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Abstract

We study the problem of designing the optimal k-memory
messaging scheme in a dynamic environment. Specifically,
a sender, who can perfectly observe the state of a dynamic
environment but cannot take actions, aims to persuade an un-
informed, far-sighted receiver to take actions to maximize the
long-term utility of the sender, by sending messages. We fo-
cus on k-memory messaging schemes, i.e., at each time step,
the sender’s messaging scheme depends on information from
the previous k steps. After receiving a message, the self-
interested receiver derives a posterior belief and takes action.
The immediate reward of each player can be unaligned, thus
the sender needs to ensure persuasiveness when designing the
messaging scheme.
We first formulate this problem as a bi-linear program. Then
we show that there are infinitely many non-trivial persua-
sive messaging schemes for any problem instance. Moreover,
we show that when the sender uses a k-memory messaging
scheme, the optimal strategy for the receiver is also a k-
memory strategy. We propose a fast heuristic algorithm for
this problem and show that it can be extended to the setting
where the sender has threat ability. We experimentally eval-
uate our algorithm, comparing it with the solution obtained
by the Gurobi solver, in terms of performance and running
time, in both settings. Extensive experimental results show
that our algorithm outperforms the solution in running time,
yet achieves comparable performance.

Introduction
Information asymmetry is commonly seen in many appli-
cations and has attracted extensive research attention from
computer science and economics. In these applications, an
information sender can influence a receiver’s behavior by
strategically revealing information. Such interactions are
usually modeled by the Bayesian persuasion framework
(Kamenica and Gentzkow 2011). In such environments,
the information sender has an information advantage, of-
ten leading to an advantage in their reward or utility. For
example, a navigation platform with access to complete in-
formation about the traffic conditions of an area may rec-
ommend several routes to a user who only possesses local
information. The user then chooses the best route based on
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the recommendations. The platform and the user may have
misaligned goals, and the navigation platform can send route
recommendations to influence the user’s choice. Following
the Bayesian persuasion framework, the platform can strate-
gically design recommendation strategies to persuade users
to take actions that benefit the platform most.

Most existing studies only consider persuasions in a static
environment. However, the information sender and receiver
usually interact dynamically in real-world applications. In
this paper, we consider the persuasion model in a Markov
decision process (MDP), where the sender has access to the
state of the environment and the receiver can take action.
We assume that both players are far-sighted and aim to op-
timize their accumulated rewards. The following example
shows how the sender can improve their long-term reward
by sending information to the receiver.
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Figure 1: Rewards and state transitions in Example 1.

Example 1. Consider the example shown in Figure 1. The
states {si}4i=1 are connected by directed edges indicating
state transitions. Solid lines represent deterministic transi-
tions and dashed ones probabilistic transitions. Each edge is
labeled with the action triggering the transition and the im-
mediate rewards for the sender and the receiver respectively.
Dashed lines are also marked with the transition probabili-
ties. There are 3 available actions {ai}3i=1 for the receiver.
Assume that the initial state distribution is 0.5 for s1 and s2,
and 0 for s3 and s4, i.e., the game will start at state s1 or s2
randomly. The discount factor for both players is 0.5.

If the sender doesn’t reveal any information to the re-
ceiver, the receiver cannot distinguish between s1 and s2,
then choosing the “safe” action a3 in the first step. The
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state then transits to s4 deterministically. The receiver al-
ways gets 0 in state s4 no matter which action the receiver
chooses. And the state transits back to s1, s2 with equal
probability. This process then repeats infinitely many times.
As a result, the sender obtains reward 0.

However, if the sender discloses full information by in-
forming the receiver about the current state, the receiver will
take action a1 in state s1 and a2 in state s2, resulting in a
strictly positive long-term reward for the sender. It is worth
noting that in this example, the strategy of revealing full in-
formation is not optimal for the sender.

In this paper, we aim to design an information-revealing
strategy (also called a messaging scheme) for the sender to
maximize their long-term utility. In particular, we focus on
the case where the sender uses a k-memory scheme, i.e., the
strategy depends on the history of the previous k steps.

Our Contributions
Firstly, we show that the model considered by Gan et al.
(2022) is a special case of ours. Since they already showed
that approximating an optimal scheme against a far-sighted
receiver is NP-hard, our main goal is to propose a fast al-
gorithm that has a performance comparable to the optimal
solution.

