• G is GSr -producible: This is symmetric to the above case.

In any case, the claim remains true after this iteration. There-
fore, SES always outputs a solution within a finite time.

Finally, we prove that the output TPG G has the minimum
cost. Assume towards contradiction that when G is returned,
there exists GS0 ∈ Q that can produce a better TPG Gbetter
with cost(Gbetter) < cost(G). Yet this is impossible since
Lemma 6 implies that such GS0 must have a smaller g + h
value and thus would be popped from Q before G.

Execution-based Modules
In this and the next sections, we describe two sets of mod-
ules and prove that they satisfy Assumption 1. We start with
describing a set of “execution-based” modules in Module 3
and refer to it as Execution-based SES (ESES).

In essence, ESES simulates the execution of the STPG
and branches when encountering a switchable edge. It uses
X to record the index of the most recently satisfied vertex for
every agent, indicating their current locations. X is updated
by the BRANCH module, which largely ensembles EXEC in
Procedure 1. At the beginning of each while-loop iteration
of BRANCH, ESES first checks whether the next vertex of
any agent is involved in a switchable edge and, if so, returns
that edge together with the updated X ′ and the cost of mov-
ing agents from the old X to the new X ′ [Lines 8 to 11],

204

Figure 3: Example of running ESES on the top-left STPG. The circled numbers denote the order of generating these STPGs.

Module 3: Execution-based Modules for ESES
1 Auxillary information X is a map X : A → [0 : zi],

where X [i] records the index of the most recently
satisfied vertex for agent i;

2 Xinit on Line 1 of Algorithm 2 maps all agents to 0;
3 INITEXEC in Procedure 1 is modified by setting V0 to
{vik : i ∈ A, k ≤ X [i]} instead of {vi0 : i ∈ A};

4 Function BRANCH(GS = (V, E1, (SE2,NE2)),X)
5 INITEXEC(V,X);
6 X ′ ← X ;
7 while ∃v ∈ V : v unsatisfied do
8 forall i ∈ A : X ′[i] < zi do
9 v ← viX ′[i]+1; // First unsatisfied vertex

10 if ∃e ∈ SE2 with e = (v, u) or (u, v) then
11 return (X ′, cost, e);

12 S ← STEPEXEC(red(GS));
13 forall vik ∈ S do
14 Mark vik as satisfied;
15 X ′[i]← k;

16 return (X ′, cost, NULL);

17 Function HEURISTIC(GS ,X)
18 return (EXEC(red(GS)),X);

where the cost is updated inside function STEPEXEC. If no
such edge is found, it runs STEPEXEC on the reduced TPG to
move agents forward by one timestep and repeat the process.

Example 3. Figure 3 shows an example of ESES.1 We

1We note that Figure 3 also works as an example for the GSES
implementation in the following section. The only difference is that

start with the top-left STPG 1⃝ containing two switchable
edges. ESES looks at a “horizon” containing the first unsat-
isfied vertices vi1 and vj1, and then picks the adjacent switch-
able edge (vi3, v

j
1) to branch on. This leads to two copies of

STPGs 2⃝ and 3⃝, containing non-switchable edge (vi3, v
j
1)

or (vj2, v
i
2), respectively. ESES expands on STPG 3⃝ first as

it has a smaller g + h value. The next switchable edge it en-
counters is (vj3, v

i
2). ESES first fixes it and generates TPG

4⃝ with cost = 10, which is the optimal solution. When
ESES reverses the edge, the resulting TPG 5⃝ is pruned as
it contains a cycle. Note that STPG 2⃝ will not be expanded
since it has a partial cost greater than the cost of TPG 4⃝.

Proposition 8. Module 3 satisfies Assumption 1.

Proof. Assumption A1 holds by design. To prove Assump-
tion A2, we first prove the following claim by induction: for
every node (GS ,X , g, h) ∈ Q, g is the cost of moving agents
from their start locations to X . This holds for the root node
with g = 0 and X [i] = 0, ∀i ∈ A. When we expand a node
(G,X , g, h) ∈ Q, g∆ returned by BRANCH is the cost of
moving agents from X to X ′. Thus, on Lines 10 and 14 of
Algorithm 2, the g value of the child nodes are g+g′, which
is the cost of moving agents from their start locations to X ′

(= Xf = Xr). So our claim holds. Module HEURISTIC runs
function EXEC to compute the cost of moving agents from
X ′ to their goal locations on the reduced TPG, making g+h
the partial cost of GS for every node (GS ,X , g, h) ∈ Q.

Graph-based Modules
We now introduce an alternative set of modules that focus on
the graph properties of a TPG. We refer to this implementa-
tion as Graph-based SES (GSES). We will see later in our

GSES does not use the notion of “(un)satisfied vertex” or STEPEXEC.