Then we formulate the problem as a bi-linear program and
show that there are infinitely many non-trivial persuasive
messaging schemes for any problem instance. Moreover, if
the sender uses a k-memory messaging scheme, the optimal
strategy for the receiver is also a k-memory strategy.

Based on these structural results, we propose an efficient
heuristic algorithm based on backward induction and give
a variant version when the sender can threaten the receiver.
We conduct extensive experiments in both settings. The re-
sults demonstrate that our algorithm achieves solution qual-
ity comparable to that of the Gurobi solver, while signifi-
cantly reducing computational time.

Related Works
Our paper is related to the broad area of information
design, also known as “Bayesian persuasion”. Kamenica
and Gentzkow (2011) study the setting where an in-
formed sender aims to persuade an uninformed receiver in
a static environment. This model has later been applied
to many real-world applications, including security (Rabi-
novich et al. 2015; Xu et al. 2015), advertising (Badani-
diyuru, Bhawalkar, and Xu 2018; Emek et al. 2014), and vot-
ing (Castiglioni, Celli, and Gatti 2020). More recently, this
setting has been extended to a dynamic setting. Farhadi and
Teneketzis (2022); Ely (2017) consider a dynamic setting
with a finite horizon involving two states, one of which is
absorbing. In contrast, we consider a more general environ-
ment with an infinite time horizon. Celli, Coniglio, and Gatti
(2020) consider a model where a sender interacts with multi-
ple receivers in an extensive-form game. In their model, the
sender reveals information to the receiver only once, while
in our model, the sender sends messages to the receiver at
every step. The most related paper is the study by Gan et al.
(2022), who captures the uncertainty in an environment with

an external parameter. The key difference is that they fo-
cus on Markov signaling schemes, whereas we consider a
more general k-memory messaging scheme. We find that the
Markov signaling scheme studied in their model is precisely
equivalent to the 1-memory messaging scheme in our set-
ting. Wu et al. (2022) design an efficient no-regret algorithm
under an online learning setting. They aim to persuade a se-
quence of myopic receivers, while we consider persuading a
single far-sighted receiver.

Our paper is also related to dynamic mechanism design
(Papadimitriou et al. 2016; Pavan, Segal, and Toikka 2014;
Athey and Segal 2013). In particular, recent work by Zhang
and Conitzer (2021) studies dynamic mechanism design in a
finite horizon, where the mechanism designer, who has par-
tial information about the state, aims to design a mechanism
to elicit state information from an agent. On the contrary,
we stand on the side of information design, studying how
the sender can use this information advantage to maximize
their utility. The common point is that we both adopt history-
based strategies for the designer.

Another related topic is planning in MDPs. Particularly
related to our work is the model studied by Zhang, Cheng,
and Conitzer (2022), where an informed planner interacts
with a self-interested agent with the choice to exit the en-
vironment. We both use history-based strategies. However,
they impose participation constraints on the agent when the
principle computes the optimal policy, while we need to
guarantee persuasiveness constraints when the sender de-
signs the optimal messaging scheme.

General Specifications
In the standard Markov decision process (MDP), a decision
maker chooses an action at each time step to maximize their
long-term reward. Now, consider a variant of MDP where
there are two agents in the game, namely the sender and the
receiver. The receiver can take action but has no access to
the state. However, the sender can perfectly observe the state
and send messages to inform the receiver about it, thereby
influencing their behavior. Both agents are rational and at-
tempt to maximize their long-term expected utilities.

Formally, such a setting can be described by a tuple
⟨N,S,A, P, ρ0, u, γ⟩, where:
• N = {s, r} denotes the player set, where s and r denote

the sender and the receiver, respectively.
• S is a finite set of environment states, only observable for

the sender.
• A is a finite set of actions that the receiver can choose to

take in each state. We assume all states share the same
action set and let d = |A| be the number of available
actions.

• P : S × A 7→ ∆(S) is the state transition function. We
use P (s, a, s′) to denote the probability that the receiver
would arrive at state t′ when he takes action a in state s.

• ρ0 denotes the initial state distribution, i.e., the initial
state will be si with probability ρ0(si).

• u = (us, ur), where us : S×A 7→ R+ and ur : S×A 7→
R+ are the sender’s and the receiver’s immediate reward
functions.
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• γ is a common discount factor.

We assume that the decision process repeats infinitely many
time steps and consider the setting where the receiver can
observe the immediate reward. Put differently, we assume
that the receiver can speculate the state st after taking action
at since the immediate reward ur(st, at) reveals information
about st.1 As a result, the receiver has a prior belief ρt+1 =
P (st, at) about the next state st+1.

This setting induces a game between the sender and the
receiver. The game proceeds as follows: the sender an-
nounces a messaging scheme at the beginning of the game,
where a messaging scheme (M,π) contains a message set
M and a policy π specifying how a message is chosen. At
each time step t, the sender first observes a state st ∈ S and
then sends a message mt ∈ M to the receiver according to
the announced messaging scheme. Here, we assume that the
sender has commitment power, i.e., the sender will never de-
viate from the announced scheme. After receiving the mes-
sage, the receiver makes the best response to that message.
Then the time step becomes t+1 and the state transits to the
next one according to the transition function.

If two players are fully cooperative, i.e., their utilities
align perfectly, then the sender can just send all the informa-
tion they have, and the problem reduces to a standard MDP.
However, the sender may only want to reveal partial infor-
mation to the receiver, since the two players may have con-
flicting interests. We adopt the so-called Bayesian persua-
sion framework (Kamenica and Gentzkow 2011) to describe
the sender’s strategy.

Histories and Messaging Schemes
The game between the two agents can be described by a
game tree of infinite depth. The sender may use differ-
ent messaging schemes at different tree nodes. In other
words, the sender’s messaging scheme can depend on
the history information. We define t-length history h =
(s1, a1, . . . , st, at) as a sequence of states and receiver’s ac-
tions of the previous t time steps. In this work, we mainly
focus on the k-memory messaging scheme, which depends
on the latest history with a length equal to or less than k. If
k = 0, we call such a strategy a Markov strategy.

Denote by Ht the set of all histories of length t. Let
H =

⋃k
t=0 Ht be the set of all histories with length no more

than k, where H0 is the singleton containing the empty his-
tory h0. At the beginning of the game, there is no history
information but a prior distribution ρ0 over the state set S.
Thus the prior ρ0 carries the same information as the empty
history.

Given any t-length history h, we use h+ (s, a) to denote
the new history by adding (s, a) to the end of history h. Note
that we may need to remove the earliest state and action to
prevent the history length from exceeding k, i.e.,

h+ (s, a) =

{
(s1, a1, . . . , st, at, s, a), if t < k

(s2, a2, . . . , st, at, s, a), if t = k
.

1The receiver is able to perfectly identify st in a non-degenerate
case, i.e., ur(st, at) ̸= ur(s

′
t, at), ∀st, s′t ̸= st, ∀at.

A k-memory messaging scheme is a function that maps
history-state pairs to distributions over the message space.
Formally, denoted by π : H × S 7→ ∆(M) the k-memory
messaging scheme. We use π(h, s,m) to denote the prob-
ability that message m is sent by the sender when state s
is reached, given history h. Such a scheme is also called a
“signaling scheme” in the literature (Emek et al. 2014).

Given history h ∈ H, denote by ρh the receiver’s belief
about the state s. As described in the previous section, ρh(s)
depends only on the state and action of the last time step, i.e.,
ρh(s) = P (st, at, s)

2. We make the mild assumption that
ρh(s) > 0, ∀s throughout the paper. Once receiving mes-
sage m, a rational receiver will derive a posterior belief over
the state according to the standard Bayes rule:

ρh(s|m,h) =
ρh(s) · π(h, s,m)∑

s′∈S ρh(s′) · π(h, s′,m)
. (1)

Optimization Problem Formulation
We study how the sender can leverage this information ad-
vantage to influence the receiver’s actions, thus our goal is
to design a k-memory messaging scheme that maximizes the
sender’s cumulative expected utility.

It has been proved in (Gan et al. 2022) that approximating
an optimal scheme against a far-sighted receiver is NP-hard.
Firstly, we show that the model studied in (Gan et al. 2022) is
a subset of ours. To be precise, it is equivalent to the problem
of designing the optimal 1-memory messaging scheme.

Lemma 1. The model studied in (Gan et al. 2022) is equiva-
lent to the problem of designing the optimal 1-memory mes-
saging scheme in our setting.