205

experiment that this shift of focus significantly improves the
efficiency of SES. We start by presenting the following cru-
cial theorem that provides a graph-based approach to com-
puting the cost of a TPG.

Given a TPG G and a vertex v ∈ V , let lp(v) denote
the longest path among the longest paths from every vertex
vi0, i ∈ A to vertex v on G and |lp(v)| denote its length.

Theorem 9. When we execute a TPG, every vertex v is
marked as satisfied in the |lp(v)|th iteration of the while-loop
of EXEC in Procedure 1.

Proof. We induct on iteration t and prove that all vertices
v with |lp(v)| = t are marked as satisfied in the tth iter-
ation. In the base case, {vi0, i ∈ A} are the vertices with
|lp(v)| = 0 and are marked as satisfied in the 0th itera-
tion. In the inductive step, we assume that, by the end of
the (t − 1)th iteration, all vertices v with |lp(v)| < t are
satisfied, and all vertices v with |lp(v)| ≥ t are unsatisfied.
Then, in the tth iteration, every vertex v with |lp(v)| = t is
marked as satisfied because all of its in-neighbors v′ have
|lp(v′)| < |lp(v)| = t and are thus satisfied. For every ver-
tex v with |lp(v)| > t, the vertex right before v on lp(v),
denoted as v′, has |lp(v′)| = |lp(v)| − 1 ≥ t and is thus
unsatisfied on Line 17. Thus, every vertex v with |lp(v)| > t
has at least one in-neighbor unsatisfied and thus remains un-
satisfied. Therefore, the theorem holds.

Hence, the last vertex vizi of every agent i ∈ A is marked
as satisfied in the |lp(vizi)|th iteration, namely the travel time
of agent i is |lp(vizi)|. We thus get the following corollary.

Corollary 10. Given a TPG G, cost(G) =
∑

i∈A |lp(vizi)|.

An interesting observation is that, if lp(u) < lp(v) for a
given TPG G, then adding edge (u, v) to G does not change
its cost since adding (u, v) does not change any longest
paths. We thus get the following corollary that is useful later.

Corollary 11. Given a STPG GS , we compute lp(v) on
red(GS). For any switchable edge with lp(u) < lp(v),
fixing it does not change the partial cost of GS .

We adopt the following well-known algorithm to compute
lp(v) on a given deadlock-free TPG G = (V, E1, E2): (1)
Set lp(v) = 0, ∀v ∈ V . (2) Compute a topological sort of
all vertices in V . (3) For each vertex v in the topological
order, we set lp(u) = max{lp(u), lp(v) + 1} for every out-
neighbor u (namely (v, u) ∈ E1 ∪ E2). The time complexity
of this longest-path algorithm is O(|V|+ |E1 ∪ E2|).

With this algorithm, we specify the graph-based modules
in Module 4. In GSES, X records lp(v) for every vertex v ∈
V and is updated by the HEURISTIC module. Since, with
X , HEURISTIC can directly compute the partial cost of a
given STPG, GSES does not use any g values. The BRANCH
module chooses a switchable edge (u, v) with X [u] ≥ X [v]
to branch on. If no such edge exists, then, by Corollary 11,
fixing all switchable edges produces a TPG with the same
cost as the current partial cost. Thus, GSES fix all such
edges and terminates in this case.

Proposition 12. Module 4 satisfies Assumption 1.

Module 4: Graph-based Modules for GSES
1 Auxillary information X is a map X : V → [0, |V|),

which records lp(v) for every vertex v;
2 Xinit on Line 1 of Algorithm 2 is empty;
3 Function BRANCH(GS = (V, E1, (SE2,NE2)),X)
4 if ∃(u, v) ∈ SE2 : X [u] ≥ X [v] then
5 return (X , 0, (u, v));
6 fix all swtichable edges in GS ;
7 return (X , 0, NULL);

8 Function HEURISTIC(GS ,X)
9 X ′ ← lp-values of all vertices in V on red(GS);

10 return (
∑

i∈A X [vizi],X ′);

Proof. Assumption A1 holds by design. Assumption A2
holds because of Corollary 10.

Remark 5. ESES terminates when all vertices are satis-
fied, which is possible only when all Type 2 edges are
non-switchable. This means that ESES has to expand on
all switchable edges before getting a solution. In con-
trast, GSES can have an early termination when fixing all
switchable edges does not change any longest paths.

Experiment
We use 4 maps from the MAPF benchmark suite (Stern et al.
2019), shown in Figure 4, with 6 agent group sizes per map.
Regarding each map and group size configuration, we run
the algorithms on 25 different, evenly distributed scenarios
(start/goal locations) with 6 trials per scenario. We set a run-
time limit of 90 seconds for each trial. In each trial, we ex-
ecute the TPG constructed from an optimal MAPF solution
planned by a k-Robust MAPF solver k-Robust CBS (Chen
et al. 2021) with k = 1. At each timestep of the execution,
each agent that has not reached its goal location is subject
to a constant probability p of delay. When a delay happens,
we draw a delay length ∆ uniformly random from a range
[10, 20], construct a STPG as in Construction 1, and run our
replanning algorithms. We also develop a baseline that uses
k-Robust CBS to find the new optimal solution (that takes
into account the delay length ∆) when the delay happens.