Hence, one cannot hope to design an efficient algorithm to
solve this problem unless P=NP. In the rest of this section,
we will formulate the problem as a bi-linear optimization
problem, which will be useful for subsequent analysis.

Up to this point, there’s been no limitation on the num-
ber of messages the sender can use. Following the reve-
lation principle, we can view each message as an action
recommendation, as each message induces a posterior be-
lief of the receiver, which leads to a certain action (Ka-
menica and Gentzkow 2011; Dughmi and Xu 2016). Thus
the number of messages can be set equal to the number of
actions without harming the sender’s interest, i.e., |M | = d.
In other words, given any messaging scheme, we can al-
ways construct an equivalent scheme π with the message set
MA = {ma : a ∈ A}, where each message ma corresponds
to an action recommendation a ∈ A.

Persuasiveness. We say a messaging scheme is persua-
sive if the receiver is willing to take the corresponding ac-
tion a after receiving action recommendation ma, for all
ma ∈ MA. Before providing a formal definition of per-
suasiveness, we first define the long-term utility for each
player. Let V π

1 (h, s) be the expected cumulative utility of
the sender, given scheme π, history h, and state s. Similar
to the Bellman equation (Bellman 1966), given a k-memory

2Assume that h = (s1, a1, . . . , st, at), then the previous state-
action pair is (st, at).
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messaging scheme π, the expected cumulative utility of the
sender V π

1 : H× S 7→ R should satisfy:

V π
1 (h, s) =

∑
ma∈MA

π(h, s,ma) ·

[
us(s, a)+

γ ·
∑
s′∈S

P (s, a, s′) · V π
1 (h+ (s, a), s′)

]
.

(2)

Given this, the overall expected utility of the sender from the
beginning can be phrased as follows:∑

s∈S

ρ0(s) · V π
1 (h0, s). (3)

Similarly, the receiver’s long-term expected utility V π
2 : H×

S × A 7→ R, under k-memory messaging scheme π can be
define as:

V π
2 (h, s, a) =ur(s, a) + γ

∑
s′∈S

P (s, a, s′)

[ ∑
ma′∈MA

π(h+ (s, a), s′,ma′) · V π
2 (h+ (s, a), s′, a′)

]
.

(4)

Now we define persuasiveness formally.
Definition 1 (Persuasiveness). A k-memory messaging
scheme π is persuasive if it satisfies the following persua-
sive constraints, for all h ∈ H,ma ∈ Ma, a

′ ∈ A :∑
s∈S

ρh(s) · π(h, s,ma) · V π
2 (h, s, a)

≥
∑
s∈S

ρh(s) · π(h, s,ma) · V π
2 (h, s, a′).

(5)

Simply put, a messaging scheme is persuasive if the re-
ceiver is always willing to take the recommended action, i.e.,
the recommended action always maximizes the receiver’s
long-term utility.

With the above analysis, we can now formulate the prob-
lem as the following mathematical program, with decision
variables π(h, s,ma), V

π
1 (h, s), V π

2 (h, s, a):

maximize (3)
subject to (2), (4), (5)∑

ma∈MA

π(h, s,ma) = 1, ∀h, s

π(h, s,ma) ≥ 0, ∀h, s,ma

(6)

Program (6) is a bi-linear program since constraint (5) is a
bi-linear constraint.

Theoretical Analyses
In this section, we analyze the problem in theory and de-
rive some structural results. Firstly, we show that there ex-
ist infinitely many non-trivial persuasive messaging schemes
for the sender in any problem instance. Furthermore, the re-
ceiver can attain optimality by using a k-memory strategy if
the sender also uses a k-memory messaging scheme.

In the standard Bayesian persuasion setting, there always
exist trivial persuasive schemes, e.g., revealing full or no in-
formation to the receiver. Such trivial schemes also exist in
our setting. However, it is not clear if a non-trivial persua-
sive scheme exists, since our setting has much more compli-
cated constraints. Before trying to find an optimal messaging
scheme, we need to ensure that there indeed exist non-trivial
persuasive schemes, since otherwise, there are only trivial
schemes and we can just consider these special cases instead
of searching the entire space.

To give some intuition about this result, we first consider a
simple setting where γ = 0. We construct a trivial persuasive
Markov messaging scheme as follows. Let β∗

r be the optimal
strategy of the receiver if they can observe the environment
state s, i.e., β∗

r (s) = arg maxa∈A ur(s, a). We define the
following Markov messaging scheme:

π∗(s,ma) =

{
1 if a = β∗

r (s)

0 otherwise
.

This messaging scheme is trivially persuasive since follow-
ing the sender’s recommendation already maximizes the re-
ceiver’s utility. The proof of Lemma 2 is based on the above
construction.

Lemma 2. Assume that there are at least two actions ai1
and ai2 , with corresponding states si1 and si2 , such that
ai1 and ai2 are the unique maximizers of ur(si1 , a) and
ur(si2 , a), respectively. When γ = 0, there are infinitely
many non-trivial Markov messaging schemes that are per-
suasive.

The intuition behind the proof is that adding a small
enough perturbation to a trivial scheme will not change the
receiver’s optimal strategy, thus maintaining persuasiveness.
We defer the detailed proof into the appendix.

Next, we show that infinitely many persuasive messaging
schemes exist for any problem instance. This can be sim-
ply derived by applying the revelation principle (Myerson
1981) from the mechanism design literature. We also pro-
vide an alternative proof in the appendix that does not use
the revelation principle.

Theorem 1. For any problem instance, there are infinitely
many persuasive messaging schemes.

Proof. The intuition behind our proof is to “relabel” mes-
sages in any messaging scheme so that they correspond to
the actual actions of the receiver. Let (M,π) be any messag-
ing scheme. If the sender uses this scheme, the receiver is
then faced with a MDP as defined in the proof of Lemma 2.
Let β(h,m) be the receiver’s optimal strategy in the MDP.
Let Ma(h) = {m | β(h,m) = a} be the set of messages
that lead to the receiver’s action a when the history is h.
According to the revelation principle, we can construct a
new scheme that uses message set MA and replaces each
m ∈ Ma(h) with ma, and get the same receiver response
β(h,m) = β′(h,ma), ∀m ∈ Ma(h). Thus the new scheme
is persuasive.

Indeed, after the sender commits to a messaging scheme,
the receiver is also faced with a MDP. Hence, the problem

190



studied in this paper can be viewed as a MDP environment
design problem for the sender. Building upon this insight,
we present the following result.

Theorem 2. When the sender uses a k-memory messaging
scheme, the optimal strategy for the receiver is also a k-
memory strategy.

Proof. We prove this by showing that the receiver’s prob-
lem can be viewed as a MDP. Since the sender has com-
mitment power, their strategy will not change throughout
the game. Thus the receiver can simply view the sender as
part of the environment. From the receiver’s point of view,
they are faced with a MDP problem, where the environment
of the MDP contains both the original environment and the
sender. The state of the MDP contains both the history h and
the message m sent by the sender.

After receiving a message m, the receiver will derive a
posterior distribution by applying the Bayes rule:

ρh(s|h,m) =
ρh(s)π(h, s,m)∑

s′∈S ρh(s′)π(h, s′,m)
. (7)

The expected immediate reward of the receiver for taking
action a is then

∑
s ρh(s|h,m)ur(s, a).

Formally, we can formulate the MDP faced by the receiver
as follows:

• The state space is S∗ = H×M ;
• The action space is A∗ = A;
• The state transition function is P ∗((h,m), a, (h +
(s, a),m′)) = ρh(s) ·

∑
s′∈S ρh+(s,a)(s

′) · π(h +
(s, a), s′,m′);

• the reward function is R∗((h,m), a) =∑
s∈S ρh(s|h,m) · ur(s, a).

Since the sender uses a k-memory messaging scheme
π(h, s,m), the receiver’s posterior belief of the environment
state ρh(s|m,h) only depends on the information of the pre-
vious k steps. And even if the receiver uses a strategy that
depends on a longer memory, they cannot obtain more in-
formation that can affect their behaviors. In such a MDP, the
receiver’s optimal strategy is to choose an action for each
MDP state (h,m), which only contains information about
previous k time steps.

A Fast Algorithm for Finding k-Memory
Schemes

In this section, we propose an efficient heuristic algorithm.
The intuition behind our algorithm is as follows. The game
proceeds in a Stackelberg way, where the sender announces
their strategy first, then the receiver follows. We view the
game as a standard Bayesian extensive-form game, as it pro-
vides a lower bound of the original game. However, this
game still contains infinitely many steps. To address this,
we introduce a parameter T and only consider T time steps,
thus limiting the game tree to a maximum depth of T . Sub-
sequently, we adapt the backward induction algorithm (Au-
mann 1995) and apply it to find a solution.