We implement all algorithms in C++2 and run experi-
ments on a server with a 64-core AMD Ryzen Threadripper
3990X and 192 GB of RAM.

Efficiency Figure 4 compares the runtime of ESES and
GSES with replanning using k-Robust CBS. In all cases,
GSES runs the fastest. Most remarkably, on the random and
warehouse maps, the runtime of GSES is consistently below
1 second and does not increase significantly when the num-
ber of agents increases, suggesting the potential of GSES for
real-time replanning applications.

2Our SES code is available at https://github.com/YinggggFeng/
Switchable-Edge-Search. The modified k-Robust CBS code that
considers delays is available at https://github.com/nobodyczcz/
Lazy-Train-and-K-CBS/tree/wait-on-start.

206

Figure 4: Runtime of ESES, GSES, and k-robust CBS. The dashed lines represent the mean of runtime, and the shaded areas
denote the 0.4 to 0.6 quantile range. For trials that exceed the 90-second time limit, we count it as 90 seconds.

Figure 5: Numbers of nodes explored and pruned by ESES
and GSES on the warehouse map. Dashed lines represent the
mean values. Shaded area between two lines for the same
algorithm indicates the portion of pruned nodes.

Comparing ESES and GSES We observe from Figure 4
that, although ESES and GSES adopt the same framework,

GSES runs significantly faster than ESES. This is because
the longest paths used in GSES defines a simple but ex-
tremely powerful early termination condition (see Remark
5), which enables GSES to find an optimal solution after a
very small number of node expansions. Figure 5 compares
the number of search nodes of ESES and GSES, where ex-
plored nodes are nodes popped from the priority queue, and
pruned nodes are nodes pruned by CYCLEDETECTION. The
gap between the red and grey lines (and the gap between
the purple and blue lines) indicates the effectiveness of cy-
cle detection for pruning unnecessary search nodes. The gap
between the grey and blue lines indicates the effectiveness
of early termination as described in Remark 5.

Improvement of Solution Cost Figure 6 measures the
cost of our replanned solution, in comparison to the non-
replanned solution produced by the original TPG and the re-
planned solution produced by k-Robust CBS. We stress that
our solution is guaranteed to be optimal, as proven in pre-
vious sections, upon sticking to the original location-wise

207

Figure 6: Mean costs (from the locations where the delays happened to the goal locations) of the non-replanned, GSES-
replanned, and K-Robust-CBS-replanned solutions. The means are taken across all trials for all different numbers of agents.

paths, while k-Robust CBS finds an optimal solution that is
independent of the original paths. Therefore, the two algo-
rithms solve intrinsically different problems, and the results
here serve primarily for a quantitative understanding of how
much improvement we can get by changing only the pass-
ing orders of agents at different locations. Figure 6 shows
that the cost improvement depends heavily on the maps. For
example, our solutions have costs similar to the globally op-
timal solutions on the random map, while the difference is
larger on the Lak303d map.

Conclusion
We proposed Switchable Edge Search to find the optimal
passing orders for agents that are planned to visit the same
location. We developed two implementations based on ei-
ther execution (ESES) or graph (GESE) presentations. On
the random and warehouse maps, the average runtime of
GSES is faster than 1 second for various numbers of agents.
On harder maps (Paris and game maps), it also runs faster
than replanning with a k-Robust CBS algorithm.

Appendix: Proofs for Section 3
We rely on the following lemma to prove Proposition 1.
Lemma A. For every tuple (lik, t

i
k) in every path pi ∈ P ,

the corresponding vertex vik in G is satisfied after the (tik)
th

iteration of the while-loop of EXEC in Procedure 1.

Proof. We induct on the while-loop iteration t and prove that
any vertex vik with tik ≤ t is satisfied after iteration t. When
t = 0, this holds because of INITEXEC. Assume that all ver-
tices vik with tik ≤ t − 1 are satisfied after iteration t − 1.
At iteration t, for Type 1 edge (vik−1, v

i
k), v

i
k−1 is satisfied

as tik−1 < tik ≤ t. For any Type 2 edge (vjs, v
i
k), v

j
s is also

satisfied as tjs < tik ≤ t by Definition 3. This shows that all
in-neighbors of vik are satisfied after iteration t − 1, thus vik
is satisfied after iteration t.

Proposition 1 (Cost). cost(G) ≤ cost(P).