Backward induction is a strategy for analyzing a game by
working backward from the end to the beginning. The algo-
rithm starts at time T −1 and considers all possible k-length
histories, of which there are |Hk| types of terminal nodes.
At this stage, each node is labeled with the sender’s messag-
ing scheme, denoted as πh : S ×MA 7→ R. For each node,
the optimal messaging scheme π∗

h is computed, along with
the expected utilities for both players. This information is
then utilized to calculate the optimal messaging scheme for
the preceding time T − 2, and the process continues recur-
sively until the optimal messaging scheme is determined for
all nodes in the game tree.

Specifically, starting from time t = T − 1, we solve the
following linear program for all nodes at time t, where each
node can be uniquely identified by a history h:

maximize:∑
s

ρh(s)
∑
ma

πh(s,ma)[us(s, a) + γV1(h+ (s, a))]

subject to:∑
s

ρh(s)πh(s,ma)[ur(s, a) + γV2(h+ (s, a))]

≥
∑
s

ρh(s)πh(s,ma)[ur(s, a
′) + γV2(h+ (s, a′))]

∀ma, ∀a′,∑
ma

πh(s,ma) = 1 ∀s ∈ S,

πh(s,ma) ≥ 0 ∀s ∈ S,ma ∈ MA.
(8)

Note that at any terminal node, there is no future reward,
thus we set V (h + (s, a)) = 0 initially. At each backward
step t, for each history h, after solving the above program,
we obtain the optimal messaging scheme π∗

h for node h. We
set V1(h) equal to the objective of the program and calculate
V2(h) as follow:

V2(h) =
∑
s

ρh(s)
∑
ma

π∗
h(s,ma)[ur(s,ma)+

γV2(h+ (s, a))].

(9)

In the end, we aggregate π∗
h with all relevant histories h and

output a backward message scheme πbackward. Our algo-
rithm is described in Algorithm 1 in detail.

Threat Based Schemes
Our algorithm can also be applied to scenarios where the
sender has the capability to threaten the receiver. The re-
ceiver’s utility is minimized when the sender provides no ad-
ditional information about the underlying state, for instance,
by consistently sending the same message. If the sender
threatens the receiver with a k-memory scheme, according
to Theorem 2, such a threat lasts for at most k steps. In this
section, we explore threats that persist indefinitely.

When there is no information from the sender, the deci-
sion process of the receiver can be formulated as the fol-
lowing MDP M t = ⟨S × A,A, P t, Rt⟩. At each step, the
receiver only knows the prior belief regarding the environ-
ment state, which serves as the “state” in M t. The transition
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Algorithm 1: Finding a k-Memory Messaging Scheme
Input: State set S, action set A, transition function P , initial
state distribution ρ0, reward functions us and ur, memory
length k, discount factor γ.
Parameter: Backward step T .
Output: Scheme πbackward.

1: Let V (h + (s, a)) = 0 for all terminal nodes h, and all
(s, a) state-action pairs.

2: for t = T − 1, · · · , 0 do
3: for h ∈ Hk do
4: Solve the linear program (8) with existing V (h +

(s, a)).
5: Save the message scheme π∗

h and the expected util-
ities of both players.

6: end for
7: end for
8: Aggregate all π∗

h to form πbackward.
9: return πbackward

function P t is defined as follow:

P t((st−1, at−1), a, (st, at)) =

{
ρh(st), if a = at
0, otherwise

,

where h represents the history containing information up to
time t − 1. Similarly, the reward function Rt is defined as
follows:

Rt((st−1, at−1), a) =
∑
s

ρh(s)ur(s, a).

Let V t(s, a) be the receiver’s expected long-term utility
starting from MDP state (s, a). Following the standard ap-
proach (Manne 1960), we can find the solution to this MDP
by solving the following linear program:

minimize: ∑
(s,a)∈S×A

V t(s, a)

subject to:
V t(s, a) ≥

∑
s′

ρh(s
′)[ur(s

′, a′) + γ · V t(s′, a′)]

∀a′ ∈ A, (s, a) ∈ S ×A.

The solution V t(s, a) to the above MDP represents the re-
ceiver’s optimal expected long-term utility when the sender
does not provide any information. With such threatening ca-
pability, the sender’s persuasiveness constraints become:∑

s∈S

ρh(s)π(h, s,ma)V
π
2 (h, s, a)

≥
∑
s∈S

ρh(s)π(h, s,ma)[ur(s, a
′) + γV t((s, a′))].

(10)

We can thus find threat-based schemes for the sender by
merely substituting the corresponding constraint in program
(8) with the constraint (10) in Algorithm 1.

Note that the additional threatening capability does en-
large the sender’s strategy space, as V t is the lower bound
of the receiver’s utility. Substituting the original persuasive-
ness constraint with Equation (10) evidently makes the fea-
sible region larger.

Experiments
In this section, we experimentally evaluate our algorithm
and report the experiment results. We compare our algorithm
with the method of using Gurobi to solve the bi-linear pro-
gram defined in our paper, in terms of performance and run-
ning time. The experiment results demonstrate that our al-
gorithm achieves solution quality comparable to that of the
solution found by Gurobi, yet outperforms it in terms of run-
ning time.

We also conduct experiments with the sender being able
to threaten the receiver. Due to space limitations, these re-
sults are deferred to the appendix.

Experiment setup. We conduct experiments on games
with different sizes (number of states × number of actions),
ranging from 2×2 to 12×12, and different discount factors
γ, ranging from 0.1 to 0.9. Furthermore, we evaluate how
the memory length influences the performance, by changing
k from 1 to 6. For each game size, we generate 20 game in-
stances, where for each instance, the reward matrices of both
players are generated randomly from the uniform distribu-
tion U [0, 1], and the transition functions are also uniformly
generated at random. All the algorithms are implemented
with Python, and all the linear programs and bi-linear pro-
grams are solved using Gurobi (Python version, v9.5.2). All
results with the same game size are based on the same set of
reward matrices by varying γ and k.

Since bi-linear programs are intractable to solve, we set
the time limit parameter of Gurobi to 30 minutes when solv-
ing bi-linear programs, but do not limit the running time
when solving linear programs. We found that the Gurobi
solver can hardly solve any bi-linear program of our gen-
erated game instances within the 30-minute time limit, even
for 2× 2 games. However, it can report the best feasible so-
lutions obtained so far. Thus all the reported results in such
cases are based on these feasible solutions.

All the results of our algorithm are obtained by setting
the backward step to 100 (T = 100 in Algorithm 1) unless
otherwise stated. Furthermore, all the reported results are av-
eraged over the 20 randomly generated game instances.

Performance
We evaluate different algorithms’ performance by compar-
ing the expected utility of the sender obtained by them. We
compare the performance of the two algorithms under differ-
ent game sizes and different memory lengths. Since Gurobi
does not even provide feasible solutions to the bi-linear pro-
gram of some game instances in 30 minutes, the results are
incomparable even if our algorithm can output feasible so-
lutions. Thus all results are only average over the instances
that Gurobi provides feasible solutions within 30 minutes.
We only compare the performance for games with sizes up
to 5×5 and memory lengths up to 4, since Gurobi can hardly
find a feasible solution for the bi-linear program of more
complicated games.

Figure 2 shows the performances of two algorithms un-
der different game sizes. Our algorithm achieves perfor-
mances comparable to the bi-linear formulation. In general,
for larger games, the sender can have higher utilities. Note
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Figure 2: Average sender utility obtained by different algorithms with memory length k = 1.
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Figure 3: Average sender utility obtained by different algorithms in 2× 2 games.

that our algorithm sometimes achieves higher utilities than
the bi-linear formulation simply because both algorithms
only provide feasible solutions.

Figure 3 shows the performances of two algorithms with
different memory lengths. The performances of the two al-
gorithms are almost identical. When the discount factor is
large, the sender can increase their utility by using a longer
memory. But for small discount factors, the benefit of using
a longer memory diminishes, as the receiver does not care
too much about future utilities.

Running Time

We analyze different algorithms’ running times from three
different aspects: (i) game size, (ii) memory length, and (iii)
discount factor γ. Since Gurobi can hardly solve any bi-
linear program in our experiments, we record how many of
the 20 game instances Gurobi can provide a feasible solution
within 30 minutes.