Proof. Lemma A implies that the last vertex vizi of every
agent i is satisfied after the (tizi)

th iteration, i.e., when exe-
cuting G, the travel time of every agent i is no greater than
tizi. Thus, the proposition holds.

Proposition 2 is similar to Lemma 4 in (Hönig et al. 2016)
with different terms. We include a proof for completeness.

Proposition 2 (Collision-Free). Executing a TPG does not
lead to collisions among agents.

Proof. According to Procedure 1, we need to show that,
when a vertex vik is marked as satisfied [Line 18], moving
agent i to its kth location lik does not lead to collisions. As-
sume towards contradiction that agent i indeed collides with
another agent j at timestep t. Let vik and vjs be the latest sat-
isfied vertices for agents i and j, respectively, after the tth

iteration of the while-loop. If i and j collide because they are
at the same location, then lik = ljs, indicating that either edge
(vik+1, v

j
s) or edge (vjs+1, v

i
k) is in E2. But this is impossible

as neither vik+1 nor vjs+1 is satisfied.
If they collide because j leaves a location at timestep t,

and i enters the same location at timestep t, then vik and
vjs are marked as satisfied exactly at the tth iteration with
lik = ljs−1, indicating that either (vik, v

j
s) or (vjs+1, v

i
k−1) is

in E2. But this is also impossible as neither vik nor vjs+1 was
satisfied before the tth iteration.

Lemma 3 (Deadlock ⇐⇒ Cycle). Executing a TPG en-
counters a deadlock iff the TPG contains cycles.

Proof. If a TPG G has a cycle, executing it will encounter a
deadlock as no vertices in the cycle can be marked as satis-
fied. If executing G encounters a deadlock in the tth iteration
of the while-loop, we prove that G has a cycle by contradic-
tion. Let V ′ denote the set of unsatisfied vertices, which is
non-empty by Definition 4. If G is acyclic, then there exists
a topological ordering of V ′, and S must contain the first ver-
tex in the topological ordering as all of its in-neighbors are
satisfied, contradicting the deadlock condition of S = ∅.

Lemma 4 (Deadlock-Free). If a TPG is constructed from a
MAPF solution, then executing it is deadlock-free.

Proof. If a deadlock is encountered, then the execution
would enter the while-loop for infinitely many iterations,
and cost strictly increases in each iteration. Thus, cost(G) =
∞. Yet, cost(P) is finite, contradicting Proposition 1.

208

Acknowledgements
The research at Carnegie Mellon University was supported
by the National Science Foundation (NSF) under Grant
2328671. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies, or the U.S.
government.

References
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020. Probabilistic Robust Multi-Agent Path
Finding. In Proceedings of the International Conference on
Automated Planning and Scheduling, 29–37.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N. 2018. Robust Multi-Agent Path Finding. In
Proceedings of the International Symposium on Combinato-
rial Search, 2–9.
Berndt, A.; van Duijkeren, N.; Palmieri, L.; and Keviczky, T.
2020. A Feedback Scheme to Reorder A Multi-Agent Ex-
ecution Schedule by Persistently Optimizing a Switchable
Action Dependency Graph. ArXiv.
Chen, Z.; Harabor, D. D.; Li, J.; and Stuckey, P. J. 2021.
Symmetry Breaking for k-Robust Multi-Agent Path Find-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, 12267–12274.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and Robust Execution of MAPF
Schedules in Warehouses. IEEE Robotics and Automation
Letters, 1125–1131.
Hönig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
477–485.
Hönig, W.; Preiss, J. A.; Kumar, T. K. S.; Sukhatme, G. S.;
and Ayanian, N. 2018. Trajectory Planning for Quadrotor
Swarms. IEEE Transactions on Robotics, 856–869.
Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. K. S.; and Koenig,
S. 2020. Idle Time Optimization for Target Assignment and
Path Finding in Sortation Centers. In Proceedings of the
AAAI Conference on Artificial Intelligence, 9925–9932.
Ma, H.; Kumar, T. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. In Proceedings of
the AAAI Conference on Artificial Intelligence, 3605–3612.
Mannucci, A.; Pallottino, L.; and Pecora, F. 2021. On Prov-
ably Safe and Live Multirobot Coordination With Online
Goal Posting. IEEE Transactions on Robotics, 37(6): 1973–
1991.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 117–122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings

of the International Symposium on Combinatorial Search,
151–159.
Su, Y.; Veerapaneni, R.; and Li, J. 2024. Bidirectional Tem-
poral Plan Graph: Enabling Switchable Passing Orders for
More Efficient Multi-Agent Path Finding Plan Execution.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2007. Co-
ordinating Hundreds of Cooperative, Autonomous Vehicles
in Warehouses. In Proceedings of the AAAI Conference on
Artificial Intelligence, 1752–1759.

209