The results of solving bi-linear programs with Gurobi are
shown in Table 1 and Table 2. It is seen from Table 1 that,
as the game size increases, the number of games for which
Gurobi can provide a feasible solution decreases. Further-
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γ
d 2 3 4 5

0.9 20 20 11 8
0.7 20 10 7 8
0.5 20 20 20 2
0.3 20 20 20 20
0.1 20 19 20 20

Table 1: Number of games
for which Gurobi provides a
feasible solution within 30
minutes for k = 1.

γ
k 1 2 3 4

0.9 20 20 16 13
0.7 20 20 20 19
0.5 20 20 20 20
0.3 20 20 20 20
0.1 20 20 20 20

Table 2: Number of games
for which Gurobi gives a fea-
sible solution within 30 mins
for game size 2× 2.

Game size d
γ 2 3 4 5

0.9 0.5 2.6 9.1 25.4
0.7 0.5 2.6 9.0 25.3
0.5 0.5 2.5 8.9 24.9
0.3 0.5 2.5 8.8 24.8
0.1 0.5 2.5 8.8 24.8

Table 3: Average running
time (in seconds) of our algo-
rithm for k = 1.

Memory length k
γ 1 2 3 4

0.9 0.5 2.1 8.4 33.2
0.7 0.5 2.1 8.4 33.3
0.5 0.5 2.0 8.3 32.7
0.3 0.5 2.1 8.3 33.0
0.1 0.5 2.0 8.3 32.8

Table 4: Average running
time (in seconds) of our algo-
rithm for game size 2× 2.

more, this number also decreases when the discount factor
γ increases, which means that the more the receiver cares
about long-term utilities, the harder it is for Gurobi to find a
feasible solution.

As shown in Table 2, when the discount factor γ is small
enough, Gurobi can find feasible solutions for all the game
instances with different memory lengths k. However, for
larger discount factors γ, it becomes less likely for Gurobi
to find a feasible solution within 30 minutes.

The results in Table 1 and 2 align well with our intuitions.
As the game size and memory length increase, the strategy
space of the sender grows larger. Therefore, solving these
games becomes harder. Although the sender’s scheme de-
pends on previous time steps, it can also affect both agents’
future utilities, since the receiver considers future utilities
when making a decision and the current decision becomes
past information in the future. With a larger γ, future util-
ities have a larger weight in the long-term utility and thus
have more influence when the receiver chooses an action,
making it difficult to find a good enough scheme.

We report the running time of our algorithm in Table 3
and 4. Our algorithm runs much faster compared with solv-
ing the bi-linear program. Our algorithm can find a feasible
solution for all 20 game instances within 30 minutes, for
all different game settings. In fact, our algorithm terminates
within 30 seconds for most of the games.

We also conduct experiments to explore how large in-
stances our algorithm can handle in 30 minutes, and record
the corresponding average utility in different game sizes.
Figure 4 shows that our algorithm can handle 12×12 games
within 30 minutes. Unlike the bi-linear program formula-
tion, the discount factor γ has little impact on the running
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Figure 4: Average running time of our algorithm for k = 1
in games with different sizes.

time of our algorithm. Changing the discount factor does not
affect the execution of our algorithm except for the part of
solving linear programs, which is also implemented using
Gurobi. Thus we conjecture that the slight increase in run-
ning time is also due to the Gurobi solver.
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Figure 5: The average utility of our algorithm with k = 1, in
2× 2 size games.

Hyperparameter. We evaluate how the backward step af-
fects the performance of our algorithms with k = 1, in in-
stances with 2× 2 game size and different discount factors.
The results are provided in Figure 5. When γ = 0.9, the
sender can obtain more utility by increasing the backward
step from 20 to 40. Figure 5 also shows that increasing the
backward step may not bring an obvious increase in utility,
but may increase the running time quickly. Therefore, the
backward step parameter can be used to balance the running
time and the performance.

Conclusion
In this paper, we study the optimal k-memory messaging
scheme design problem in a dynamic environment. We first
formulate the problem as a bi-linear program and show that
there exist infinitely many non-trivial persuasive messaging
schemes for almost all problem instances. After that, we pro-
pose a heuristic algorithm based on backward induction by
considering a constant horizon. Finally, the experimental re-
sults show that our algorithm achieves a performance com-
parable to the optimal solution while running much faster.
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